Artigos de revistas sobre o tema "Doppler radar Testing"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Doppler radar Testing".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Shvets, S., O. Kipriianov, F. Yermolenko e I. Haidak. "SUGGESTIONS FOR TYPICAL METHODS OF USING DOPPLER RADAR SYSTEMS OF TRAJECTORY MEASUREMENTS DURING TESTS OF ARTYLLERY ARMAMENT AND ITS AMMUNITION". Наукові праці Державного науково-дослідного інституту випробувань і сертифікації озброєння та військової техніки, n.º 7 (21 de maio de 2021): 94–100. http://dx.doi.org/10.37701/dndivsovt.7.2021.11.
Texto completo da fonteHeymsfield, Andrew J., Alain Protat, Dominique Bouniol, Richard T. Austin, Robin J. Hogan, Julien Delanoë, Hajime Okamoto et al. "Testing IWC Retrieval Methods Using Radar and Ancillary Measurements with In Situ Data". Journal of Applied Meteorology and Climatology 47, n.º 1 (1 de janeiro de 2008): 135–63. http://dx.doi.org/10.1175/2007jamc1606.1.
Texto completo da fonteAzizi, Mussyazwann Azizi Mustafa, Mohammad Nazrin Mohd Noh, Idnin Pasya, Ahmad Ihsan Mohd Yassin e Megat Syahirul Amin Megat Ali. "Pedestrian detection using Doppler radar and LSTM neural network". IAES International Journal of Artificial Intelligence (IJ-AI) 9, n.º 3 (1 de setembro de 2020): 394. http://dx.doi.org/10.11591/ijai.v9.i3.pp394-401.
Texto completo da fonteLyashenko, V., V. Kuznecov, O. Kipriianov, F. Yermolenko e T. Pavliuk. "RECOMMENDATIONS ON INTEGRATED APPLICATION OF DOPPLER RADAR SYSTEMS OF EXTERNAL TRACTORY MEASUREMENTS IN THE MOBILE TESTING GROUND MEASURING AND COMPUTING COMPLEX". Наукові праці Державного науково-дослідного інституту випробувань і сертифікації озброєння та військової техніки, n.º 8 (29 de junho de 2021): 72–79. http://dx.doi.org/10.37701/dndivsovt.8.2021.08.
Texto completo da fonteZou, Tao, Xian Lin Zeng e Jian Hua Peng. "Research on the Airborne Pulse Doppler Radar Jamming System Tester". Applied Mechanics and Materials 654 (outubro de 2014): 250–53. http://dx.doi.org/10.4028/www.scientific.net/amm.654.250.
Texto completo da fonteDiewald, Andreas R., Manuel Steins e Simon Müller. "Radar target simulator with complex-valued delay line modeling based on standard radar components". Advances in Radio Science 16 (18 de dezembro de 2018): 203–13. http://dx.doi.org/10.5194/ars-16-203-2018.
Texto completo da fonteDubosclard, G., R. Cordesses, P. Allard, C. Hervier, M. Coltelli e J. Kornprobst. "First testing of a volcano Doppler radar (Voldorad) at Mount Etna, Italy". Geophysical Research Letters 26, n.º 22 (15 de novembro de 1999): 3389–92. http://dx.doi.org/10.1029/1999gl008371.
Texto completo da fonteMuscarella, Philip, Kelsey Brunner e David Walker. "Estimating Coastal Winds by Assimilating High-Frequency Radar Spectrum Data in SWAN". Sensors 21, n.º 23 (24 de novembro de 2021): 7811. http://dx.doi.org/10.3390/s21237811.
Texto completo da fonteFoth, Andreas, Janek Zimmer, Felix Lauermann e Heike Kalesse-Los. "Evaluation of micro rain radar-based precipitation classification algorithms to discriminate between stratiform and convective precipitation". Atmospheric Measurement Techniques 14, n.º 6 (21 de junho de 2021): 4565–74. http://dx.doi.org/10.5194/amt-14-4565-2021.
Texto completo da fonteBeckwith, Dana M., e Katharine M. Hunter-Zaworski. "Passive Pedestrian Detection at Unsignalized Crossings". Transportation Research Record: Journal of the Transportation Research Board 1636, n.º 1 (janeiro de 1998): 96–103. http://dx.doi.org/10.3141/1636-16.
Texto completo da fonteUnal, Christine. "Spectral Polarimetric Radar Clutter Suppression to Enhance Atmospheric Echoes". Journal of Atmospheric and Oceanic Technology 26, n.º 9 (1 de setembro de 2009): 1781–97. http://dx.doi.org/10.1175/2009jtecha1170.1.
Texto completo da fonteScheiblhofer, Werner, Reinhard Feger, Andreas Haderer e Andreas Stelzer. "Concept and realization of a low-cost multi-target simulator for CW and FMCW radar system calibration and testing". International Journal of Microwave and Wireless Technologies 10, n.º 2 (13 de fevereiro de 2018): 207–15. http://dx.doi.org/10.1017/s1759078718000028.
Texto completo da fonteTucker, Sara C., Carl S. Weimer, Sunil Baidar e R. Michael Hardesty. "The Optical Autocovariance Wind Lidar. Part I: OAWL Instrument Development and Demonstration". Journal of Atmospheric and Oceanic Technology 35, n.º 10 (outubro de 2018): 2079–97. http://dx.doi.org/10.1175/jtech-d-18-0024.1.
Texto completo da fonteNarayanan, Ram M., Michael J. Harner, John R. Jendzurski e Nicholas G. Paulter. "Analysis of a Dynamic Calibration Target for Through-Wall and Through-Rubble Motion Sensing Doppler Radar". Instruments 5, n.º 4 (3 de dezembro de 2021): 37. http://dx.doi.org/10.3390/instruments5040037.
Texto completo da fonteChipengo, Ushemadzoro, Peter M. Krenz e Shawn Carpenter. "From Antenna Design to High Fidelity, Full Physics Automotive Radar Sensor Corner Case Simulation". Modelling and Simulation in Engineering 2018 (27 de dezembro de 2018): 1–19. http://dx.doi.org/10.1155/2018/4239725.
Texto completo da fonteSong, Nuan, Yang Jiao, Ya Ji Song e Chun Hui Liu. "The Doppler Radar Bomb Chamber Volume Speed Measurement System Research Based on LabView". Advanced Materials Research 571 (setembro de 2012): 692–95. http://dx.doi.org/10.4028/www.scientific.net/amr.571.692.
Texto completo da fonteIukhno, Artem, Sergei Buzmakov e Alisa Zorina. "DOPPLER NON-CONTACT RADAR SENSORS FOR WATER DISCHARGE ESTIMATION: ADVANTAGES AND LIMITATIONS". ENVIRONMENT. TECHNOLOGIES. RESOURCES. Proceedings of the International Scientific and Practical Conference 3 (16 de junho de 2021): 124–29. http://dx.doi.org/10.17770/etr2021vol3.6616.
Texto completo da fonteMichaels, J. F. "An approach to radiated testing of installed airborne Doppler radar with weather/windshear detection capability". IEEE Aerospace and Electronic Systems Magazine 10, n.º 12 (dezembro de 1995): 25. http://dx.doi.org/10.1109/62.480827.
Texto completo da fonteDarnitskyi, Y., V. Lyashenko, S. Shvets e T. Pavliuk. "ANALYSIS OF PECULIARITIES FOR USE OF MUZZLE VELOCITY MEASUREMENT SYSTEM SL – 520PЕ AND DOPPLER RADAR TRAJECTORY MEASUREMENT SYSTEM MFTR–2100/40 DURING TESTS OF ROCKET AND ARTILLERY ARMAMENT". Наукові праці Державного науково-дослідного інституту випробувань і сертифікації озброєння та військової техніки, n.º 12 (5 de julho de 2022): 29–40. http://dx.doi.org/10.37701/dndivsovt.12.2022.04.
Texto completo da fonteGao, Jidong, Travis M. Smith, David J. Stensrud, Chenghao Fu, Kristin Calhoun, Kevin L. Manross, Jeffrey Brogden et al. "A Real-Time Weather-Adaptive 3DVAR Analysis System for Severe Weather Detections and Warnings". Weather and Forecasting 28, n.º 3 (1 de junho de 2013): 727–45. http://dx.doi.org/10.1175/waf-d-12-00093.1.
Texto completo da fonteRahnemoonfar, Maryam, Jimmy Johnson e John Paden. "AI Radar Sensor: Creating Radar Depth Sounder Images Based on Generative Adversarial Network". Sensors 19, n.º 24 (12 de dezembro de 2019): 5479. http://dx.doi.org/10.3390/s19245479.
Texto completo da fonteVictoria, Dr A. Helen, S. V. Manikanthan, Dr Varadaraju H R, Muhammad Alkirom Wildan e Kakarla Hari Kishore. "Radar Based Activity Recognition using CNN-LSTM Network Architecture". International Journal of Communication Networks and Information Security (IJCNIS) 14, n.º 3 (11 de janeiro de 2023): 303–12. http://dx.doi.org/10.17762/ijcnis.v14i3.5630.
Texto completo da fonteMarks, David A., David B. Wolff, Lawrence D. Carey e Ali Tokay. "Quality Control and Calibration of the Dual-Polarization Radar at Kwajalein, RMI". Journal of Atmospheric and Oceanic Technology 28, n.º 2 (1 de fevereiro de 2011): 181–96. http://dx.doi.org/10.1175/2010jtecha1462.1.
Texto completo da fontePäschke, E., R. Leinweber e V. Lehmann. "An assessment of the performance of a 1.5 μm Doppler lidar for operational vertical wind profiling based on a 1-year trial". Atmospheric Measurement Techniques 8, n.º 6 (3 de junho de 2015): 2251–66. http://dx.doi.org/10.5194/amt-8-2251-2015.
Texto completo da fonteMahale, Vivek N., Guifu Zhang e Ming Xue. "Fuzzy Logic Classification of S-Band Polarimetric Radar Echoes to Identify Three-Body Scattering and Improve Data Quality". Journal of Applied Meteorology and Climatology 53, n.º 8 (agosto de 2014): 2017–33. http://dx.doi.org/10.1175/jamc-d-13-0358.1.
Texto completo da fonteLolli, S., A. Delaval, C. Loth, A. Garnier e P. H. Flamant. "0.355 μm direct detection wind lidar under testing during a field campaign in consideration of ESA's ADM-Aeolus Mission". Atmospheric Measurement Techniques Discussions 6, n.º 3 (23 de maio de 2013): 4551–75. http://dx.doi.org/10.5194/amtd-6-4551-2013.
Texto completo da fonteMorris, M. P., P. B. Chilson, T. J. Schuur e A. Ryzhkov. "Microphysical retrievals from simultaneous polarimetric and profiling radar observations". Annales Geophysicae 27, n.º 12 (7 de dezembro de 2009): 4435–48. http://dx.doi.org/10.5194/angeo-27-4435-2009.
Texto completo da fonteHasebe, F., T. Tsuda, T. Nakamura e M. D. Burrage. "Validation of HRDI MLT winds with meteor radars". Annales Geophysicae 15, n.º 9 (30 de setembro de 1997): 1142–57. http://dx.doi.org/10.1007/s00585-997-1142-7.
Texto completo da fonteElmore, Kimberly L., Pamela L. Heinselman e David J. Stensrud. "Using WSR-88D Data and Insolation Estimates to Determine Convective Boundary Layer Depth". Journal of Atmospheric and Oceanic Technology 29, n.º 4 (1 de abril de 2012): 581–88. http://dx.doi.org/10.1175/jtech-d-11-00043.1.
Texto completo da fontePäschke, E., R. Leinweber e V. Lehmann. "A one year comparison of 482 MHz radar wind profiler, RS92-SGP Radiosonde and 1.5 μm Doppler Lidar wind measurements". Atmospheric Measurement Techniques Discussions 7, n.º 11 (19 de novembro de 2014): 11439–79. http://dx.doi.org/10.5194/amtd-7-11439-2014.
Texto completo da fonteDavies-Jones, Robert, Vincent T. Wood e Mark A. Askelson. "Ray Curvature on a Flat Earth for Computing Virtual WSR-88D Signatures of Simulated Supercell Storms". Monthly Weather Review 147, n.º 3 (1 de março de 2019): 1065–75. http://dx.doi.org/10.1175/mwr-d-18-0356.1.
Texto completo da fonteHeinselman, Pamela L., e Alexander V. Ryzhkov. "Validation of Polarimetric Hail Detection". Weather and Forecasting 21, n.º 5 (1 de outubro de 2006): 839–50. http://dx.doi.org/10.1175/waf956.1.
Texto completo da fonteLothon, Marie, Bernard Campistron, Michel Chong, Fleur Couvreux, Françoise Guichard, Catherine Rio e Earle Williams. "Life Cycle of a Mesoscale Circular Gust Front Observed by a C-Band Doppler Radar in West Africa". Monthly Weather Review 139, n.º 5 (maio de 2011): 1370–88. http://dx.doi.org/10.1175/2010mwr3480.1.
Texto completo da fonteMedlin, Jeffrey M., Sytske K. Kimball e Keith G. Blackwell. "Radar and Rain Gauge Analysis of the Extreme Rainfall during Hurricane Danny’s (1997) Landfall". Monthly Weather Review 135, n.º 5 (1 de maio de 2007): 1869–88. http://dx.doi.org/10.1175/mwr3368.1.
Texto completo da fonteChandra, Arunchandra S., Pavlos Kollias, Scott E. Giangrande e Stephen A. Klein. "Long-Term Observations of the Convective Boundary Layer Using Insect Radar Returns at the SGP ARM Climate Research Facility". Journal of Climate 23, n.º 21 (1 de novembro de 2010): 5699–714. http://dx.doi.org/10.1175/2010jcli3395.1.
Texto completo da fonteFedorov, Roman, e Oleg Berngardt. "Monitoring observations of meteor echo at the EKB ISTP SB RAS radar: algorithms, validation, statistics". Solar-Terrestrial Physics 7, n.º 1 (29 de março de 2021): 47–58. http://dx.doi.org/10.12737/stp-71202107.
Texto completo da fonteBu, Jinwei, Kegen Yu, Yongchao Zhu, Nijia Qian e Jun Chang. "Developing and Testing Models for Sea Surface Wind Speed Estimation with GNSS-R Delay Doppler Maps and Delay Waveforms". Remote Sensing 12, n.º 22 (16 de novembro de 2020): 3760. http://dx.doi.org/10.3390/rs12223760.
Texto completo da fonteKollias, Pavlos, e Bruce Albrecht. "Vertical Velocity Statistics in Fair-Weather Cumuli at the ARM TWP Nauru Climate Research Facility". Journal of Climate 23, n.º 24 (15 de dezembro de 2010): 6590–604. http://dx.doi.org/10.1175/2010jcli3449.1.
Texto completo da fonteYi, Qiang, Stanley Chien, Lingxi Li, Wensen Niu, Yaobin Chen, David Good, Chi-Chih Chen e Rini Sherony. "Development of test scenarios and bicyclist surrogate for the evaluation of bicyclist automatic emergency braking systems". Journal of Intelligent and Connected Vehicles 1, n.º 1 (5 de fevereiro de 2018): 15–27. http://dx.doi.org/10.1108/jicv-02-2018-0005.
Texto completo da fonteFedorov, Roman, e Oleg Berngardt. "Monitoring observations of meteor echo at the EKB ISTP SB RAS radar: algorithms, validation, statistics". Solnechno-Zemnaya Fizika 7, n.º 1 (29 de março de 2021): 59–73. http://dx.doi.org/10.12737/szf-71202107.
Texto completo da fonteFoster, James, Ning Li e Kwok Fai Cheung. "Sea State Determination from Ship-Based Geodetic GPS". Journal of Atmospheric and Oceanic Technology 31, n.º 11 (novembro de 2014): 2556–64. http://dx.doi.org/10.1175/jtech-d-13-00211.1.
Texto completo da fonteLolli, S., A. Delaval, C. Loth, A. Garnier e P. H. Flamant. "0.355-micrometer direct detection wind lidar under testing during a field campaign in consideration of ESA's ADM-Aeolus mission". Atmospheric Measurement Techniques 6, n.º 12 (9 de dezembro de 2013): 3349–58. http://dx.doi.org/10.5194/amt-6-3349-2013.
Texto completo da fonteParate, Bhupesh Ambadas. "Propellant Actuated Device for Parachute Deployment during Seat Ejection for an Aircraft Application". HighTech and Innovation Journal 1, n.º 3 (1 de setembro de 2020): 112–20. http://dx.doi.org/10.28991/hij-2020-01-03-03.
Texto completo da fonteJohnson, Victoria, Richard Jeffries, Greg Byrd, Wendy Schreiber-Abshire, Elizabeth Page, Bruce Muller e Tim Alberta. "Celebrating COMET’s 25 Years of Providing Innovative Education and Training". Bulletin of the American Meteorological Society 96, n.º 12 (1 de dezembro de 2015): 2183–94. http://dx.doi.org/10.1175/bams-d-14-00276.1.
Texto completo da fonteRoueche, David B., e David O. Prevatt. "Residential Damage Patterns Following the 2011 Tuscaloosa, AL and Joplin, MO Tornadoes". Journal of Disaster Research 8, n.º 6 (1 de dezembro de 2013): 1061–67. http://dx.doi.org/10.20965/jdr.2013.p1061.
Texto completo da fonteEllender, Claire M., Syeda Farah Zahir, Hailey Meaklim, Rosemarie Joyce, David Cunnington e John Swieca. "Prospective cohort study to evaluate the accuracy of sleep measurement by consumer-grade smart devices compared with polysomnography in a sleep disorders population". BMJ Open 11, n.º 11 (novembro de 2021): e044015. http://dx.doi.org/10.1136/bmjopen-2020-044015.
Texto completo da fonteGiangrande, Scott E., Edward P. Luke e Pavlos Kollias. "Automated Retrievals of Precipitation Parameters Using Non-Rayleigh Scattering at 95 GHz". Journal of Atmospheric and Oceanic Technology 27, n.º 9 (1 de setembro de 2010): 1490–503. http://dx.doi.org/10.1175/2010jtecha1343.1.
Texto completo da fonteKoskinen, Jarkko T., Jani Poutiainen, David M. Schultz, Sylvain Joffre, Jarmo Koistinen, Elena Saltikoff, Erik Gregow et al. "The Helsinki Testbed: A Mesoscale Measurement, Research, and Service Platform". Bulletin of the American Meteorological Society 92, n.º 3 (1 de março de 2011): 325–42. http://dx.doi.org/10.1175/2010bams2878.1.
Texto completo da fonteRan, Yuanbo, Haijiang Wang, Li Tian, Jiang Wu e Xiaohong Li. "Precipitation cloud identification based on faster-RCNN for Doppler weather radar". EURASIP Journal on Wireless Communications and Networking 2021, n.º 1 (1 de fevereiro de 2021). http://dx.doi.org/10.1186/s13638-021-01896-5.
Texto completo da fontePotylitsyn, Vadim S., Danil S. Kudinov e Ekaterina A. Kokhonkova. "Investigation of the Influence of a Cavity Type Defect on the Frequencies of the Natural Rail Oscillations by the Radar Method". Journal of Siberian Federal University. Engineering & Technologies, dezembro de 2019, 1006–12. http://dx.doi.org/10.17516/1999-494x-0201.
Texto completo da fonte