Literatura científica selecionada sobre o tema "Drugs Metabolism"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Drugs Metabolism".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Drugs Metabolism"
Lambie, David G., e Ralph H. Johnson. "Drugs and Folate Metabolism". Drugs 30, n.º 2 (agosto de 1985): 145–55. http://dx.doi.org/10.2165/00003495-198530020-00003.
Texto completo da fonteDesouza, Cyrus, Mary Keebler, Dennis B. McNamara e Vivian Fonseca. "Drugs Affecting Homocysteine Metabolism". Drugs 62, n.º 4 (2002): 605–16. http://dx.doi.org/10.2165/00003495-200262040-00005.
Texto completo da fonteJann, Michael W., Y. W. Francis Lam, Eric C. Gray e Wen-Ho Chang. "REVERSIBLE METABOLISM OF DRUGS". Drug Metabolism and Drug Interactions 11, n.º 1 (janeiro de 1994): 1–24. http://dx.doi.org/10.1515/dmdi.1994.11.1.1.
Texto completo da fonteReiher, Jean. "Metabolism of Antiepileptic Drugs". Journal of Clinical Neurophysiology 2, n.º 3 (julho de 1985): 309. http://dx.doi.org/10.1097/00004691-198507000-00007.
Texto completo da fonteFranceschini, Guido, e Rodolfo Paoletti. "Drugs controlling triglyceride metabolism". Medicinal Research Reviews 13, n.º 2 (março de 1993): 125–38. http://dx.doi.org/10.1002/med.2610130202.
Texto completo da fonteGhiselli, Giancarlo, e Marco Maccarana. "Drugs affecting glycosaminoglycan metabolism". Drug Discovery Today 21, n.º 7 (julho de 2016): 1162–69. http://dx.doi.org/10.1016/j.drudis.2016.05.010.
Texto completo da fonteKostner, G. M. "Drugs affecting lipid metabolism". Chemistry and Physics of Lipids 51, n.º 1 (julho de 1989): 73–74. http://dx.doi.org/10.1016/0009-3084(89)90068-6.
Texto completo da fonteDurrington, P. "Drugs Affecting Lipid Metabolism". International Journal of Cardiology 45, n.º 2 (junho de 1994): 153–54. http://dx.doi.org/10.1016/0167-5273(94)90276-3.
Texto completo da fonteSitar, Daniel S. "Metabolism of Thioamide Antithyroid Drugs". Drug Metabolism Reviews 22, n.º 5 (janeiro de 1990): 477–502. http://dx.doi.org/10.3109/03602539008991448.
Texto completo da fonteKelly, Patrick, e Barry Kahan. "Review: Metabolism of Immunosuppressant Drugs". Current Drug Metabolism 3, n.º 3 (1 de junho de 2002): 275–87. http://dx.doi.org/10.2174/1389200023337630.
Texto completo da fonteTeses / dissertações sobre o assunto "Drugs Metabolism"
Bai, Shuang. "Effect of immunosuppressive agents on drug metabolism in rats". Thesis, Full text (PDF) from UMI/Dissertation Abstracts International, 2001. http://wwwlib.umi.com/cr/utexas/fullcit?p3008270.
Texto completo da fonteBritt, Adrian John. "Cocaine metabolism in Pseudomonas maltophilia MB11L". Thesis, University of Cambridge, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.386328.
Texto completo da fonte王漪雯 e Belinda Wong. "Haloperidol metabolism in man and animals". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1993. http://hub.hku.hk/bib/B3121194X.
Texto completo da fonteWong, Belinda. "Haloperidol metabolism in man and animals /". [Hong Kong] : University of Hong Kong, 1993. http://sunzi.lib.hku.hk/hkuto/record.jsp?B13671546.
Texto completo da fonteDaneshmend, T. K. "Observations on presystemic metabolism of drugs in man". Thesis, University of Bristol, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.482894.
Texto completo da fontePriston, Melanie Jane. "Studies on the pharmacokinetics and metabolism of mitozantrone". Thesis, University of Exeter, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.303766.
Texto completo da fontePereira, Maria J. "Effects of immunosuppressive drugs on human adipose tissue metabolism". Doctoral thesis, University of Gothenburg, 2012. http://hdl.handle.net/10400.1/4916.
Texto completo da fonteThe immunosuppressive agents (IAs) rapamycin, cyclosporin A and tacrolimus, as well as glucocorticoids are used to prevent rejection of transplanted organs and to treat autoimmune disorders. Despite their desired action on the immune system, these agents have serious longterm metabolic side-effects, including dyslipidemia and new onset diabetes mellitus after transplantation. The overall aim is to study the effects of IAs on human adipose tissue glucose and lipid metabolism, and to increase our understanding of the molecular mechanisms underlying the development of insulin resistance during immunosuppressive therapy. In Paper I and II, it was shown that rapamycin and the calcineurin inhibitors, cyclosporin A and tacrolimus, at therapeutic concentrations, had a concentration-dependent inhibitory effect on basal and insulin-stimulated glucose uptake in human subcutaneous and omental adipocytes. Rapamycin inhibited mammalian target of rapamycin complex (mTORC) 1 and 2 assembly and phosphorylation of protein kinase B (PKB) at Ser473 and of the PKB substrate AS160, and this leads to impaired insulin signalling (Paper I). On the other hand, cyclosporin A and tacrolimus had no effects on expression or phosphorylation of insulin signalling proteins (insulin receptor substrate 1 and 2, PKB, AS160), as well as the glucose transport proteins, GLUT4 and GLUT1 (Paper II). Instead, removal of GLUT4 from the cell surfasse was observed, probably mediated through increased endocytosis, as shown in L6 musclederived cells. These studies suggest a different mechanism for cyclosporin A and tacrolimus, in comparison to rapamycin, with respect to impairment of glucose uptake in adipocytes. In Paper III, all three IAs increased isoproterenol-stimulated lipolysis and enhanced phosphorylation of one of the main lipases involved in lipolysis, hormone-sensitive lipase. The agents also inhibited lipid storage, and tacrolimus and rapamycin down-regulated gene expression of lipogenic genes in adipose tissue. All three IAs increased interleukin-6 (IL-6), but not tumor necrosis factor α (TNF-α ) or adiponectin, gene expression and secretion. In Paper IV, we proposed that FKBP5 is a novel gene regulated by dexamethasone, a synthetic glucocorticoid, in both subcutaneous and omental adipose tissue. FKBP5 expression in subcutaneous adipose tissue is correlated with clinical and biochemical markers of insulin resistance and adiposity. In addition, the FKBP5 gene product was more abundant in omental than in subcutaneous adipose tissue. In conclusion, adverse effects of immunosuppressive drugs on human adipose tissue glucose and lipid metabolism can contribute to the development of insulin resistance, type 2 diabetes and dyslipidemia in patients on immunosuppressive therapy. The cellular mechanisms that are described in this thesis should be further explored in order to mitigate the metabolic perturbations caused by current immunosuppressive therapies. The findings in this thesis could potentially also provide novel pharmacological mechanisms for type 2 diabetes as well as other forms of diabetes.
Godwin, Bryan. "Discrete sliding mode control of drug infusions". Thesis, Georgia Institute of Technology, 1991. http://hdl.handle.net/1853/16806.
Texto completo da fonteBenchaoui, Hafid Abdelaali. "Factors affecting the pharmacokinetics, metabolism and efficacy of anthelmintic drugs". Thesis, University of Glasgow, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.284569.
Texto completo da fonteNgulube, Thabale Jack. "The interaction of anti-malarial drugs and steroid hormone metabolism". Thesis, University of Leeds, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.329825.
Texto completo da fonteLivros sobre o assunto "Drugs Metabolism"
Catapano, A. L., A. M. Gotto, Louis C. Smith e Rodolfo Paoletti, eds. Drugs Affecting Lipid Metabolism. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1703-6.
Texto completo da fontePaoletti, Rodolfo, David Kritchevsky e William L. Holmes, eds. Drugs Affecting Lipid Metabolism. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-71702-4.
Texto completo da fonteGotto, A. M., R. Paoletti, L. C. Smith, A. L. Catapano e A. S. Jackson, eds. Drugs Affecting Lipid Metabolism. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-0311-1.
Texto completo da fonteL, Catapano Alberico, e International Symposium on Drugs Affecting Lipid Metabolism, (11th : 1992 : Florence, Italy), eds. Drugs affecting lipid metabolism. Dordrecht: Kluwer Academic Publishers, 1993.
Encontre o texto completo da fonteRodolfo, Paoletti, Kritchevsky David 1920-, Holmes William L. 1918- e Drugs Affecting Lipid Metabolism Meeting (1986 : Florence, Italy), eds. Drugs affecting lipid metabolism. Berlin: Springer-Verlag, 1987.
Encontre o texto completo da fonteGarth, Powis, ed. Anticancer drugs: Reactive metabolism and drug interactions. Oxford, England: Pergamon Press, 1994.
Encontre o texto completo da fonte1949-, Gibson G. Gordon, ed. Progress in drug metabolism. New York: John Wiley, 1988.
Encontre o texto completo da fonte1938-, Bieck Peter R., ed. Colonic drug absorption and metabolism. New York: M. Dekker, 1993.
Encontre o texto completo da fonteKritchevsky, David, William L. Holmes e Rodolfo Paoletti, eds. Drugs Affecting Lipid Metabolism VIII. Boston, MA: Springer US, 1985. http://dx.doi.org/10.1007/978-1-4613-2459-1.
Texto completo da fonteInternational Symposium on Drugs Affecting Lipid Metabolism (8th 1983 Philadelphia, Pa.). Drugs affecting lipid metabolism VIII. New York: Plenum Press, 1985.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Drugs Metabolism"
Dwyer, B. E., e C. G. Wasterlain. "Intermediary Metabolism". In Antiepileptic Drugs, 79–100. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-642-69518-6_4.
Texto completo da fonteStene, Danny O., e Robert C. Murphy. "Metabolism of Sulfidopeptide Leukotrienes". In Prostanoids and Drugs, 37–46. New York, NY: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4684-7938-6_6.
Texto completo da fonteVuilhorgne, M., C. Gaillard, G. J. Sanderink, I. Royer, B. Monsarrat, J. Dubois e M. Wright. "Metabolism of Taxoid Drugs". In ACS Symposium Series, 98–110. Washington, DC: American Chemical Society, 1994. http://dx.doi.org/10.1021/bk-1995-0583.ch007.
Texto completo da fonteTatum, William O. "Metabolism and Antiseizure Drugs". In Epilepsy Case Studies, 87–93. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-01366-4_20.
Texto completo da fonteMeyer, Markus R., e Hans H. Maurer. "Drugs of Abuse (Including Designer Drugs)". In Metabolism of Drugs and Other Xenobiotics, 429–63. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2012. http://dx.doi.org/10.1002/9783527630905.ch16.
Texto completo da fonteRiedmaier, Stephan, e Ulrich M. Zanger. "Cardiovascular Drugs". In Metabolism of Drugs and Other Xenobiotics, 331–63. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2012. http://dx.doi.org/10.1002/9783527630905.ch12.
Texto completo da fonteSchwab, Matthias, Elke Schaeffeler e Hiltrud Brauch. "Anticancer Drugs". In Metabolism of Drugs and Other Xenobiotics, 365–78. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2012. http://dx.doi.org/10.1002/9783527630905.ch13.
Texto completo da fonteKhojasteh, Siamak Cyrus, Harvey Wong e Cornelis E. C. A. Hop. "Approved Drugs". In Drug Metabolism and Pharmacokinetics Quick Guide, 193–200. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-5629-3_11.
Texto completo da fonteMoore, Michael R., Kenneth E. L. McColl, Claude Rimington e Abraham Goldberg. "Drugs, Chemicals, and Porphyria". In Disorders of Porphyrin Metabolism, 139–65. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4684-1277-2_5.
Texto completo da fonteChung, Y. L., e J. R. Griffiths. "Using Metabolomics to Monitor Anticancer Drugs". In Oncogenes Meet Metabolism, 55–78. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/2789_2008_089.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Drugs Metabolism"
Ge, Xiaowei, Fátima C. Pereira, Yifan Zhu, Michael Wagner e Ji-Xin Cheng. "Unveiling the impact of drug on single cell metabolism in human gut microbiome by an SRS-FISH platform". In Frontiers in Optics. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/fio.2023.fm6e.3.
Texto completo da fonteTourlomousis, Filippos, e Robert C. Chang. "2D and 3D Multiscale Computational Modeling of Dynamic Microorgan Devices as Drug Screening Platforms". In ASME 2015 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/imece2015-52734.
Texto completo da fonteMrkalić, Emina, Marina Ćendić Serafinović, Ratomir Jelić, Stefan Stojanović e Miroslav Sovrlić. "INFLUENCE OF QUERCETIN ON THE BINDING OF TIGECYCLINE TO HUMAN SERUM ALBUMIN". In 1st INTERNATIONAL Conference on Chemo and BioInformatics. Institute for Information Technologies, University of Kragujevac, 2021. http://dx.doi.org/10.46793/iccbi21.363m.
Texto completo da fontePogodaeva, P. S. "Changes in the parameters of a clinical blood test in rats using hypoglycemic agents for the potentiation of drugs with a hepatoprotective effect". In SPbVetScience. FSBEI HE St. Petersburg SUVM, 2023. http://dx.doi.org/10.52419/3006-2023-11-28-34.
Texto completo da fonteRautiola, Davin, e Ronald A. Siegel. "Nasal Spray Device for Administration of Two-Part Drug Formulations". In 2019 Design of Medical Devices Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/dmd2019-3216.
Texto completo da fonteBešlo, Drago, Dejan Agić, Vesna Rastija, Maja Karnaš, Domagoj Šubarić e Bono Lučić. "Analysis of prediction of water solubility and lipophilicity of coumarins by free cheminformatics tools". In 2nd International Conference on Chemo and Bioinformatics. Institute for Information Technologies, University of Kragujevac, 2023. http://dx.doi.org/10.46793/iccbi23.657d.
Texto completo da fonteAbduldayeva, Aigul, e Ainagul Kazbekova. "Dynamics of lipid metabolism in the combined therapy of antihypertensive and hypolipidemic drugs in patients with metabolic syndrome". In Diabetes Kongress 2023 - 57. Jahrestagung der DDG. Georg Thieme Verlag, 2023. http://dx.doi.org/10.1055/s-0043-1767897.
Texto completo da fonteLei, Xiang-He, Shawn Noble e Barry R. Bochner. "Abstract B42: Metabolic pathway changes induced by a PIK3 mutation and reverted by drugs". In Abstracts: AACR Special Conference: Metabolism and Cancer; June 7-10, 2015; Bellevue, WA. American Association for Cancer Research, 2016. http://dx.doi.org/10.1158/1557-3125.metca15-b42.
Texto completo da fonteBing, Cheng, Guo Ke, Alex Wong e Karen Crasta. "Abstract B59: Autophagy mediates senescence and supports survival upon treatment with anti-mitotic drugs". In Abstracts: AACR Special Conference: Metabolism and Cancer; June 7-10, 2015; Bellevue, WA. American Association for Cancer Research, 2016. http://dx.doi.org/10.1158/1557-3125.metca15-b59.
Texto completo da fonteMa, Liang, Jeremy Barker, Changchun Zhou, Biaoyang Lin e Wei Li. "A Perfused Two-Chamber System for Anticancer Drug Screening". In ASME 2010 International Manufacturing Science and Engineering Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/msec2010-34326.
Texto completo da fonteRelatórios de organizações sobre o assunto "Drugs Metabolism"
Chipiso, Kudzanai. Biomimetic Tools in Oxidative Metabolism: Characterization of Reactive Metabolites from Antithyroid Drugs. Portland State University Library, janeiro de 2000. http://dx.doi.org/10.15760/etd.3078.
Texto completo da fonteXiang, Kemeng, Huiming Hou e Ming Zhou. The efficacy of Cerus and Cucumis Polypeptide injection combined with Bisphosphonates on postmenopausal women with osteoporosis:A protocol for systematic review and meta-analysis. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, maio de 2022. http://dx.doi.org/10.37766/inplasy2022.5.0067.
Texto completo da fonteHawkins, David R. Determination of Drug Pharmacokinetics and Metabolic Profile. Volume 2. Fort Belvoir, VA: Defense Technical Information Center, março de 1988. http://dx.doi.org/10.21236/ada192428.
Texto completo da fonteJin, Dachuan, Gao Peng, Shunqin Jin, Tao Zhou, Baoqiang Guo e Guangming Li. Comparison of therapeutic effects of anti-diabetic drugs on non-alcoholic fatty liver disease patients without diabetes: A network meta-analysis. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, novembro de 2022. http://dx.doi.org/10.37766/inplasy2022.11.0014.
Texto completo da fonteHalim, Nader. Regulation of Brain Glucose Metabolic Patterns by Protein Phosphorlyation and Drug Therapy. Fort Belvoir, VA: Defense Technical Information Center, março de 2007. http://dx.doi.org/10.21236/ad1013984.
Texto completo da fonteGhosal, Samit, e Binayak Sinha. The cardiovascular benefits of GLP1-RA are directly related to their positive effect on glycaemic control: A meta-regression analysis. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, janeiro de 2022. http://dx.doi.org/10.37766/inplasy2022.1.0071.
Texto completo da fonteLiu, Shuang, Zheng-Miao Wang, Dong-Mei Lv e Yi-Xuan Zhao. Advances in highly active one-carbon metabolism in cancer diagnosis, treatment, and drug resistance: a systematic review. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, novembro de 2022. http://dx.doi.org/10.37766/inplasy2022.11.0099.
Texto completo da fonteHu, Yang Yang, Xing Zhang, Yue Luo e Yadong Wang. Systematic review and Meta analysis of the efficacy and safety of rifaximin in the prevention and treatment of hepatic encephalopathy. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, fevereiro de 2023. http://dx.doi.org/10.37766/inplasy2023.2.0061.
Texto completo da fonteCytryn, Eddie, Mark R. Liles e Omer Frenkel. Mining multidrug-resistant desert soil bacteria for biocontrol activity and biologically-active compounds. United States Department of Agriculture, janeiro de 2014. http://dx.doi.org/10.32747/2014.7598174.bard.
Texto completo da fonte