Artigos de revistas sobre o tema "Distributed optimization and learning"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Distributed optimization and learning".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Kamalesh, Kamalesh, e Dr Gobi Natesan. "Machine Learning-Driven Analysis of Distributed Computing Systems: Exploring Optimization and Efficiency". International Journal of Research Publication and Reviews 5, n.º 3 (9 de março de 2024): 3979–83. http://dx.doi.org/10.55248/gengpi.5.0324.0786.
Texto completo da fonteMertikopoulos, Panayotis, E. Veronica Belmega, Romain Negrel e Luca Sanguinetti. "Distributed Stochastic Optimization via Matrix Exponential Learning". IEEE Transactions on Signal Processing 65, n.º 9 (1 de maio de 2017): 2277–90. http://dx.doi.org/10.1109/tsp.2017.2656847.
Texto completo da fonteGratton, Cristiano, Naveen K. D. Venkategowda, Reza Arablouei e Stefan Werner. "Privacy-Preserved Distributed Learning With Zeroth-Order Optimization". IEEE Transactions on Information Forensics and Security 17 (2022): 265–79. http://dx.doi.org/10.1109/tifs.2021.3139267.
Texto completo da fonteBlot, Michael, David Picard, Nicolas Thome e Matthieu Cord. "Distributed optimization for deep learning with gossip exchange". Neurocomputing 330 (fevereiro de 2019): 287–96. http://dx.doi.org/10.1016/j.neucom.2018.11.002.
Texto completo da fonteYoung, M. Todd, Jacob D. Hinkle, Ramakrishnan Kannan e Arvind Ramanathan. "Distributed Bayesian optimization of deep reinforcement learning algorithms". Journal of Parallel and Distributed Computing 139 (maio de 2020): 43–52. http://dx.doi.org/10.1016/j.jpdc.2019.07.008.
Texto completo da fonteNedic, Angelia. "Distributed Gradient Methods for Convex Machine Learning Problems in Networks: Distributed Optimization". IEEE Signal Processing Magazine 37, n.º 3 (maio de 2020): 92–101. http://dx.doi.org/10.1109/msp.2020.2975210.
Texto completo da fonteLin, I.-Cheng. "Learning and Optimization over Robust Networked Systems". ACM SIGMETRICS Performance Evaluation Review 52, n.º 3 (9 de janeiro de 2025): 23–26. https://doi.org/10.1145/3712170.3712179.
Texto completo da fonteGao, Hongchang. "Distributed Stochastic Nested Optimization for Emerging Machine Learning Models: Algorithm and Theory". Proceedings of the AAAI Conference on Artificial Intelligence 37, n.º 13 (26 de junho de 2023): 15437. http://dx.doi.org/10.1609/aaai.v37i13.26804.
Texto completo da fonteChoi, Dojin, Jiwon Wee, Sangho Song, Hyeonbyeong Lee, Jongtae Lim, Kyoungsoo Bok e Jaesoo Yoo. "k-NN Query Optimization for High-Dimensional Index Using Machine Learning". Electronics 12, n.º 11 (24 de maio de 2023): 2375. http://dx.doi.org/10.3390/electronics12112375.
Texto completo da fonteYang, Peng, e Ping Li. "Distributed Primal-Dual Optimization for Online Multi-Task Learning". Proceedings of the AAAI Conference on Artificial Intelligence 34, n.º 04 (3 de abril de 2020): 6631–38. http://dx.doi.org/10.1609/aaai.v34i04.6139.
Texto completo da fonteShokoohi, Maryam, Mohsen Afsharchi e Hamed Shah-Hoseini. "Dynamic distributed constraint optimization using multi-agent reinforcement learning". Soft Computing 26, n.º 8 (16 de março de 2022): 3601–29. http://dx.doi.org/10.1007/s00500-022-06820-7.
Texto completo da fonteLee, Jaehwan, Hyeonseong Choi, Hyeonwoo Jeong, Baekhyeon Noh e Ji Sun Shin. "Communication Optimization Schemes for Accelerating Distributed Deep Learning Systems". Applied Sciences 10, n.º 24 (10 de dezembro de 2020): 8846. http://dx.doi.org/10.3390/app10248846.
Texto completo da fontePugh, Jim, e Alcherio Martinoli. "Distributed scalable multi-robot learning using particle swarm optimization". Swarm Intelligence 3, n.º 3 (27 de maio de 2009): 203–22. http://dx.doi.org/10.1007/s11721-009-0030-z.
Texto completo da fonteKazhmaganbetova, Zarina, Shnar Imangaliyev e Altynbek Sharipbay. "Machine Learning for the Communication Optimization in Distributed Systems". International Journal of Engineering & Technology 7, n.º 4.1 (12 de setembro de 2018): 47. http://dx.doi.org/10.14419/ijet.v7i4.1.19491.
Texto completo da fonteMedyakov, D., G. Molodtsov, A. Beznosikov e A. Gasnikov. "Optimal Data Splitting in Distributed Optimization for Machine Learning". Doklady Mathematics 108, S2 (dezembro de 2023): S465—S475. http://dx.doi.org/10.1134/s1064562423701600.
Texto completo da fonteYang, Dezhi, Xintong He, Jun Wang, Guoxian Yu, Carlotta Domeniconi e Jinglin Zhang. "Federated Causality Learning with Explainable Adaptive Optimization". Proceedings of the AAAI Conference on Artificial Intelligence 38, n.º 15 (24 de março de 2024): 16308–15. http://dx.doi.org/10.1609/aaai.v38i15.29566.
Texto completo da fonteMar’i, Farhanna, e Ahmad Afif Supianto. "A conceptual approach of optimization in federated learning". Indonesian Journal of Electrical Engineering and Computer Science 37, n.º 1 (1 de janeiro de 2025): 288. http://dx.doi.org/10.11591/ijeecs.v37.i1.pp288-299.
Texto completo da fonteShi, Junjie, Jiang Bian, Jakob Richter, Kuan-Hsun Chen, Jörg Rahnenführer, Haoyi Xiong e Jian-Jia Chen. "MODES: model-based optimization on distributed embedded systems". Machine Learning 110, n.º 6 (junho de 2021): 1527–47. http://dx.doi.org/10.1007/s10994-021-06014-6.
Texto completo da fonteZhang, Chongjie, e Victor Lesser. "Coordinated Multi-Agent Reinforcement Learning in Networked Distributed POMDPs". Proceedings of the AAAI Conference on Artificial Intelligence 25, n.º 1 (4 de agosto de 2011): 764–70. http://dx.doi.org/10.1609/aaai.v25i1.7886.
Texto completo da fonteVeerappa, Praveena Mydolalu, e Ajeet Annarao Chikkamannur. "Prime Learning – Ant Colony Optimization Technique for Query Optimization in Distributed Database System". International Journal of Engineering Trends and Technology 70, n.º 8 (31 de agosto de 2022): 158–65. http://dx.doi.org/10.14445/22315381/ijett-v70i8p216.
Texto completo da fonteZhang, Xin, e Ahmed Eldawy. "Spatial Query Optimization With Learning". Proceedings of the VLDB Endowment 17, n.º 12 (agosto de 2024): 4245–48. http://dx.doi.org/10.14778/3685800.3685846.
Texto completo da fonteXian, Wenhan, Feihu Huang e Heng Huang. "Communication-Efficient Frank-Wolfe Algorithm for Nonconvex Decentralized Distributed Learning". Proceedings of the AAAI Conference on Artificial Intelligence 35, n.º 12 (18 de maio de 2021): 10405–13. http://dx.doi.org/10.1609/aaai.v35i12.17246.
Texto completo da fonteAlistarh, Dan. "Distributed Computing Column 85 Elastic Consistency". ACM SIGACT News 53, n.º 2 (10 de junho de 2022): 63. http://dx.doi.org/10.1145/3544979.3544990.
Texto completo da fonteQin, Yude, Ji Ke, Biao Wang e Gennady Fedorovich Filaretov. "Energy optimization for regional buildings based on distributed reinforcement learning". Sustainable Cities and Society 78 (março de 2022): 103625. http://dx.doi.org/10.1016/j.scs.2021.103625.
Texto completo da fonteYu, Javier, Joseph A. Vincent e Mac Schwager. "DiNNO: Distributed Neural Network Optimization for Multi-Robot Collaborative Learning". IEEE Robotics and Automation Letters 7, n.º 2 (abril de 2022): 1896–903. http://dx.doi.org/10.1109/lra.2022.3142402.
Texto completo da fonteChen, Jianshu, e Ali H. Sayed. "Diffusion Adaptation Strategies for Distributed Optimization and Learning Over Networks". IEEE Transactions on Signal Processing 60, n.º 8 (agosto de 2012): 4289–305. http://dx.doi.org/10.1109/tsp.2012.2198470.
Texto completo da fonteLee, Hoon, Sang Hyun Lee e Tony Q. S. Quek. "Deep Learning for Distributed Optimization: Applications to Wireless Resource Management". IEEE Journal on Selected Areas in Communications 37, n.º 10 (outubro de 2019): 2251–66. http://dx.doi.org/10.1109/jsac.2019.2933890.
Texto completo da fonteWen, Jing. "Distributed reinforcement learning-based optimization of resource scheduling for telematics". Computers and Electrical Engineering 118 (setembro de 2024): 109464. http://dx.doi.org/10.1016/j.compeleceng.2024.109464.
Texto completo da fonteZhang, Zhaojuan, Wanliang Wang e Gaofeng Pan. "A Distributed Quantum-Behaved Particle Swarm Optimization Using Opposition-Based Learning on Spark for Large-Scale Optimization Problem". Mathematics 8, n.º 11 (23 de outubro de 2020): 1860. http://dx.doi.org/10.3390/math8111860.
Texto completo da fonteGunuganti, Anvesh. "Federated Learning". Journal of Artificial Intelligence & Cloud Computing 1, n.º 2 (30 de junho de 2022): 1–6. http://dx.doi.org/10.47363/jaicc/2022(1)360.
Texto completo da fonteXu, Wencai. "Efficient Distributed Image Recognition Algorithm of Deep Learning Framework TensorFlow". Journal of Physics: Conference Series 2066, n.º 1 (1 de novembro de 2021): 012070. http://dx.doi.org/10.1088/1742-6596/2066/1/012070.
Texto completo da fonteFattahi, Salar, Nikolai Matni e Somayeh Sojoudi. "Efficient Learning of Distributed Linear-Quadratic Control Policies". SIAM Journal on Control and Optimization 58, n.º 5 (janeiro de 2020): 2927–51. http://dx.doi.org/10.1137/19m1291108.
Texto completo da fonteWang, Yibo, Yuanyu Wan, Shimao Zhang e Lijun Zhang. "Distributed Projection-Free Online Learning for Smooth and Convex Losses". Proceedings of the AAAI Conference on Artificial Intelligence 37, n.º 8 (26 de junho de 2023): 10226–34. http://dx.doi.org/10.1609/aaai.v37i8.26218.
Texto completo da fonteWang, Shikai, Haotian Zheng, Xin Wen e Shang Fu. "DISTRIBUTED HIGH-PERFORMANCE COMPUTING METHODS FOR ACCELERATING DEEP LEARNING TRAINING". Journal of Knowledge Learning and Science Technology ISSN: 2959-6386 (online) 3, n.º 3 (25 de setembro de 2024): 108–26. http://dx.doi.org/10.60087/jklst.v3.n4.p22.
Texto completo da fonteWang, Shikai, Haotian Zheng, Xin Wen e Shang Fu. "DISTRIBUTED HIGH-PERFORMANCE COMPUTING METHODS FOR ACCELERATING DEEP LEARNING TRAINING". Journal of Knowledge Learning and Science Technology ISSN: 2959-6386 (online) 3, n.º 3 (25 de setembro de 2024): 108–26. http://dx.doi.org/10.60087/jklst.v3.n3.p108-126.
Texto completo da fonteDeng, Yanchen, Shufeng Kong e Bo An. "Pretrained Cost Model for Distributed Constraint Optimization Problems". Proceedings of the AAAI Conference on Artificial Intelligence 36, n.º 9 (28 de junho de 2022): 9331–40. http://dx.doi.org/10.1609/aaai.v36i9.21164.
Texto completo da fonteTaheri, Seyed Iman, Mohammadreza Davoodi e Mohd Hasan Ali. "A Simulated-Annealing-Quasi-Oppositional-Teaching-Learning-Based Optimization Algorithm for Distributed Generation Allocation". Computation 11, n.º 11 (2 de novembro de 2023): 214. http://dx.doi.org/10.3390/computation11110214.
Texto completo da fonteDai, Wei, Wei Wang, Zhongtian Mao, Ruwen Jiang, Fudong Nian e Teng Li. "Distributed Policy Evaluation with Fractional Order Dynamics in Multiagent Reinforcement Learning". Security and Communication Networks 2021 (3 de setembro de 2021): 1–7. http://dx.doi.org/10.1155/2021/1020466.
Texto completo da fonteLi, Xinhang, Yiying Yang, Qinwen Wang, Zheng Yuan, Chen Xu, Lei Li e Lin Zhang. "A distributed multi-vehicle pursuit scheme: generative multi-adversarial reinforcement learning". Intelligence & Robotics 3, n.º 3 (13 de setembro de 2023): 436–52. http://dx.doi.org/10.20517/ir.2023.25.
Texto completo da fonteAgrawal, Shaashwat, Sagnik Sarkar, Mamoun Alazab, Praveen Kumar Reddy Maddikunta, Thippa Reddy Gadekallu e Quoc-Viet Pham. "Genetic CFL: Hyperparameter Optimization in Clustered Federated Learning". Computational Intelligence and Neuroscience 2021 (18 de novembro de 2021): 1–10. http://dx.doi.org/10.1155/2021/7156420.
Texto completo da fonteMantri, Arjun. "Advanced ML (Machine Learning) Techniques for Optimizing ETL Workflows with Apache Spark and Snowflake". Journal of Artificial Intelligence & Cloud Computing 2, n.º 3 (30 de setembro de 2023): 1–6. http://dx.doi.org/10.47363/jaicc/2023(2)339.
Texto completo da fonteJAMIAN, Jasrul Jamani, Hazlie MOKHLIS, Mohd Wazir MUSTAFA, Mohd Noor ABDULLAH e Muhammad Ariff BAHARUDIN. "Comparative learning global particle swarm optimization for optimal distributed generations' output". TURKISH JOURNAL OF ELECTRICAL ENGINEERING & COMPUTER SCIENCES 22 (2014): 1323–37. http://dx.doi.org/10.3906/elk-1212-173.
Texto completo da fonteZhang, Jilin, Hangdi Tu, Yongjian Ren, Jian Wan, Li Zhou, Mingwei Li, Jue Wang, Lifeng Yu, Chang Zhao e Lei Zhang. "A Parameter Communication Optimization Strategy for Distributed Machine Learning in Sensors". Sensors 17, n.º 10 (21 de setembro de 2017): 2172. http://dx.doi.org/10.3390/s17102172.
Texto completo da fonteIkebou, Shigeya, Fei Qian e Hironori Hirata. "A Parallel Distributed Learning Automaton Computing Model for Function Optimization Problems". IEEJ Transactions on Electronics, Information and Systems 121, n.º 2 (2001): 476–77. http://dx.doi.org/10.1541/ieejeiss1987.121.2_476.
Texto completo da fonteMai, Tianle, Haipeng Yao, Ni Zhang, Wenji He, Dong Guo e Mohsen Guizani. "Transfer Reinforcement Learning Aided Distributed Network Slicing Optimization in Industrial IoT". IEEE Transactions on Industrial Informatics 18, n.º 6 (junho de 2022): 4308–16. http://dx.doi.org/10.1109/tii.2021.3132136.
Texto completo da fonteHe, Haibo, e He Jiang. "Deep Learning Based Energy Efficiency Optimization for Distributed Cooperative Spectrum Sensing". IEEE Wireless Communications 26, n.º 3 (junho de 2019): 32–39. http://dx.doi.org/10.1109/mwc.2019.1800397.
Texto completo da fonteRaju, Leo, Sibi Sankar e R. S. Milton. "Distributed Optimization of Solar Micro-grid Using Multi Agent Reinforcement Learning". Procedia Computer Science 46 (2015): 231–39. http://dx.doi.org/10.1016/j.procs.2015.02.016.
Texto completo da fonteSimon, Dan, Arpit Shah e Carré Scheidegger. "Distributed learning with biogeography-based optimization: Markov modeling and robot control". Swarm and Evolutionary Computation 10 (junho de 2013): 12–24. http://dx.doi.org/10.1016/j.swevo.2012.12.003.
Texto completo da fonteYuan, Kun, Bicheng Ying, Xiaochuan Zhao e Ali H. Sayed. "Exact Diffusion for Distributed Optimization and Learning—Part II: Convergence Analysis". IEEE Transactions on Signal Processing 67, n.º 3 (1 de fevereiro de 2019): 724–39. http://dx.doi.org/10.1109/tsp.2018.2875883.
Texto completo da fonteYuan, Kun, Bicheng Ying, Xiaochuan Zhao e Ali H. Sayed. "Exact Diffusion for Distributed Optimization and Learning—Part I: Algorithm Development". IEEE Transactions on Signal Processing 67, n.º 3 (1 de fevereiro de 2019): 708–23. http://dx.doi.org/10.1109/tsp.2018.2875898.
Texto completo da fonte