Siga este link para ver outros tipos de publicações sobre o tema: DNA.

Artigos de revistas sobre o tema "DNA"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 50 melhores artigos de revistas para estudos sobre o assunto "DNA".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

Cho, Hyun Kuk, Kyung-Sook Kim, Nam-Ye Kim, Sang-ok Moon e Seung Beom Hong. "The Effect of Female DNA Extracted from Vaginal Fluid on the Detection of Y-STR Profile and the Quantitative Value of Male DNA". Korean Journal of Forensic Science 24, n.º 2 (30 de novembro de 2023): 69–74. http://dx.doi.org/10.53051/ksfs.2023.24.2.8.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Wulansari, Nuring, Mala Nurilmala e N. Nurjanah. "Detection Tuna and Processed Products Based Protein and DNA Barcoding". Jurnal Pengolahan Hasil Perikanan Indonesia 18, n.º 2 (25 de agosto de 2015): 119–27. http://dx.doi.org/10.17844/jphpi.2015.18.2.119.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Bhandari, Deepika. "Touch DNA: Revolutionizing Evidentiary DNA Forensics". International Journal of Forensic Sciences 8, n.º 3 (2023): 1–8. http://dx.doi.org/10.23880/ijfsc-16000314.

Texto completo da fonte
Resumo:
Touch DNA is an advanced technique widely employed in modern criminal justice systems in many developed countries. It aims to extract genetic information from biological substances, specifically the cells shed from the outermost layer of skin, that are left behind on touched objects. This method involves recovering trace amounts of DNA from the biological cells released during contact, even though the quantity is usually very low. The recovered DNA is further analyzed to generate a person's DNA profile. Since dead cells are not really visible to the naked eye, successfully locating and recovering them can be challenging. Performing DNA profiling from the samples that are just touched is quite difficult, hence, requires a highly sensitive approach to its proper recovery, extraction, and amplification of the segment. The methods which are used for the collection, sampling procedure, preservation, removal of contaminants, quantification of DNA, the amplifying of the genetic material, and the subsequent analysis and interpretation of the findings all play a role in how well touch DNA analysis works. Various techniques have been created over time to gather touch DNA. Reliable DNA profiles are produced thanks to the use of sophisticated kits, tools, and well-equipped forensic laboratories, which benefit the criminal justice system.
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Fitria, Fitria, R. I. N. K. Retno Triandhini, Jubhar C. Mangimbulude e Ferry Fredy Karwur. "Merokok dan Oksidasi DNA". Sains Medika : Jurnal Kedokteran dan Kesehatan 5, n.º 2 (9 de dezembro de 2013): 113. http://dx.doi.org/10.30659/sainsmed.v5i2.352.

Texto completo da fonte
Resumo:
Cigarette smoke consists of a mix of chemical substances in the form of gases and dispersed particles. Recently, more than 4000 compounds presented incigarette smoke have been isolated. Most of these compounds are toxic to our body’s cells. Toxic gases including carbon monoxide (CO), hydrogen cyanide(HCN), nitrogen oxides, and volatile chemicals such as nitrosamines, formaldehyde are found in in cigarette smoke. besides toxic compounds, cigarettesmoke also containsfree radicalsincluding peroxynitrite, hydrogen peroxide, and superoxide. These free radicals may accelerate cellular damage due tooxidative stress. Targets od free radical attacks include DNA, protein and lipids. The harmful chemicals in form of gases and volatile substances in cigarettescause multiple genetic mutations. the combination of genetic mutations and DNA damage lead to genetic instability and it may cause cancer. OxidativeDNA damage caused by cigarette smoke can be identified with the presence of 8-oxoguanosine used as one of the biomarkers for oxidative DNA damage.Increased concentration of 8-oxoguanosine in DNA has an important role in carcinogenesis and triggers tumor cells. both active and passive smokers havebeen reported to have an elevated concentration of 8-oxoguanosine in their lung tissue and peripheral leukocytes as well as for passive smokers. This paperprovide informations and understanding of the effects of smoking on the genetic stability, especially in the DNA molecule.
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Panjiasih Susmiarsih, Tri. "Kajian DNA Rekombinan pada Vaksin DNA dan Vaksin Subunit Protein". Majalah Kesehatan Pharmamedika 10, n.º 2 (28 de janeiro de 2019): 108. http://dx.doi.org/10.33476/mkp.v10i2.730.

Texto completo da fonte
Resumo:
Vaksin telah dikenal sebagai substansi yang digunakan untuk menstimulasi sistem imun. Saat ini, perkembangan vaksin sudah mencapai generasi vaksin DNA dan vaksin subunit protein.Teknologi perancangan vaksin digunakan dalam mengembangkan berbagai jenis vaksin dengan pendekatan biologi molekular yaitu menggunakan teknik DNA rekombinan yang memerlukan sarana vektor, DNA target, enzim restriksi dan ligasi serta sel inang. Studi ini bertujuan mengkaji teknik DNA rekombinan dalam pembuatan vaksin DNA dan vaksin subunit protein.
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Lee, Suk-Hwan, e Ki-Ryong Kwon. "DNA Information Hiding Method for DNA Data Storage". Journal of the Institute of Electronics and Information Engineers 51, n.º 10 (25 de outubro de 2014): 118–27. http://dx.doi.org/10.5573/ieie.2014.51.10.118.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

MATSUURA, Kazunori, e Nobuo KIMIZUKA. "DNA Nanocage". Kobunshi 52, n.º 3 (2003): 141. http://dx.doi.org/10.1295/kobunshi.52.141.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Okayama, Tsuyoshi, Hiroshi Kitabata e Haruhiko Murase. "DNA Algorithms". Agricultural Information Research 12, n.º 1 (2003): 33–43. http://dx.doi.org/10.3173/air.12.33.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Marfuah, Siti, Beivy Jonathan Kolondam e Trina Ekawati Tallei. "Potensi Environmental DNA (e-DNA) Untuk Pemantauan dan Konservasi Keanekaragaman Hayati". JURNAL BIOS LOGOS 11, n.º 1 (28 de fevereiro de 2021): 75. http://dx.doi.org/10.35799/jbl.11.1.2021.31780.

Texto completo da fonte
Resumo:
(Article History: Received January 6, 2021; Revised February 12, 2021; Accepted February 28, 2021) ABSTRAK Hilangnya spesies dan adanya spesies invasif dalam suatu habitat dapat menjadi ancaman bagi spesies asli dalam satu ekosistem. Untuk itu diperlukan teknik terkini yang mampu mendeteksi keberadaan suatu organisme. Salah satu teknik yang dapat mendeteksi organisme target di lingkungan secara cepat dan akurat yaitu environmental DNA (e-DNA).Tujuan dari ulasan artikel ini yaitu untuk mengeksplorasi kemampuan e-DNA secara ekogenomik untuk pemantauan dan konservasi keanekaragaman hayati. Ulasan artikel ini menggunakan data sekunder yang diperoleh dari berbagai database yang berbasis dalam jaringan. Hasil analisis memperlihatkan bahwa dengan menggunakan pendekatan e-DNA pemantauan dan konsevasi keanekaragaman hayati dapat dideteksi sesuai dengan taksonomi organisme dan penanda molekuler. Penanda molekuler Cytochrome c Oxidase subunit 1 (COI) mampu mendeteksi berbagai spesies baik langka dan invasif. Dengan demikian dapat disimpulkan bahwa pendekatan e-DNA dapat dijadikan sebagai metode untuk pemantauan dan konsevasi keanekaragaman hayati pada berbagai ekosistem.Kata - kata kunci: environmental DNA; keanekaragaman hayati dan konservasi; penanda molekuler ABSTRACTThe loss of species and the presence of invasive species in a habitat can be a threat to native species in an ecosystem. So we need the latest techniques that are able to detect the presence of an organism. One technique that can detect target organisms in the environment quickly and accurately is environmental DNA (e-DNA). The purpose of this review article is to explore the ecogenomic ability of e-DNA for monitoring and conservation of biodiversity. This article reviews using secondary data obtained from various network-based databases. The results of the analysis show that by using the e-DNA approach, monitoring and conservation of biological diversity can be detected according to the taxonomy of organisms and molecular markers. Cytochrome c Oxidase subunit 1 (COI) molecular markers are capable of detecting a variety of both rare and invasive species. Thus it can be concluded that the e-DNA approach can be used as a method for monitoring and conservation of biological diversity in various ecosystems.Keywords: environmental DNA; biodiversity and conservation; molecular markers
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Nuraeny, Nanan, Dzulfikal DL Hakim, Fransisca S. Susilaningsih e Dewi MD Herawati. "Metilasi DNA dan Mukosa Mulut". SRIWIJAYA JOURNAL OF MEDICINE 2, n.º 2 (16 de abril de 2019): 99–105. http://dx.doi.org/10.32539/sjm.v2i2.63.

Texto completo da fonte
Resumo:
Pengaruh lingkungan eksternal pada gen manusia akan berpengaruh pada patogenesis penyakit, dan hal ini dapat diturunkan. Studi tentang perubahan gen fenotip yang diwariskan yang tidak disebabkan oleh perubahan urutan DNA disebut epigenetik. Salah satu mekanisme epigenetik adalah metilasi DNA yang penting dalam mengatur ekspresi gen. Ulasan ini akan menjelaskan studi tentang metilasi DNA pada mukosa mulut. Metode pencarian sistematis Google Scholar dan Pubmed dilakukan untuk semua studi dalam sepuluh tahun terakhir. Hasil pencarian mendapatkan sebanyak tujuh artikel dengan ukuran sampel yang bervariasi, 16 hingga 177 sampel, sebagian besar studi kasus-kontrol padaoral premalignan lesions (OPL), oral lichenoid disease (OLD), mucositis oral pada acute lymphoblactic leukemia (ALL), dan oral squamous cell carcinoma (OSCC). Metilasi DNA pada kanker mulut menunjukkan bahwa terdapat hipermetilasi beberapa gen, walaupun status metilasi DNA dalam beberapa kasus belum menunjukkan perbedaan yang signifikan antara gen yang diperiksa. Hasil penelitian lain menunjukkan bahwa tidak ada korelasi antara metilasi DNA dan perkembangan mukositis oral pada ALL yang menerima terapi metotreksat (MTX). Mekanisme metilasi DNA pada sel malignanadalah dengan menambahkan gugus metil ke sitosin dinukleotida di CpG (cytosine phosphate guanine) pada daerah promoter oleh enzim DNA methyltransferase sehingga dapat menghambat ekspresi beberapa gen terkait pertumbuhan sel, perbaikan DNA, dan penghambat metastasis. Metilasi DNA adalah biomarker penting dalam perkembangan penyakit mukosa mulut.
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

Nuraeny, Nanan, Dzulfikar DL Hakim, Fransisca S. Susilaningsih, Dewi MD Herawati e Dida A. Gurnida. "Metilasi DNA dan Mukosa Mulut". Sriwijaya Journal of Medicine 2, n.º 2 (2 de abril de 2019): 99–105. http://dx.doi.org/10.32539/sjm.v2i2.42.

Texto completo da fonte
Resumo:
Pengaruh lingkungan eksternal pada gen manusia akan berpengaruh pada patogenesis penyakit, dan hal ini dapat diturunkan. Studi tentang perubahan gen fenotip yang diwariskan yang tidak disebabkan oleh perubahan urutan DNA disebut epigenetik. Salah satu mekanisme epigenetik adalah metilasi DNA yang penting dalam mengatur ekspresi gen. Ulasan ini akan menjelaskan studi tentang metilasi DNA pada mukosa mulut. Metode pencarian sistematis Google Scholar dan Pubmed dilakukan untuk semua studi dalam sepuluh tahun terakhir. Hasil pencarian mendapatkan sebanyak tujuh artikel dengan ukuran sampel yang bervariasi, 16 hingga 177 sampel, sebagian besar studi kasus-kontrol padaoral premalignan lesions (OPL), oral lichenoid disease (OLD), mucositis oral pada acute lymphoblactic leukemia (ALL), dan oral squamous cell carcinoma (OSCC). Metilasi DNA pada kanker mulut menunjukkan bahwa terdapat hipermetilasi beberapa gen, walaupun status metilasi DNA dalam beberapa kasus belum menunjukkan perbedaan yang signifikan antara gen yang diperiksa. Hasil penelitian lain menunjukkan bahwa tidak ada korelasi antara metilasi DNA dan perkembangan mukositis oral pada ALL yang menerima terapi metotreksat (MTX). Mekanisme metilasi DNA pada sel malignanadalah dengan menambahkan gugus metil ke sitosin dinukleotida di CpG (cytosine phosphate guanine) pada daerah promoter oleh enzim DNA methyltransferase sehingga dapat menghambat ekspresi beberapa gen terkait pertumbuhan sel, perbaikan DNA, dan penghambat metastasis. Metilasi DNA adalah biomarker penting dalam perkembangan penyakit mukosa mulut.
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Weitzman, Jonathan B. "DNA/DNA microarrays". Genome Biology 2 (2001): spotlight—20010813–03. http://dx.doi.org/10.1186/gb-spotlight-20010813-03.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

Strey, Helmut H., Rudi Podgornik, Donald C. Rau e V. Adrian Parsegian. "DNA-DNA interactions". Current Opinion in Structural Biology 8, n.º 3 (junho de 1998): 309–13. http://dx.doi.org/10.1016/s0959-440x(98)80063-8.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Yokoyama, Toru. "DNA Analysis". Journal of the Institute of Image Information and Television Engineers 67, n.º 9 (2013): 812–14. http://dx.doi.org/10.3169/itej.67.812.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

TABATA, Hitoshi, e Tomoji KAWAI. "DNA Network". Kobunshi 50, n.º 4 (2001): 251. http://dx.doi.org/10.1295/kobunshi.50.251.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Sutton, M. D., e G. C. Walker. "Managing DNA polymerases: Coordinating DNA replication, DNA repair, and DNA recombination". Proceedings of the National Academy of Sciences 98, n.º 15 (17 de julho de 2001): 8342–49. http://dx.doi.org/10.1073/pnas.111036998.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Pinto, L. B., I. G. C. Caputo e M. M. I. Pereira. "Importância do DNA em Investigações Forenses: Análise de DNA Mitocondrial". Brazilian Journal of Forensic Sciences, Medical Law and Bioethics 6, n.º 1 (2016): 84–107. http://dx.doi.org/10.17063/bjfs6(1)y201684.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

KEOHAVONG, PHOUTHONE, ALEXANDRA G. KAT, NEAL F. CARIELLO e WILLIAM G. THILLY. "DNA Amplification In Vitro Using T4 DNA Polymerase". DNA 7, n.º 1 (janeiro de 1988): 63–70. http://dx.doi.org/10.1089/dna.1988.7.63.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Hain, Patricia, e Donald Lee. "DNA and DNA Extraction". Journal of Natural Resources and Life Sciences Education 32, n.º 1 (2003): 134. http://dx.doi.org/10.2134/jnrlse.2003.0134a.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

Sreedhara, Alavattam, Yingfu Li e Ronald R. Breaker. "Ligating DNA with DNA". Journal of the American Chemical Society 126, n.º 11 (março de 2004): 3454–60. http://dx.doi.org/10.1021/ja039713i.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Li, Yingfu, Yong Liu e Ronald R. Breaker. "Capping DNA with DNA†". Biochemistry 39, n.º 11 (março de 2000): 3106–14. http://dx.doi.org/10.1021/bi992710r.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

Carmi, N., S. R. Balkhi e R. R. Breaker. "Cleaving DNA with DNA". Proceedings of the National Academy of Sciences 95, n.º 5 (3 de março de 1998): 2233–37. http://dx.doi.org/10.1073/pnas.95.5.2233.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

Li, Y., e R. R. Breaker. "Phosphorylating DNA with DNA". Proceedings of the National Academy of Sciences 96, n.º 6 (16 de março de 1999): 2746–51. http://dx.doi.org/10.1073/pnas.96.6.2746.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

Graham, E. A. M. "DNA reviews: Ancient DNA". Forensic Science, Medicine, and Pathology 3, n.º 3 (11 de outubro de 2007): 221–25. http://dx.doi.org/10.1007/s12024-007-9009-5.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

Arnott, Struther, R. Chandrasekaran, R. P. Millane e H. S. Park. "RNA-RNA, DNA-DNA, and DNA-RNA Polymorphism". Biophysical Journal 49, n.º 1 (janeiro de 1986): 3–5. http://dx.doi.org/10.1016/s0006-3495(86)83568-8.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

Garai, Ashok, Suman Saurabh, Yves Lansac e Prabal K. Maiti. "DNA Elasticity from Short DNA to Nucleosomal DNA". Journal of Physical Chemistry B 119, n.º 34 (24 de julho de 2015): 11146–56. http://dx.doi.org/10.1021/acs.jpcb.5b03006.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

Tanida, Jun, e Yusuke Ogura. "Photonic DNA computing". Review of Laser Engineering 33, Supplement (2005): 239–40. http://dx.doi.org/10.2184/lsj.33.239.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

ISOBE, Hiroyuki, e Eiichi NAKAMURA. "Fulleren and DNA". Kobunshi 52, n.º 3 (2003): 142. http://dx.doi.org/10.1295/kobunshi.52.142.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

TOKUNAGA, Shuto, Shinichi MOCHIZUKI, Noriko MIYAMOTO e Kazuo SAKURAI. "CpG-DNA Delivery Using DNA Nanotechnology". KOBUNSHI RONBUNSHU 74, n.º 6 (2017): 603–7. http://dx.doi.org/10.1295/koron.2017-0019.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

Kim, Eun-Gyeong, Hyo-Gun Yun e Sang-Yong Lee. "DNA Computing Adopting DNA coding Method to solve Traveling Salesman Problem". Journal of Korean Institute of Intelligent Systems 14, n.º 1 (1 de fevereiro de 2004): 105–11. http://dx.doi.org/10.5391/jkiis.2004.14.1.105.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

Kim, Eun-Gyeong, e Sang-Yong Lee. "DNA Computing Adopting DNA coding Method to solve effective Knapsack Problem". Journal of Korean Institute of Intelligent Systems 15, n.º 6 (1 de dezembro de 2005): 730–35. http://dx.doi.org/10.5391/jkiis.2005.15.6.730.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

Petraccone, L., E. Erra, A. Messere, D. Montesarchio, G. Piccialli, L. De Napoli, G. Barone e C. Giancola. "Targeting duplex DNA with DNA-PNA chimeras? Physico-chemical characterization of a triplex DNA-PNA/DNA/DNA". Biopolymers 73, n.º 4 (2004): 434–42. http://dx.doi.org/10.1002/bip.10599.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

Immoos, Chad E., Stephen J. Lee e Mark W. Grinstaff. "DNA-PEG-DNA Triblock Macromolecules for Reagentless DNA Detection". Journal of the American Chemical Society 126, n.º 35 (setembro de 2004): 10814–15. http://dx.doi.org/10.1021/ja046634d.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

Burgers, Peter M. J. "Eukaryotic DNA polymerases in DNA replication and DNA repair". Chromosoma 107, n.º 4 (22 de setembro de 1998): 218–27. http://dx.doi.org/10.1007/s004120050300.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

DEGUCHI, Tetsuo, e SHIMAMURA Miyuki. "Knotted DNA". Kobunshi 53, n.º 4 (2004): 274. http://dx.doi.org/10.1295/kobunshi.53.274.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

Ossipov, Dimitri, Edouard Zamaratski e Jyoti Chattopadhyaya. "Dipyrido[3,2-a:2′,3′-c]phenazine-Tethered Oligo-DNA: Synthesis and Thermal Stability of Their DNA⋅DNA and DNA⋅RNA Duplexes and DNA⋅DNA⋅DNA Triplexes". Helvetica Chimica Acta 82, n.º 12 (15 de dezembro de 1999): 2186–200. http://dx.doi.org/10.1002/(sici)1522-2675(19991215)82:12<2186::aid-hlca2186>3.0.co;2-1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

Nawy, Tal. "DNA variants or DNA damage?" Nature Methods 14, n.º 4 (abril de 2017): 341. http://dx.doi.org/10.1038/nmeth.4254.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

Seeman, Nadrian C. "DNA NANOTECHNOLOGY: Novel DNA Constructions". Annual Review of Biophysics and Biomolecular Structure 27, n.º 1 (junho de 1998): 225–48. http://dx.doi.org/10.1146/annurev.biophys.27.1.225.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

LILLEY, DAVID M. J. "DNA supercoiling and DNA structure". Biochemical Society Transactions 14, n.º 2 (1 de abril de 1986): 211–13. http://dx.doi.org/10.1042/bst0140211.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

Brookfield, John. "DNA markers and DNA trees". Journal of Evolutionary Biology 12, n.º 3 (maio de 1999): 630–31. http://dx.doi.org/10.1046/j.1420-9101.1999.0072d.x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

Burnier, Y., J. Dorier e A. Stasiak. "DNA supercoiling inhibits DNA knotting". Nucleic Acids Research 36, n.º 15 (24 de julho de 2008): 4956–63. http://dx.doi.org/10.1093/nar/gkn467.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

Reich, Norbert O., e Michael J. Danzitz. "EcoRI DNA methyltransferase-DNA interactions". Biochemistry 31, n.º 7 (fevereiro de 1992): 1937–45. http://dx.doi.org/10.1021/bi00122a006.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

Breaker, R. "DNA aptamers and DNA enzymes". Current Opinion in Chemical Biology 1, n.º 1 (junho de 1997): 26–31. http://dx.doi.org/10.1016/s1367-5931(97)80105-6.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

Travers, Andrew. "DNA Topology: Dynamic DNA Looping". Current Biology 16, n.º 19 (outubro de 2006): R838—R840. http://dx.doi.org/10.1016/j.cub.2006.08.070.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
45

Barone, G., A. Barbieri, S. Posante, A. Trotta, A. Silvestri, G. Ruisi, A. M. Giuliani, M. T. Lo Giudice, M. T. Musmeci e R. Barbieri. "DNA-tin and DNA-iron". Journal of Inorganic Biochemistry 59, n.º 2-3 (agosto de 1995): 176. http://dx.doi.org/10.1016/0162-0134(95)97284-w.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
46

Westerhoff, Hans V., Mary H. O’Dea, Anthony Maxwell e Martin Gellert. "DNA supercoiling by DNA gyrase". Cell Biophysics 12, n.º 1 (janeiro de 1988): 157–81. http://dx.doi.org/10.1007/bf02918357.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
47

Witz, Guillaume, Giovanni Dietler e Andrzej Stasiak. "DNA knots and DNA supercoiling". Cell Cycle 10, n.º 9 (maio de 2011): 1339–40. http://dx.doi.org/10.4161/cc.10.9.15293.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
48

López-Moyado, Isaac F., e Anjana Rao. "Active DNA demethylation damages DNA". Science 378, n.º 6623 (2 de dezembro de 2022): 948–49. http://dx.doi.org/10.1126/science.adf3171.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
49

Gehring, Mary, Wolf Reik e Steven Henikoff. "DNA demethylation by DNA repair". Trends in Genetics 25, n.º 2 (fevereiro de 2009): 82–90. http://dx.doi.org/10.1016/j.tig.2008.12.001.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
50

Nöll, Tanja, Sabine Wenderhold-Reeb, Holger Schönherr e Gilbert Nöll. "DNA-Hydrogele aus Plasmid-DNA". Angewandte Chemie 129, n.º 39 (17 de agosto de 2017): 12167–71. http://dx.doi.org/10.1002/ange.201705001.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia