Literatura científica selecionada sobre o tema "Domain translation"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Domain translation".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Domain translation"
Li, Rumeng, Xun Wang e Hong Yu. "MetaMT, a Meta Learning Method Leveraging Multiple Domain Data for Low Resource Machine Translation". Proceedings of the AAAI Conference on Artificial Intelligence 34, n.º 05 (3 de abril de 2020): 8245–52. http://dx.doi.org/10.1609/aaai.v34i05.6339.
Texto completo da fonteDjebaili, Baya. "ترجمة النص المالي". Traduction et Langues 14, n.º 1 (31 de agosto de 2015): 243–54. http://dx.doi.org/10.52919/translang.v14i1.787.
Texto completo da fonteMarie, Benjamin, e Atsushi Fujita. "Synthesizing Parallel Data of User-Generated Texts with Zero-Shot Neural Machine Translation". Transactions of the Association for Computational Linguistics 8 (novembro de 2020): 710–25. http://dx.doi.org/10.1162/tacl_a_00341.
Texto completo da fonteXiang, Cailing. "Study on the Effectiveness of ChatGPT in Translating Forestry Sci-tech Texts". International Journal of Linguistics, Literature and Translation 7, n.º 9 (29 de agosto de 2024): 88–94. http://dx.doi.org/10.32996/ijllt.2024.7.9.11.
Texto completo da fonteSokolova, Natalia. "Machine vs Human Translation in the Synergetic Translation Space". Vestnik Volgogradskogo gosudarstvennogo universiteta. Serija 2. Jazykoznanije, n.º 6 (fevereiro de 2021): 89–98. http://dx.doi.org/10.15688/jvolsu2.2021.6.8.
Texto completo da fonteYin, Xu, Yan Li e Byeong-Seok Shin. "DAGAN: A Domain-Aware Method for Image-to-Image Translations". Complexity 2020 (28 de março de 2020): 1–15. http://dx.doi.org/10.1155/2020/9341907.
Texto completo da fonteBernaerts, Lars, Liesbeth De Bleeker e July De Wilde. "Narration and translation". Language and Literature: International Journal of Stylistics 23, n.º 3 (31 de julho de 2014): 203–12. http://dx.doi.org/10.1177/0963947014536504.
Texto completo da fonteDai, Diwei. "A Study on Application of Construal Theory in English Translation of Chinese Medical book: take English Translation of Jin Gui Yao Liao as an Example". International Journal of Public Health and Medical Research 1, n.º 1 (25 de março de 2024): 20–28. http://dx.doi.org/10.62051/ijphmr.v1n1.03.
Texto completo da fonteKaratsiolis, Savvas, Christos N. Schizas e Nicolai Petkov. "Modular domain-to-domain translation network". Neural Computing and Applications 32, n.º 11 (26 de julho de 2019): 6779–91. http://dx.doi.org/10.1007/s00521-019-04358-8.
Texto completo da fonteMarie, Benjamin, e Atsushi Fujita. "Phrase Table Induction Using In-Domain Monolingual Data for Domain Adaptation in Statistical Machine Translation". Transactions of the Association for Computational Linguistics 5 (dezembro de 2017): 487–500. http://dx.doi.org/10.1162/tacl_a_00075.
Texto completo da fonteTeses / dissertações sobre o assunto "Domain translation"
Brunello, Marco. "Domain and genre dependency in Statistical Machine Translation". Thesis, University of Leeds, 2014. http://etheses.whiterose.ac.uk/8420/.
Texto completo da fonteMayet, Tsiry. "Multi-domain translation in a semi-supervised setting". Electronic Thesis or Diss., Normandie, 2024. http://www.theses.fr/2024NORMIR46.
Texto completo da fonteThis thesis explores multi-modal generation and semi-supervised learning, addressing two critical challenges: supporting flexible configurations of input and output across multiple domains, and developing efficient training strategies for semi-supervised data settings. As artificial intelligence systems advance, there is growing need for models that can flexibly integrate and generate multiple modalities, mirroring human cognitive abilities. Conventional deep learning systems often struggle when deviating from their training configuration, which occurs when certain modalities are unavailable in real-world applications. For instance, in medical settings, patients might not undergo all possible scans for a comprehensive analysis system. Additionally, obtaining finer control over generated modalities is crucial for enhancing generation capabilities and providing richer contextual information. As the number of domains increases, obtaining simultaneous supervision across all domains becomes increasingly challenging. We focus on multi-domain translation in a semi-supervised setting, extending the classical domain translation paradigm. Rather than addressing specific translation directions or limiting translations to domain pairs, we develop methods facilitating translations between any possible domain configurations, determined at test time. The semi-supervised aspect reflects real-world scenarios where complete data annotation is often infeasible or prohibitively expensive. Our work explores three main areas: (1) studying latent space regularization functions to enhance domain translation learning with limited supervision, (2) examining the scalability and flexibility of diffusion-based translation models, and (3) improving the generation speed of diffusion-based inpainting models. First, we propose LSM, a semi-supervised translation framework leveraging additional input and structured output data to regularize inter-domain and intra-domain dependencies. Second, we develop MDD, a novel diffusion-based multi-domain translation semi-supervised framework. MDD shifts the classical reconstruction loss of diffusion models to a translation loss by modeling different noise levels per domain. The model leverages less noisy domains to reconstruct noisier ones, modeling missing data from the semi-supervised setting as pure noise and enabling flexible configuration of condition and target domains. Finally, we introduce TD-Paint, a novel diffusion-based inpainting model improving generation speed and reducing computational burden. Through investigation of the generation sampling process, we observe that diffusion-based inpainting models suffer from unsynchronized generation and conditioning. Existing models often rely on resampling steps or additional regularization losses to realign condition and generation, increasing time and computational complexity. TD-Paint addresses this by modeling variable noise levels at the pixel level, enabling efficient use of the condition from the generation onset
Wu, Fei. "An online domain-based Portuguese-Chinese machine translation system". Thesis, University of Macau, 1999. http://umaclib3.umac.mo/record=b1636999.
Texto completo da fonteChinea, Ríos Mara. "Advanced techniques for domain adaptation in Statistical Machine Translation". Doctoral thesis, Universitat Politècnica de València, 2019. http://hdl.handle.net/10251/117611.
Texto completo da fonte[CAT] La Traducció Automàtica Estadística és un sup-camp de la lingüística computacional que investiga com emprar els ordinadors en el procés de traducció d'un text d'un llenguatge humà a un altre. La traducció automàtica estadística és l'enfocament més popular que s'empra per a construir aquests sistemes de traducció automàtics. La qualitat d'aquests sistemes depèn en gran mesura dels exemples de traducció que s'empren durant els processos d'entrenament i adaptació dels models. Els conjunts de dades emprades són obtinguts a partir d'una gran varietat de fonts i en molts casos pot ser que no tinguem a mà les dades més adequades per a un domini específic. Donat aquest problema de manca de dades, la idea principal per a solucionar-ho és trobar aquells conjunts de dades més adequades per a entrenar o adaptar un sistema de traducció. En aquest sentit, aquesta tesi proposa un conjunt de tècniques de selecció de dades que identifiquen les dades bilingües més rellevants per a una tasca extrets d'un gran conjunt de dades. Com a primer pas en aquesta tesi, les tècniques de selecció de dades són aplicades per a millorar la qualitat de la traducció dels sistemes de traducció sota el paradigma basat en frases. Aquestes tècniques es basen en el concepte de representació contínua de les paraules o les oracions en un espai vectorial. Els resultats experimentals demostren que les tècniques utilitzades són efectives per a diferents llenguatges i dominis. El paradigma de Traducció Automàtica Neuronal també va ser aplicat en aquesta tesi. Dins d'aquest paradigma, investiguem l'aplicació que poden tenir les tècniques de selecció de dades anteriorment validades en el paradigma basat en frases. El treball realitzat es va centrar en la utilització de dues tasques diferents. D'una banda, investiguem com augmentar la qualitat de traducció del sistema, augmentant la grandària del conjunt d'entrenament. D'altra banda, el mètode de selecció de dades es va emprar per a crear un conjunt de dades sintètiques. Els experiments es van realitzar per a diferents dominis i els resultats de traducció obtinguts són convincents per a ambdues tasques. Finalment, cal assenyalar que les tècniques desenvolupades i presentades al llarg d'aquesta tesi poden implementar-se fàcilment dins d'un escenari de traducció real.
[EN] La Traducció Automàtica Estadística és un sup-camp de la lingüística computacional que investiga com emprar els ordinadors en el procés de traducció d'un text d'un llenguatge humà a un altre. La traducció automàtica estadística és l'enfocament més popular que s'empra per a construir aquests sistemes de traducció automàtics. La qualitat d'aquests sistemes depèn en gran mesura dels exemples de traducció que s'empren durant els processos d'entrenament i adaptació dels models. Els conjunts de dades emprades són obtinguts a partir d'una gran varietat de fonts i en molts casos pot ser que no tinguem a mà les dades més adequades per a un domini específic. Donat aquest problema de manca de dades, la idea principal per a solucionar-ho és trobar aquells conjunts de dades més adequades per a entrenar o adaptar un sistema de traducció. En aquest sentit, aquesta tesi proposa un conjunt de tècniques de selecció de dades que identifiquen les dades bilingües més rellevants per a una tasca extrets d'un gran conjunt de dades. Com a primer pas en aquesta tesi, les tècniques de selecció de dades són aplicades per a millorar la qualitat de la traducció dels sistemes de traducció sota el paradigma basat en frases. Aquestes tècniques es basen en el concepte de representació contínua de les paraules o les oracions en un espai vectorial. Els resultats experimentals demostren que les tècniques utilitzades són efectives per a diferents llenguatges i dominis. El paradigma de Traducció Automàtica Neuronal també va ser aplicat en aquesta tesi. Dins d'aquest paradigma, investiguem l'aplicació que poden tenir les tècniques de selecció de dades anteriorment validades en el paradigma basat en frases. El treball realitzat es va centrar en la utilització de dues tasques diferents d'adaptació del sistema. D'una banda, investiguem com augmentar la qualitat de traducció del sistema, augmentant la grandària del conjunt d'entrenament. D'altra banda, el mètode de selecció de dades es va emprar per a crear un conjunt de dades sintètiques. Els experiments es van realitzar per a diferents dominis i els resultats de traducció obtinguts són convincents per a ambdues tasques. Finalment, cal assenyalar que les tècniques desenvolupades i presentades al llarg d'aquesta tesi poden implementar-se fàcilment dins d'un escenari de traducció real.
Chinea Ríos, M. (2019). Advanced techniques for domain adaptation in Statistical Machine Translation [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/117611
TESIS
Farajian, Mohammad Amin. "Online Adaptive Neural Machine Translation: from single- to multi-domain scenarios". Doctoral thesis, Università degli studi di Trento, 2018. https://hdl.handle.net/11572/367944.
Texto completo da fonteFarajian, Mohammad Amin. "Online Adaptive Neural Machine Translation: from single- to multi-domain scenarios". Doctoral thesis, University of Trento, 2018. http://eprints-phd.biblio.unitn.it/2921/1/PhD_Thesis_Amin.pdf.
Texto completo da fonteMansour, Saab Verfasser], Hermann [Akademischer Betreuer] [Ney e Khalil [Akademischer Betreuer] Sima'an. "Domain adaptation for statistical machine translation / Saab Mansour ; Hermann Ney, Khalil Sima'an". Aachen : Universitätsbibliothek der RWTH Aachen, 2017. http://d-nb.info/1170780180/34.
Texto completo da fonteLaranjeira, Bruno Rezende. "On the application of focused crawling for statistical machine translation domain adaptation". reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2015. http://hdl.handle.net/10183/117259.
Texto completo da fonteStatistical Machine Translation (SMT) is highly dependent on the availability of parallel corpora for training. However, these kinds of resource may be hard to be found, especially when dealing with under-resourced languages or very specific domains, like the dermatology. For working this situation around, one possibility is the use of comparable corpora, which are much more abundant resources. One way of acquiring comparable corpora is to apply Focused Crawling (FC) algorithms. In this work we propose novel approach for FC algorithms, some based on n-grams and other on the expressive power of multiword expressions. We also assess the viability of using FC for performing domain adaptations for generic SMT systems and whether there is a correlation between the quality of the FC algorithms and of the SMT systems that can be built with its collected data. Results indicate that the use of FCs is, indeed, a good way for acquiring comparable corpora for SMT domain adaptation and that there is a correlation between the qualities of both processes.
Mansour, Saab [Verfasser], Hermann [Akademischer Betreuer] Ney e Khalil [Akademischer Betreuer] Sima'an. "Domain adaptation for statistical machine translation / Saab Mansour ; Hermann Ney, Khalil Sima'an". Aachen : Universitätsbibliothek der RWTH Aachen, 2017. http://d-nb.info/1170780180/34.
Texto completo da fontePizzati, Fabio <1993>. "Exploring domain-informed and physics-guided learning in image-to-image translation". Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2022. http://amsdottorato.unibo.it/10499/1/pizzati_fabio_tesi.pdf.
Texto completo da fonteLivros sobre o assunto "Domain translation"
Kaźmierczak, Marta. Przekład w kręgu intertekstualności: Na materiale tłumaczeń poezji Bolesława Leśmiana = [Perevod v krugu intertekstualʹnosti] = Translation in the domain of intertextuality. Warszawa: Instytut Lingwistyki Stosowanej Uniwersytetu Warszawskiego, 2012.
Encontre o texto completo da fonteYŏn'guwŏn, Han'guk Chŏnja T'ongsin. Ŭngyong t'ŭkhwa Han-Chung-Yŏng chadong pŏnyŏk kisul kaebal e kwanhan yŏn'gu =: Domain customized machine translation technology development for Korean, Chinese, English. [Kyŏnggi-do Kwach'ŏn-si]: Chisik Kyŏngjebu, 2009.
Encontre o texto completo da fonteGarzone, G. Domain-specific English and language mediation in professional and institutional settings. Milano: Arcipelago, 2003.
Encontre o texto completo da fonteMontgomery, L. M. Le Domaine des peupliers. Montréal: Québec/Amérique, 1994.
Encontre o texto completo da fonte1939-, Memon Muhammad Umar, ed. Domains of fear and desire: Urdu stories. Toronto, Ontario: TSAR, 1992.
Encontre o texto completo da fonte1949-, Rioux Hélène, ed. Anne au Domaine des Peupliers. Charlottetown, P.E.I: Ragweed Press, 1989.
Encontre o texto completo da fonteMontgomery, L. M. Anne au Domaine des peupliers: Roman. Charlottetown, Î.-P.-É: Ragweed Press, 1989.
Encontre o texto completo da fonteMontgomery, L. M. Anne au Domaine des peupliers: Roman. Montréal: Québec/Amérique, 1989.
Encontre o texto completo da fonteHaroutyunian, Sona, e Dario Miccoli. Orienti migranti: tra letteratura e traduzione. Venice: Fondazione Università Ca’ Foscari, 2020. http://dx.doi.org/10.30687/978-88-6969-499-8.
Texto completo da fonteA, Constas Mark, e Sternberg Robert J, eds. Translating theory and research into educational practice: Developments in content domains, large scale reform, and intellectual capacity. Mahwah, NJ: Lawrence Erlbaum Associates, 2006.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Domain translation"
Karatsiolis, Savvas, Christos N. Schizas e Nicolai Petkov. "Modular Domain-to-Domain Translation Network". In Artificial Neural Networks and Machine Learning – ICANN 2018, 425–35. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-01424-7_42.
Texto completo da fonteKatzir, Oren, Dani Lischinski e Daniel Cohen-Or. "Cross-Domain Cascaded Deep Translation". In Computer Vision – ECCV 2020, 673–89. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-58536-5_40.
Texto completo da fonteNoordman, Leo G. M., Wietske Vonk e Wim H. G. Simons. "Knowledge representation in the domain of economics". In Text, Translation, Computational Processing, 235–60. Berlin, New York: DE GRUYTER MOUTON, 2000. http://dx.doi.org/10.1515/9783110826005.235.
Texto completo da fonteSperanza, Giulia, e Johanna Monti. "Chapter 3. Evaluating the Italian-English machine translation quality of MWUs in the domain of archaeology". In Current Issues in Linguistic Theory, 40–56. Amsterdam: John Benjamins Publishing Company, 2024. http://dx.doi.org/10.1075/cilt.366.03spe.
Texto completo da fonteLivbjerg, Inge, e Inger M. Mees. "Patterns of dictionary use in non-domain-specific translation". In Benjamins Translation Library, 123–36. Amsterdam: John Benjamins Publishing Company, 2003. http://dx.doi.org/10.1075/btl.45.11liv.
Texto completo da fonteBiggerstaff, Ted J. "Control Localization in Domain Specific Translation". In Software Reuse: Methods, Techniques, and Tools, 153–65. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-46020-9_11.
Texto completo da fonteMurez, Zak, Soheil Kolouri, David Kriegman, Ravi Ramamoorthi e Kyungnam Kim. "Domain Adaptation via Image to Image Translation". In Domain Adaptation in Computer Vision with Deep Learning, 117–36. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-45529-3_7.
Texto completo da fonteSapiro, Gisèle. "The Sociology of Translation: A New Research Domain". In A Companion to Translation Studies, 82–94. Oxford, UK: John Wiley & Sons, Ltd, 2014. http://dx.doi.org/10.1002/9781118613504.ch6.
Texto completo da fonteRoyer, Amélie, Konstantinos Bousmalis, Stephan Gouws, Fred Bertsch, Inbar Mosseri, Forrester Cole e Kevin Murphy. "XGAN: Unsupervised Image-to-Image Translation for Many-to-Many Mappings". In Domain Adaptation for Visual Understanding, 33–49. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-30671-7_3.
Texto completo da fonteYang, Manzhi, Huaping Zhang, Chenxi Yu e Guotong Geng. "Continual Domain Adaption for Neural Machine Translation". In Communications in Computer and Information Science, 427–39. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-8145-8_33.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Domain translation"
Hendy, Amr, Mohamed Abdelghaffar, Mohamed Afify e Ahmed Y. Tawfik. "Domain Specific Sub-network for Multi-Domain Neural Machine Translation". In Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing (Volume 2: Short Papers), 351–56. Stroudsburg, PA, USA: Association for Computational Linguistics, 2022. http://dx.doi.org/10.18653/v1/2022.aacl-short.43.
Texto completo da fonteYou, WangJie, Pei Guo, Juntao Li, Kehai Chen e Min Zhang. "Efficient Domain Adaptation for Non-Autoregressive Machine Translation". In Findings of the Association for Computational Linguistics ACL 2024, 13657–70. Stroudsburg, PA, USA: Association for Computational Linguistics, 2024. http://dx.doi.org/10.18653/v1/2024.findings-acl.810.
Texto completo da fonteBhattacharjee, Soham, Baban Gain e Asif Ekbal. "Domain Dynamics: Evaluating Large Language Models in English-Hindi Translation". In Proceedings of the Ninth Conference on Machine Translation, 341–54. Stroudsburg, PA, USA: Association for Computational Linguistics, 2024. http://dx.doi.org/10.18653/v1/2024.wmt-1.27.
Texto completo da fonteHu, Tianxiang, Pei Zhang, Baosong Yang, Jun Xie, Derek F. Wong e Rui Wang. "Large Language Model for Multi-Domain Translation: Benchmarking and Domain CoT Fine-tuning". In Findings of the Association for Computational Linguistics: EMNLP 2024, 5726–46. Stroudsburg, PA, USA: Association for Computational Linguistics, 2024. http://dx.doi.org/10.18653/v1/2024.findings-emnlp.328.
Texto completo da fonteLuo, Yuanchang, Zhanglin Wu, Daimeng Wei, Hengchao Shang, Zongyao Li, Jiaxin Guo, Zhiqiang Rao et al. "Multilingual Transfer and Domain Adaptation for Low-Resource Languages of Spain". In Proceedings of the Ninth Conference on Machine Translation, 949–54. Stroudsburg, PA, USA: Association for Computational Linguistics, 2024. http://dx.doi.org/10.18653/v1/2024.wmt-1.93.
Texto completo da fonteVogel, Stephan. "Speech-translation: from domain-limited to domain-unlimited translation tasks". In 2007 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU). IEEE, 2007. http://dx.doi.org/10.1109/asru.2007.4430141.
Texto completo da fonteLin, Jianxin, Yingce Xia, Yijun Wang, Tao Qin e Zhibo Chen. "Image-to-Image Translation with Multi-Path Consistency Regularization". In Twenty-Eighth International Joint Conference on Artificial Intelligence {IJCAI-19}. California: International Joint Conferences on Artificial Intelligence Organization, 2019. http://dx.doi.org/10.24963/ijcai.2019/413.
Texto completo da fonteAla, Hema, Vandan Mujadia e Dipti Misra Sharma. "Domain Adaptation for Hindi-Telugu Machine Translation using Domain Specific Back Translation". In International Conference Recent Advances in Natural Language Processing. INCOMA Ltd. Shoumen, BULGARIA, 2021. http://dx.doi.org/10.26615/978-954-452-072-4_004.
Texto completo da fonteSokova, Daria, e Cristina Toledo-Báez. "Linguistic Complexity in Domain-Specific Neural Machine Translation". In New Trends in Translation and Technology Conference 2024, 191–200. INCOMA Ltd. Shoumen, BULGARIA, 2024. http://dx.doi.org/10.26615/issn.2815-4711.2024_015.
Texto completo da fonteWei, Hao-Ran, Zhirui Zhang, Boxing Chen e Weihua Luo. "Iterative Domain-Repaired Back-Translation". In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP). Stroudsburg, PA, USA: Association for Computational Linguistics, 2020. http://dx.doi.org/10.18653/v1/2020.emnlp-main.474.
Texto completo da fonteRelatórios de organizações sobre o assunto "Domain translation"
Micher, Jeffrey C. Improving Domain-specific Machine Translation by Constraining the Language Model. Fort Belvoir, VA: Defense Technical Information Center, julho de 2012. http://dx.doi.org/10.21236/ada568649.
Texto completo da fonteLavoie, Benoit, Michael White e Tanya Korelsky. Learning Domain-Specific Transfer Rules: An Experiment with Korean to English Translation. Fort Belvoir, VA: Defense Technical Information Center, janeiro de 2002. http://dx.doi.org/10.21236/ada457732.
Texto completo da fonteShaver, Amber, Hayam Megally, Sean Boynes, Tooka Zokaie, Nithya Puttige Ramesh, Don Clermont e Annaliese Cothron. Illustrating the Role of Dental Journals in the Translational Science Process. American Institute of Dental Public Health, 2022. http://dx.doi.org/10.58677/pqbg1492.
Texto completo da fonteKriegel, Francesco. Learning General Concept Inclusions in Probabilistic Description Logics. Technische Universität Dresden, 2015. http://dx.doi.org/10.25368/2022.220.
Texto completo da fonteChejanovsky, Nor, e Suzanne M. Thiem. Isolation of Baculoviruses with Expanded Spectrum of Action against Lepidopteran Pests. United States Department of Agriculture, dezembro de 2002. http://dx.doi.org/10.32747/2002.7586457.bard.
Texto completo da fonteRogers, Aaron. Translational Fidelity of a Eukaryotic Glutaminyl-tRNA Synthetase with an N-terminal Domain Appendage. Portland State University Library, janeiro de 2000. http://dx.doi.org/10.15760/etd.2005.
Texto completo da fontePaule, Bernard, Flourentzos Flourentzou, Tristan de KERCHOVE d’EXAERDE, Julien BOUTILLIER e Nicolo Ferrari. PRELUDE Roadmap for Building Renovation: set of rules for renovation actions to optimize building energy performance. Department of the Built Environment, 2023. http://dx.doi.org/10.54337/aau541614638.
Texto completo da fonteChristopher, David A., e Avihai Danon. Plant Adaptation to Light Stress: Genetic Regulatory Mechanisms. United States Department of Agriculture, maio de 2004. http://dx.doi.org/10.32747/2004.7586534.bard.
Texto completo da fonteOhad, Nir, e Robert Fischer. Regulation of Fertilization-Independent Endosperm Development by Polycomb Proteins. United States Department of Agriculture, janeiro de 2004. http://dx.doi.org/10.32747/2004.7695869.bard.
Texto completo da fonteMcClure, Michael A., Yitzhak Spiegel, David M. Bird, R. Salomon e R. H. C. Curtis. Functional Analysis of Root-Knot Nematode Surface Coat Proteins to Develop Rational Targets for Plantibodies. United States Department of Agriculture, outubro de 2001. http://dx.doi.org/10.32747/2001.7575284.bard.
Texto completo da fonte