Siga este link para ver outros tipos de publicações sobre o tema: DNA microarrays.

Artigos de revistas sobre o tema "DNA microarrays"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 50 melhores artigos de revistas para estudos sobre o assunto "DNA microarrays".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

Weitzman, Jonathan B. "DNA/DNA microarrays". Genome Biology 2 (2001): spotlight—20010813–03. http://dx.doi.org/10.1186/gb-spotlight-20010813-03.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Hofman, Paul. "DNA Microarrays". Nephron Physiology 99, n.º 3 (24 de fevereiro de 2005): p85—p89. http://dx.doi.org/10.1159/000083764.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Cook, Stuart A., e Anthony Rosenzweig. "DNA Microarrays". Circulation Research 91, n.º 7 (4 de outubro de 2002): 559–64. http://dx.doi.org/10.1161/01.res.0000036019.55901.62.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Biesen, R., e T. Häupl. "DNA-Microarrays". Zeitschrift für Rheumatologie 70, n.º 9 (30 de setembro de 2011): 803–8. http://dx.doi.org/10.1007/s00393-011-0869-4.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Niemeyer, Christof M., e Dietmar Blohm. "DNA Microarrays". Angewandte Chemie International Edition 38, n.º 19 (4 de outubro de 1999): 2865–69. http://dx.doi.org/10.1002/(sici)1521-3773(19991004)38:19<2865::aid-anie2865>3.0.co;2-f.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Aparna, G. M., e Kishore K. R. Tetala. "Recent Progress in Development and Application of DNA, Protein, Peptide, Glycan, Antibody, and Aptamer Microarrays". Biomolecules 13, n.º 4 (27 de março de 2023): 602. http://dx.doi.org/10.3390/biom13040602.

Texto completo da fonte
Resumo:
Microarrays are one of the trailblazing technologies of the last two decades and have displayed their importance in all the associated fields of biology. They are widely explored to screen, identify, and gain insights on the characteristics traits of biomolecules (individually or in complex solutions). A wide variety of biomolecule-based microarrays (DNA microarrays, protein microarrays, glycan microarrays, antibody microarrays, peptide microarrays, and aptamer microarrays) are either commercially available or fabricated in-house by researchers to explore diverse substrates, surface coating, immobilization techniques, and detection strategies. The aim of this review is to explore the development of biomolecule-based microarray applications since 2018 onwards. Here, we have covered a different array of printing strategies, substrate surface modification, biomolecule immobilization strategies, detection techniques, and biomolecule-based microarray applications. The period of 2018–2022 focused on using biomolecule-based microarrays for the identification of biomarkers, detection of viruses, differentiation of multiple pathogens, etc. A few potential future applications of microarrays could be for personalized medicine, vaccine candidate screening, toxin screening, pathogen identification, and posttranslational modifications.
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Whipple, Mark Eliot, e Winston Patrick Kuo. "DNA Microarrays in Otolaryngology-Head and Neck Surgery". Otolaryngology–Head and Neck Surgery 127, n.º 3 (setembro de 2002): 196–204. http://dx.doi.org/10.1067/mhn.2002.127383.

Texto completo da fonte
Resumo:
OBJECTIVES: Our goal was to review the technologies underlying DNA microarrays and to explore their use in otolaryngology-head and neck surgery. STUDY DESIGN: The current literature relating to microarray technology and methodology is reviewed, specifically the use of DNA microarrays to characterize gene expression. Bioinformatics involves computational and statistical methods to extract, organize, and analyze the huge amounts of data produced by microarray experiments. The means by which these techniques are being applied to otolaryngology-head and neck surgery are outlined. RESULTS: Microarray technologies are having a substantial impact on biomedical research, including many areas relevant to otolaryngology-head and neck surgery. CONCLUSIONS: DNA microarrays allow for the simultaneous investigationof thousands of individual genes in a single experiment. In the coming years, the application of these technologies to clinical medicine should allow for unprecedented methods ofdiagnosis and treatment. SIGNIFICANCE: These highly parallel experimental techniques promise to revolutionize gene discovery, disease characterization, and drug development.
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Paredes, Carlos J., Ryan S. Senger, Iwona S. Spath, Jacob R. Borden, Ryan Sillers e Eleftherios T. Papoutsakis. "A General Framework for Designing and Validating Oligomer-Based DNA Microarrays and Its Application to Clostridium acetobutylicum". Applied and Environmental Microbiology 73, n.º 14 (25 de maio de 2007): 4631–38. http://dx.doi.org/10.1128/aem.00144-07.

Texto completo da fonte
Resumo:
ABSTRACT While DNA microarray analysis is widely accepted as an essential tool for modern biology, its use still eludes many researchers for several reasons, especially when microarrays are not commercially available. In that case, the design, construction, and use of microarrays for a sequenced organism constitute substantial, time-consuming, and expensive tasks. Recently, it has become possible to construct custom microarrays using industrial manufacturing processes, which offer several advantages, including speed of manufacturing, quality control, no up-front setup costs, and need-based microarray ordering. Here, we describe a strategy for designing and validating DNA microarrays manufactured using a commercial process. The 22K microarrays for the solvent producer Clostridium acetobutylicum ATCC 824 are based on in situ-synthesized 60-mers employing the Agilent technology. The strategy involves designing a large library of possible oligomer probes for each target (i.e., gene or DNA sequence) and experimentally testing and selecting the best probes for each target. The degenerate C. acetobutylicum strain M5 lacking the pSOL1 megaplasmid (with 178 annotated open reading frames [genes]) was used to estimate the level of probe cross-hybridization in the new microarrays and to establish the minimum intensity for a gene to be considered expressed. Results obtained using this microarray design were consistent with previously reported results from spotted cDNA-based microarrays. The proposed strategy is applicable to any sequenced organism.
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Fesseha, Haben, e Hiwot Tilahun. "Principles and Applications of Deoxyribonucleic Acid Microarray: A Review". Pathology and Laboratory Medicine – Open Journal 3, n.º 1 (30 de março de 2021): 1–9. http://dx.doi.org/10.17140/plmoj-3-109.

Texto completo da fonte
Resumo:
Deoxyribonucleic acid (DNA) microarrays are collections of DNA probes arranged on a base pair and the latest commercialized molecular diagnostic technologies that offer high throughput results, more sensitive and require less time. It is the most reliable and widely accepted tool facilitating the simultaneous identification of thousands of genetic elements even a single gene. Microarrays are powerful new tools for the investigation of global changes in gene expression profiles in cells and tissues. The different types of DNA microarray or DNA chip devices and systems are described along with their methods of fabrication and their use. The DNA microarrays assembly process is automatized and further miniaturized. DNA microarrays are used in the search of various specific genes or in gene polymorphism and expression analysis. They will be widely used to investigate the expression of various genes connected with various diseases in order to find the causes of these diseases and to enable their accurate treatment. Generally, microarray analysis is not only applied for gene expression studies, but also used in immunology, genotyping, diagnostics and sequence analysis. Additionally, microarray technology being developed and applied to new areas of proteomics, cancer research, and cellular analysis.
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Peiffer, Daniel, Ken Cho e Yongchol Shin. "Xenopus DNA Microarrays". Current Genomics 4, n.º 8 (1 de novembro de 2003): 665–72. http://dx.doi.org/10.2174/1389202033490097.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

Schofield, W. C. E., J. McGettrick, T. J. Bradley, J. P. S. Badyal e S. Przyborski. "Rewritable DNA Microarrays". Journal of the American Chemical Society 128, n.º 7 (fevereiro de 2006): 2280–85. http://dx.doi.org/10.1021/ja056367r.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

HENRY, CELIA M. "STANDARDIZING DNA MICROARRAYS". Chemical & Engineering News 82, n.º 31 (2 de agosto de 2004): 36–39. http://dx.doi.org/10.1021/cen-v082n031.p036.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

Jack, Philippa, e David Boyle. "DNA microarrays for pathogen detection and characterisation". Microbiology Australia 27, n.º 2 (2006): 68. http://dx.doi.org/10.1071/ma06068.

Texto completo da fonte
Resumo:
DNA microarrays have three main potential diagnostic uses in clinical microbiology: detection of known pathogens, pathogen typing and novel pathogen discovery. Although DNA microarray platforms offer the ability to screen for a large number of agents in parallel, sensitivity is dependent on the ability to obtain adequate amounts of pathogen nucleic acids from collected samples. In general, high levels of sensitivity require a PCR amplification step using specific primer sets, subsequently reducing the overall scope of the microarray assay. At present, relatively high costs, restricted sample throughput capabilities and validation difficulties are also major factors limiting the implementation of DNA microarray assays in diagnostic microbiology laboratories.
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Chagovetz, Alexander, e Steve Blair. "Real-time DNA microarrays: reality check". Biochemical Society Transactions 37, n.º 2 (20 de março de 2009): 471–75. http://dx.doi.org/10.1042/bst0370471.

Texto completo da fonte
Resumo:
DNA microarrays are plagued with inconsistent quantifications and false-positive results. Using established mechanisms of surface reactions, we argue that these problems are inherent to the current technology. In particular, the problem of multiplex non-equilibrium reactions cannot be resolved within the framework of the existing paradigm. We discuss the advantages and limitations of changing the paradigm to real-time data acquisition similar to real-time PCR methodology. Our analysis suggests that the fundamental problem of multiplex reactions is not resolved by the real-time approach itself. However, by introducing new detection chemistries and analysis approaches, it is possible to extract target-specific quantitative information from real-time microarray data. The possible scope of applications for real-time microarrays is discussed.
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

Chiodi, Elisa, Allison M. Marn, Matthew T. Geib e M. Selim Ünlü. "The Role of Surface Chemistry in the Efficacy of Protein and DNA Microarrays for Label-Free Detection: An Overview". Polymers 13, n.º 7 (26 de março de 2021): 1026. http://dx.doi.org/10.3390/polym13071026.

Texto completo da fonte
Resumo:
The importance of microarrays in diagnostics and medicine has drastically increased in the last few years. Nevertheless, the efficiency of a microarray-based assay intrinsically depends on the density and functionality of the biorecognition elements immobilized onto each sensor spot. Recently, researchers have put effort into developing new functionalization strategies and technologies which provide efficient immobilization and stability of any sort of molecule. Here, we present an overview of the most widely used methods of surface functionalization of microarray substrates, as well as the most recent advances in the field, and compare their performance in terms of optimal immobilization of the bioreceptor molecules. We focus on label-free microarrays and, in particular, we aim to describe the impact of surface chemistry on two types of microarray-based sensors: microarrays for single particle imaging and for label-free measurements of binding kinetics. Both protein and DNA microarrays are taken into consideration, and the effect of different polymeric coatings on the molecules’ functionalities is critically analyzed.
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Call, Douglas R., Marlene K. Bakko, Melissa J. Krug e Marilyn C. Roberts. "Identifying Antimicrobial Resistance Genes with DNA Microarrays". Antimicrobial Agents and Chemotherapy 47, n.º 10 (outubro de 2003): 3290–95. http://dx.doi.org/10.1128/aac.47.10.3290-3295.2003.

Texto completo da fonte
Resumo:
ABSTRACT We developed and tested a glass-based microarray suitable for detecting multiple tetracycline (tet) resistance genes. Microarray probes for 17 tet genes, the β-lactamase bla TEM-1 gene, and a 16S ribosomal DNA gene (Escherichia coli) were generated from known controls by PCR. The resulting products (ca. 550 bp) were applied as spots onto epoxy-silane-derivatized, Teflon-masked slides by using a robotic spotter. DNA was extracted from test strains, biotinylated, hybridized overnight to individual microarrays at 65°C, and detected with Tyramide Signal Amplification, Alexa Fluor 546, and a microarray scanner. Using a detection threshold of 3× the standard deviation, we correctly identified tet genes carried by 39 test strains. Nine additional strains were not known to harbor any genes represented on the microarray, and these strains were negative for all 17 tet probes as expected. We verified that R741a, which was originally thought to carry a novel tet gene, tet(I), actually harbored a tet(G) gene. Microarray technology has the potential for screening a large number of different antibiotic resistance genes by the relatively low-cost methods outlined in this paper.
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Stoevesandt, O., M. He e M. J. Taussig. "Repeatable printing of protein microarrays from DNA microarrays". New Biotechnology 25 (setembro de 2009): S360. http://dx.doi.org/10.1016/j.nbt.2009.06.961.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Kostrzynska, M., e A. Bachand. "Application of DNA microarray technology for detection, identification, and characterization of food-borne pathogens". Canadian Journal of Microbiology 52, n.º 1 (1 de janeiro de 2006): 1–8. http://dx.doi.org/10.1139/w05-105.

Texto completo da fonte
Resumo:
DNA microarrays represent the latest advance in molecular technology. In combination with bioinformatics, they provide unparalleled opportunities for simultaneous detection of thousands of genes or target DNA sequences and offer tremendous potential for studying food-borne microorganisms. This review provides an up-to-date look at the application of DNA microarray technology to detect food-borne pathogenic bacteria, viruses, and parasites. In addition, it covers the advantages of using microarray technology to further characterize microorganisms by providing information for specific identification of isolates, to understand the pathogenesis based on the presence of virulence genes, and to indicate how new pathogenic strains evolved epidemiologically and phylogenetically.Key words: DNA microarrays, food-borne pathogens, detection.
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Herrera, Henry J., e Marlon Gancino. "DNA microarrays: Recent Advances". Bionatura 2, n.º 3 (15 de agosto de 2017): 404–6. http://dx.doi.org/10.21931/rb/2017.02.03.13.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

Dai, Wei, Mona A. Sheikh, Olgica Milenkovic e Richard G. Baraniuk. "Compressive Sensing DNA Microarrays". EURASIP Journal on Bioinformatics and Systems Biology 2009 (2009): 1–12. http://dx.doi.org/10.1155/2009/162824.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Meloni, R. "DNA microarrays and pharmacogenomics". Pharmacological Research 49, n.º 4 (abril de 2004): 303–8. http://dx.doi.org/10.1016/j.phrs.2003.06.001.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

Sassolas, Audrey, Béatrice D. Leca-Bouvier e Loïc J. Blum. "DNA Biosensors and Microarrays". Chemical Reviews 108, n.º 1 (janeiro de 2008): 109–39. http://dx.doi.org/10.1021/cr0684467.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

Rathod, Pradipsinh K., Karthikeyan Ganesan, Rhian E. Hayward, Zbynek Bozdech e Joseph L. DeRisi. "DNA microarrays for malaria". Trends in Parasitology 18, n.º 1 (janeiro de 2002): 39–45. http://dx.doi.org/10.1016/s1471-4922(01)02153-5.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

Marcotte, Eric R., Lalit K. Srivastava e Rémi Quirion. "DNA microarrays in neuropsychopharmacology". Trends in Pharmacological Sciences 22, n.º 8 (agosto de 2001): 426–36. http://dx.doi.org/10.1016/s0165-6147(00)01741-7.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

Smith, L. "DNA microarrays and development". Human Molecular Genetics 12, n.º 90001 (2 de abril de 2003): 1R—8. http://dx.doi.org/10.1093/hmg/ddg053.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

Trost, Brett, Catherine A. Moir, Zoe E. Gillespie, Anthony Kusalik, Jennifer A. Mitchell e Christopher H. Eskiw. "Concordance between RNA-sequencing data and DNA microarray data in transcriptome analysis of proliferative and quiescent fibroblasts". Royal Society Open Science 2, n.º 9 (setembro de 2015): 150402. http://dx.doi.org/10.1098/rsos.150402.

Texto completo da fonte
Resumo:
DNA microarrays and RNA sequencing (RNA-seq) are major technologies for performing high-throughput analysis of transcript abundance. Recently, concerns have been raised regarding the concordance of data derived from the two techniques. Using cDNA libraries derived from normal human foreskin fibroblasts, we measured changes in transcript abundance as cells transitioned from proliferative growth to quiescence using both DNA microarrays and RNA-seq. The internal reproducibility of the RNA-seq data was greater than that of the microarray data. Correlations between the RNA-seq data and the individual microarrays were low, but correlations between the RNA-seq values and the geometric mean of the microarray values were moderate. The two technologies had good agreement when considering probes with the largest (both positive and negative) fold change (FC) values. An independent technique, quantitative reverse-transcription PCR (qRT-PCR), was used to measure the FC of 76 genes between proliferative and quiescent samples, and a higher correlation was observed between the qRT-PCR data and the RNA-seq data than between the qRT-PCR data and the microarray data.
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

I. A., Zaloilo. "APPLYING OF DNA- MICROARRAYS IN A MODERN FISH-FARMING". Biotechnologia Acta 8, n.º 4 (agosto de 2015): 9–20. http://dx.doi.org/10.15407/biotech8.04.009.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

Lacroix, M., N. Zammatteo, J. Remacle e G. Leclercq. "A Low-Density DNA Microarray for Analysis of Markers in Breast Cancer". International Journal of Biological Markers 17, n.º 1 (janeiro de 2002): 5–23. http://dx.doi.org/10.1177/172460080201700102.

Texto completo da fonte
Resumo:
Breast cancer remains a major cause of death in women from Western countries. In the near future, advances in both nucleic acids technology and tumor biology should be widely exploited to improve the diagnosis, prognosis, and outcome prediction of this disease. The DNA microarray, also called biochip, is a promising tool for performing massive, simultaneous, fast, and standardized analyses of multiple molecular markers in tumor samples. However, most currently available microarrays are expensive, which is mainly due to the amount (several thousands) of different DNA capture sequences that they carry. While these high-density microarrays are best suited for basic studies, their introduction into the clinical routine remains hypothetical. We describe here the principles of a low-density microarray, carrying only a few hundreds of capture sequences specific to markers whose importance in breast cancer is generally recognized or suggested by the current medical literature. We provide a list of about 250 of these markers. We also examine some potential difficulties (homologies between marker and/or variant sequences, size of sequences, etc.) associated with the production of such a low-cost microarray.
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

&NA;. "DNA microarrays in clinical practice". Inpharma Weekly &NA;, n.º 1306 (setembro de 2001): 3. http://dx.doi.org/10.2165/00128413-200113060-00004.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

Akin, H. E., D. A. O. Karabay, J. R. Kyle, A. P. Mills, C. S. Ozkan e M. Ozkan. "Electronic Microarrays in DNA Computing". Journal of Nanoscience and Nanotechnology 11, n.º 3 (1 de março de 2011): 1859–65. http://dx.doi.org/10.1166/jnn.2011.3422.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

Akin, H. E., D. A. O. Karabay, J. R. Kyle, A. P. Mills, Jr., C. Ozkan e M. Ozkan. "Electronic Microarrays in DNA Computing". Journal of Nanoscience and Nanotechnology 11, n.º 6 (1 de junho de 2011): 4717–23. http://dx.doi.org/10.1166/jnn.2011.38844717.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

Booth, David E. "Cancer Diagnostics With DNA Microarrays". Technometrics 49, n.º 4 (novembro de 2007): 492–93. http://dx.doi.org/10.1198/tech.2007.s686.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

Chow, B. Y., C. J. Emig e J. M. Jacobson. "Photoelectrochemical synthesis of DNA microarrays". Proceedings of the National Academy of Sciences 106, n.º 36 (21 de agosto de 2009): 15219–24. http://dx.doi.org/10.1073/pnas.0813011106.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

Russell, S. "DNA Microarrays: Gene Expression Applications". Heredity 89, n.º 5 (28 de outubro de 2002): 402. http://dx.doi.org/10.1038/sj.hdy.6800150.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

BURLEIGH, B. A. "ProbingTrypanosoma cruzibiology with DNA microarrays". Parasitology 128, S1 (outubro de 2004): S3—S10. http://dx.doi.org/10.1017/s0031182004006559.

Texto completo da fonte
Resumo:
The application of genome-scale approaches to studyTrypanosoma cruzi–host interactions at different stages of the infective process is becoming possible with sequencing and assembly of theT. cruzigenome nearing completion and sequence information available for both human and mouse genomes. Investigators have recently begun to exploit DNA microarray technology to analyze host transcriptional responses toT. cruziinfection and dissect developmental processes in the complexT. cruzilife-cycle. Collectively, information generated from these and future studies will provide valuable insights into the molecular requirements for establishment ofT. cruziinfection in the host and highlight the molecular events coinciding with disease progression. While the field is in its infancy, the availability of genomic information and increased accessibility to relatively high-throughput technologies represents a significant advancement toward identification of novel drug targets and vaccine candidates for the treatment and prevention of Chagas' disease.
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

Hughes, Timothy R., e Daniel D. Shoemaker. "DNA microarrays for expression profiling". Current Opinion in Chemical Biology 5, n.º 1 (fevereiro de 2001): 21–25. http://dx.doi.org/10.1016/s1367-5931(00)00163-0.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

van Berkum, Nynke L., e Frank CP Holstege. "DNA microarrays: raising the profile". Current Opinion in Biotechnology 12, n.º 1 (fevereiro de 2001): 48–52. http://dx.doi.org/10.1016/s0958-1669(00)00173-7.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

Conzone, Samuel D., e Carlo G. Pantano. "Glass slides to DNA microarrays". Materials Today 7, n.º 3 (março de 2004): 20–26. http://dx.doi.org/10.1016/s1369-7021(04)00122-1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

Wooster, Richard. "Cancer classification with DNA microarrays". Trends in Genetics 16, n.º 8 (agosto de 2000): 327–29. http://dx.doi.org/10.1016/s0168-9525(00)02064-3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

Shoemaker, Daniel D., e Peter S. Linsley. "Recent developments in DNA microarrays". Current Opinion in Microbiology 5, n.º 3 (junho de 2002): 334–37. http://dx.doi.org/10.1016/s1369-5274(02)00327-2.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

Reymond, Philippe. "DNA microarrays and plant defence". Plant Physiology and Biochemistry 39, n.º 3-4 (março de 2001): 313–21. http://dx.doi.org/10.1016/s0981-9428(00)01235-3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

Henry, Celia M. "Focus: DNA microarrays in toxicology." Analytical Chemistry 71, n.º 13 (julho de 1999): 462A—464A. http://dx.doi.org/10.1021/ac990494m.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

Yasokawa, Daisuke, e Hitoshi Iwahashi. "Toxicogenomics using yeast DNA microarrays". Journal of Bioscience and Bioengineering 110, n.º 5 (novembro de 2010): 511–22. http://dx.doi.org/10.1016/j.jbiosc.2010.06.003.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

P, Deepthi, e C. H. Renumadhavi. "DNA Microarrays and Smart Pooling." IOSR Journal of Pharmacy and Biological Sciences 9, n.º 1 (2014): 61–64. http://dx.doi.org/10.9790/3008-09136164.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
45

Kim, C., M. Li, A. Lowe, N. Venkataramaiah, K. Richmond, J. Kaysen e F. Cerrina. "DNA microarrays: An imaging study". Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 21, n.º 6 (2003): 2946. http://dx.doi.org/10.1116/1.1627802.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
46

Ramaswamy, Sridhar, e Todd R. Golub. "DNA Microarrays in Clinical Oncology". Journal of Clinical Oncology 20, n.º 7 (1 de abril de 2002): 1932–41. http://dx.doi.org/10.1200/jco.2002.20.7.1932.

Texto completo da fonte
Resumo:
ABSTRACT: Aberrant gene expression is critical for tumor initiation and progression. However, we lack a comprehensive understanding of all genes that are aberrantly expressed in human cancer. Recently, DNA microarrays have been used to obtain global views of human cancer gene expression and to identify genetic markers that might be important for diagnosis and therapy. We review clinical applications of these novel tools, discuss some important recent studies, identify promising avenues of research in this emerging field of study, and discuss the likely impact that expression profiling will have on clinical oncology.
Estilos ABNT, Harvard, Vancouver, APA, etc.
47

Kochzius, M., M. Nölte, H. Weber, N. Silkenbeumer, S. Hjörleifsdottir, G. O. Hreggvidsson, V. Marteinsson et al. "DNA Microarrays for Identifying Fishes". Marine Biotechnology 10, n.º 2 (13 de fevereiro de 2008): 207–17. http://dx.doi.org/10.1007/s10126-007-9068-3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
48

Ho, Shuk-Mei, e Kin-Mang Lau. "DNA microarrays in prostate cancer". Current Urology Reports 3, n.º 1 (fevereiro de 2002): 53–60. http://dx.doi.org/10.1007/s11934-002-0011-x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
49

Horváth, Szatmár, Zoltán Janka e Károly Mirnics. "Analyzing Schizophrenia by DNA Microarrays". Biological Psychiatry 69, n.º 2 (janeiro de 2011): 157–62. http://dx.doi.org/10.1016/j.biopsych.2010.07.017.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
50

Patarakul, K. "DNA microarrays in infectious diseases". Chulalongkorn Medical Journal 52, n.º 3 (maio de 2008): 147–53. http://dx.doi.org/10.58837/chula.cmj.52.3.1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia