Artigos de revistas sobre o tema "DNA-ligand interactions"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "DNA-ligand interactions".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Piosik, Jacek, Kacper Wasielewski, Anna Woziwodzka, Wojciech Śledź e Anna Gwizdek-Wiśniewska. "De-intercalation of ethidium bromide and propidium iodine from DNA in the presence of caffeine". Open Life Sciences 5, n.º 1 (1 de fevereiro de 2010): 59–66. http://dx.doi.org/10.2478/s11535-009-0077-2.
Texto completo da fonteHopfinger, A. J., Mario G. Cardozo e Y. Kawakami. "Molecular modelling of ligand–DNA intercalation interactions". J. Chem. Soc., Faraday Trans. 91, n.º 16 (1995): 2515–24. http://dx.doi.org/10.1039/ft9959102515.
Texto completo da fontePiehler, Jacob, Andreas Brecht, Günter Gauglitz, Marion Zerlin, Corinna Maul, Ralf Thiericke e Susanne Grabley. "Label-Free Monitoring of DNA–Ligand Interactions". Analytical Biochemistry 249, n.º 1 (junho de 1997): 94–102. http://dx.doi.org/10.1006/abio.1997.2160.
Texto completo da fontevan Royen, Martin E., Sónia M. Cunha, Maartje C. Brink, Karin A. Mattern, Alex L. Nigg, Hendrikus J. Dubbink, Pernette J. Verschure, Jan Trapman e Adriaan B. Houtsmuller. "Compartmentalization of androgen receptor protein–protein interactions in living cells". Journal of Cell Biology 177, n.º 1 (9 de abril de 2007): 63–72. http://dx.doi.org/10.1083/jcb.200609178.
Texto completo da fonteAdasme, Melissa F., Katja L. Linnemann, Sarah Naomi Bolz, Florian Kaiser, Sebastian Salentin, V. Joachim Haupt e Michael Schroeder. "PLIP 2021: expanding the scope of the protein–ligand interaction profiler to DNA and RNA". Nucleic Acids Research 49, W1 (5 de maio de 2021): W530—W534. http://dx.doi.org/10.1093/nar/gkab294.
Texto completo da fonteMurade, Chandrashekhar U., e George T. Shubeita. "A fluorescent reporter on electrostatic DNA-ligand interactions". Biomedical Optics Express 13, n.º 1 (7 de dezembro de 2021): 159. http://dx.doi.org/10.1364/boe.439791.
Texto completo da fonteCremers, Glenn A. O., Bas J. H. M. Rosier, Ab Meijs, Nicholas B. Tito, Sander M. J. van Duijnhoven, Hans van Eenennaam, Lorenzo Albertazzi e Tom F. A. de Greef. "Determinants of Ligand-Functionalized DNA Nanostructure–Cell Interactions". Journal of the American Chemical Society 143, n.º 27 (28 de junho de 2021): 10131–42. http://dx.doi.org/10.1021/jacs.1c02298.
Texto completo da fontePeterman, Erwin J. G., e Peter Gross. "Biophysics of DNA–ligand interactions resolved by force". Physics of Life Reviews 7, n.º 3 (setembro de 2010): 344–45. http://dx.doi.org/10.1016/j.plrev.2010.06.005.
Texto completo da fonteMurat, Pierre, Yashveer Singh e Eric Defrancq. "Methods for investigating G-quadruplex DNA/ligand interactions". Chemical Society Reviews 40, n.º 11 (2011): 5293. http://dx.doi.org/10.1039/c1cs15117g.
Texto completo da fonteShi, Xuesong, e Robert B. Macgregor. "Volume and hydration changes of DNA–ligand interactions". Biophysical Chemistry 125, n.º 2-3 (fevereiro de 2007): 471–82. http://dx.doi.org/10.1016/j.bpc.2006.10.011.
Texto completo da fontePullman, Bernard. "Molecular mechanisms of specificity in DNA-ligand interactions". Journal of Molecular Graphics 7, n.º 3 (setembro de 1989): 181. http://dx.doi.org/10.1016/0263-7855(89)80045-1.
Texto completo da fonteScheepers, M. R. W., L. J. van IJzendoorn e M. W. J. Prins. "Multivalent weak interactions enhance selectivity of interparticle binding". Proceedings of the National Academy of Sciences 117, n.º 37 (28 de agosto de 2020): 22690–97. http://dx.doi.org/10.1073/pnas.2003968117.
Texto completo da fonteRahman, Khondaker M., e David E. Thurston. "Effect of microwave irradiation on covalent ligand–DNA interactions". Chemical Communications, n.º 20 (2009): 2875. http://dx.doi.org/10.1039/b902357g.
Texto completo da fonteNelson, Stephanie M., Lynnette R. Ferguson e William A. Denny. "Non-covalent ligand/DNA interactions: Minor groove binding agents". Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 623, n.º 1-2 (outubro de 2007): 24–40. http://dx.doi.org/10.1016/j.mrfmmm.2007.03.012.
Texto completo da fonteNguyen, Binh, e W. David Wilson. "The Effects of Hairpin Loops on Ligand−DNA Interactions". Journal of Physical Chemistry B 113, n.º 43 (29 de outubro de 2009): 14329–35. http://dx.doi.org/10.1021/jp904830m.
Texto completo da fonteHowerton, Shelley B., Akankasha Nagpal e Loren Dean Williams. "Surprising roles of electrostatic interactions in DNA-ligand complexes". Biopolymers 69, n.º 1 (21 de abril de 2003): 87–99. http://dx.doi.org/10.1002/bip.10319.
Texto completo da fonteSavory, Joanne G. A., Gratien G. Préfontaine, Claudia Lamprecht, Mingmin Liao, Rhian F. Walther, Yvonne A. Lefebvre e Robert J. G. Haché. "Glucocorticoid Receptor Homodimers and Glucocorticoid-Mineralocorticoid Receptor Heterodimers Form in the Cytoplasm through Alternative Dimerization Interfaces". Molecular and Cellular Biology 21, n.º 3 (1 de fevereiro de 2001): 781–93. http://dx.doi.org/10.1128/mcb.21.3.781-793.2001.
Texto completo da fonteMikheikin, A. L., A. L. Zhuze e A. S. Zasedatelev. "Molecular Modelling of Ligand—DNA Minor Groove Binding: Role of Ligand—Water Interactions". Journal of Biomolecular Structure and Dynamics 19, n.º 1 (agosto de 2001): 175–78. http://dx.doi.org/10.1080/07391102.2001.10506729.
Texto completo da fonteRocha, M. S. "Extracting physical chemistry from mechanics: a new approach to investigate DNA interactions with drugs and proteins in single molecule experiments". Integrative Biology 7, n.º 9 (2015): 967–86. http://dx.doi.org/10.1039/c5ib00127g.
Texto completo da fonteBerdnikova, Daria V., Tseimur M. Aliyeu, Thomas Paululat, Yuri V. Fedorov, Olga A. Fedorova e Heiko Ihmels. "DNA–ligand interactions gained and lost: light-induced ligand redistribution in a supramolecular cascade". Chemical Communications 51, n.º 23 (2015): 4906–9. http://dx.doi.org/10.1039/c5cc01025j.
Texto completo da fonteFong, Pedro, e Hong-Kong Wong. "Evaluation of Scoring Function Performance on DNA-ligand Complexes". Open Medicinal Chemistry Journal 13, n.º 1 (31 de julho de 2019): 40–49. http://dx.doi.org/10.2174/1874104501913010040.
Texto completo da fonteShahabadi, Nahid, Soheila Kashanian, Maryam Mahdavi e Noorkaram Sourinejad. "DNA Interaction and DNA Cleavage Studies of a New Platinum(II) Complex Containing Aliphatic and Aromatic Dinitrogen Ligands". Bioinorganic Chemistry and Applications 2011 (2011): 1–10. http://dx.doi.org/10.1155/2011/525794.
Texto completo da fonteBrodbelt, Jennifer S. "Evaluation of DNA/Ligand Interactions by Electrospray Ionization Mass Spectrometry". Annual Review of Analytical Chemistry 3, n.º 1 (junho de 2010): 67–87. http://dx.doi.org/10.1146/annurev.anchem.111808.073627.
Texto completo da fonteRentzeperis, Dionisios, Luis A. Marky e Donald W. Kupke. "Entropy-volume correlation with hydration changes in DNA-ligand interactions". Journal of Physical Chemistry 96, n.º 24 (novembro de 1992): 9612–13. http://dx.doi.org/10.1021/j100203a011.
Texto completo da fonteCabeza de Vaca, Israel, Maria Fátima Lucas e Victor Guallar. "New Monte Carlo Based Technique To Study DNA–Ligand Interactions". Journal of Chemical Theory and Computation 11, n.º 12 (11 de novembro de 2015): 5598–605. http://dx.doi.org/10.1021/acs.jctc.5b00838.
Texto completo da fonteMurat, Pierre, Yashveer Singh e Eric Defrancq. "ChemInform Abstract: Methods for Investigating G-Quadruplex DNA/Ligand Interactions". ChemInform 43, n.º 3 (22 de dezembro de 2011): no. http://dx.doi.org/10.1002/chin.201203280.
Texto completo da fonteChirivino, Emanuele, Cesare Giordano, Sara Faini, Luciano Cellai e Marco Fragai. "Tuning Sensitivity in Paramagnetic NMR Detection of Ligand–DNA Interactions". ChemMedChem 2, n.º 8 (13 de agosto de 2007): 1153–56. http://dx.doi.org/10.1002/cmdc.200600311.
Texto completo da fonteKhan, Sabab Hasan, e C. Denise Okafor. "Interactions governing transcriptional activity of nuclear receptors". Biochemical Society Transactions 50, n.º 6 (16 de dezembro de 2022): 1941–52. http://dx.doi.org/10.1042/bst20220338.
Texto completo da fonteYusof, Enis Nadia Md, Mohammad Azam, Siti Syaida Sirat, Thahira B. S. A. Ravoof, Alister J. Page, Abhi Veerakumarasivam, Thiruventhan Karunakaran e Mohd Rizal Razali. "Dithiocarbazate Ligand-Based Cu(II), Ni(II), and Zn(II) Complexes: Synthesis, Structural Investigations, Cytotoxicity, DNA Binding, and Molecular Docking Studies". Bioinorganic Chemistry and Applications 2022 (31 de julho de 2022): 1–13. http://dx.doi.org/10.1155/2022/2004052.
Texto completo da fonteLinne, Christine, Daniele Visco, Stefano Angioletti-Uberti, Liedewij Laan e Daniela J. Kraft. "Direct visualization of superselective colloid-surface binding mediated by multivalent interactions". Proceedings of the National Academy of Sciences 118, n.º 36 (31 de agosto de 2021): e2106036118. http://dx.doi.org/10.1073/pnas.2106036118.
Texto completo da fonteChernikova, Ekaterina Y., Anna Y. Ruleva, Vladimir B. Tsvetkov, Yuri V. Fedorov, Valentin V. Novikov, Tseimur M. Aliyeu, Alexander A. Pavlov, Nikolay E. Shepel e Olga A. Fedorova. "Cucurbit[7]uril-driven modulation of ligand–DNA interactions by ternary assembly". Organic & Biomolecular Chemistry 18, n.º 4 (2020): 755–66. http://dx.doi.org/10.1039/c9ob02543j.
Texto completo da fonteKobren, Shilpa Nadimpalli, e Mona Singh. "Systematic domain-based aggregation of protein structures highlights DNA-, RNA- and other ligand-binding positions". Nucleic Acids Research 47, n.º 2 (7 de dezembro de 2018): 582–93. http://dx.doi.org/10.1093/nar/gky1224.
Texto completo da fonteCheskis, B., e L. P. Freedman. "Ligand modulates the conversion of DNA-bound vitamin D3 receptor (VDR) homodimers into VDR-retinoid X receptor heterodimers". Molecular and Cellular Biology 14, n.º 5 (maio de 1994): 3329–38. http://dx.doi.org/10.1128/mcb.14.5.3329-3338.1994.
Texto completo da fonteCheskis, B., e L. P. Freedman. "Ligand modulates the conversion of DNA-bound vitamin D3 receptor (VDR) homodimers into VDR-retinoid X receptor heterodimers." Molecular and Cellular Biology 14, n.º 5 (maio de 1994): 3329–38. http://dx.doi.org/10.1128/mcb.14.5.3329.
Texto completo da fontePohle, W., e H. Fritzsche. "Infrared spectroscopy as a tool for investigations of DNA structure and DNA - ligand interactions". Journal of Molecular Structure 219 (março de 1990): 341–46. http://dx.doi.org/10.1016/0022-2860(90)80079-y.
Texto completo da fonteIssa, Naiem T., Stephen W. Byers e Sivanesan Dakshanamurthy. "ES-Screen: A Novel Electrostatics-Driven Method for Drug Discovery Virtual Screening". International Journal of Molecular Sciences 23, n.º 23 (27 de novembro de 2022): 14830. http://dx.doi.org/10.3390/ijms232314830.
Texto completo da fonteRodrigues, Tatiane P., Jorddy N. Cruz, Tiago S. Arouche, Tais S. S. Pereira, Wanessa A. Costa, Sebastião G. Silva, Raul N. C. Junior, Mozaniel S. Oliveira e Antonio M. J. C. Neto. "Molecular Modeling Approach to Investigate the Intercalation of Phthalates and Their Metabolites in DNA Macromolecules". Journal of Computational and Theoretical Nanoscience 16, n.º 2 (1 de fevereiro de 2019): 373–80. http://dx.doi.org/10.1166/jctn.2019.8110.
Texto completo da fonteMie, Masayasu, Rie Sugita, Tamaki Endoh e Eiry Kobatake. "Evaluation of small ligand–protein interactions by using T7 RNA polymerase with DNA-modified ligand". Analytical Biochemistry 405, n.º 1 (outubro de 2010): 109–13. http://dx.doi.org/10.1016/j.ab.2010.06.011.
Texto completo da fontePrzibilla, S., W. W. Hitchcock, M. Szécsi, M. Grebe, J. Beatty, V. C. Henrich e M. Spindler-Barth. "Functional studies on the ligand-binding domain of Ultraspiracle from Drosophila melanogaster". Biological Chemistry 385, n.º 1 (5 de janeiro de 2004): 21–30. http://dx.doi.org/10.1515/bc.2004.004.
Texto completo da fonteJoachimiak, Andrzej, Grazyna Joachimiak, Lance Bigelow, Garrett Cobb e Youngchang Kim. "HcaR Ligand and DNA Interactions in the Regulation of Catabolic Gene Expression". Acta Crystallographica Section A Foundations and Advances 70, a1 (5 de agosto de 2014): C203. http://dx.doi.org/10.1107/s2053273314097964.
Texto completo da fonteLi, Min, Hongming Ding, Meihua Lin, Fangfei Yin, Lu Song, Xiuhai Mao, Fan Li et al. "DNA Framework-Programmed Cell Capture via Topology-Engineered Receptor–Ligand Interactions". Journal of the American Chemical Society 141, n.º 47 (6 de novembro de 2019): 18910–15. http://dx.doi.org/10.1021/jacs.9b11015.
Texto completo da fonteHamdan, I. I., G. G. Skellern e R. D. Waigh. "Use of capillary electrophoresis in the study of ligand-DNA interactions". Nucleic Acids Research 26, n.º 12 (1 de junho de 1998): 3053–58. http://dx.doi.org/10.1093/nar/26.12.3053.
Texto completo da fonteMisra, V. K., e B. Honig. "On the magnitude of the electrostatic contribution to ligand-DNA interactions." Proceedings of the National Academy of Sciences 92, n.º 10 (9 de maio de 1995): 4691–95. http://dx.doi.org/10.1073/pnas.92.10.4691.
Texto completo da fonteKupferschmitt, G., J. Schmidt, Th Schmidt, B. Fera, F. Buck e H. Riiterjans. "15N labeling of oligodeoxynucleotides for NMR studies of DNA-ligand interactions". Nucleic Acids Research 15, n.º 15 (1987): 6225–41. http://dx.doi.org/10.1093/nar/15.15.6225.
Texto completo da fonteKrafcikova, Michaela, Simon Dzatko, Coralie Caron, Anton Granzhan, Radovan Fiala, Tomas Loja, Marie-Paule Teulade-Fichou et al. "Monitoring DNA–Ligand Interactions in Living Human Cells Using NMR Spectroscopy". Journal of the American Chemical Society 141, n.º 34 (9 de agosto de 2019): 13281–85. http://dx.doi.org/10.1021/jacs.9b03031.
Texto completo da fonteMahapatra, Tufan Singha, Susmitnarayan Chaudhury, Swagata Dasgupta, Valerio Bertolasi e Debashis Ray. "Dinuclear nickel complexes of divergent Ni⋯Ni separation showing ancillary ligand addition and bio-macromolecular interaction". New Journal of Chemistry 40, n.º 3 (2016): 2268–79. http://dx.doi.org/10.1039/c5nj02410b.
Texto completo da fonteBanasiak, Anna, Nicolò Zuin Fantoni, Andrew Kellett e John Colleran. "Mapping the DNA Damaging Effects of Polypyridyl Copper Complexes with DNA Electrochemical Biosensors". Molecules 27, n.º 3 (19 de janeiro de 2022): 645. http://dx.doi.org/10.3390/molecules27030645.
Texto completo da fonteGautam, Pankaj, e Sudipta Kumar Sinha. "Anticipating response function in gene regulatory networks". Journal of The Royal Society Interface 18, n.º 179 (junho de 2021): 20210206. http://dx.doi.org/10.1098/rsif.2021.0206.
Texto completo da fonteChao, Hui, e Liang-Nian Ji. "DNA Interactions with Ruthenium(II) Polypyridine Complexes Containing Asymmetric Ligands". Bioinorganic Chemistry and Applications 3, n.º 1-2 (2005): 15–28. http://dx.doi.org/10.1155/bca.2005.15.
Texto completo da fonteIhmels, H., M. Karbasiyoun, K. Löhl e C. Stremmel. "Structural flexibility versus rigidity of the aromatic unit of DNA ligands: binding of aza- and azoniastilbene derivatives to duplex and quadruplex DNA". Organic & Biomolecular Chemistry 17, n.º 26 (2019): 6404–13. http://dx.doi.org/10.1039/c9ob00809h.
Texto completo da fonte