Literatura científica selecionada sobre o tema "Distributed optimization and learning"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Distributed optimization and learning".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Distributed optimization and learning"
Kamalesh, Kamalesh, e Dr Gobi Natesan. "Machine Learning-Driven Analysis of Distributed Computing Systems: Exploring Optimization and Efficiency". International Journal of Research Publication and Reviews 5, n.º 3 (9 de março de 2024): 3979–83. http://dx.doi.org/10.55248/gengpi.5.0324.0786.
Texto completo da fonteMertikopoulos, Panayotis, E. Veronica Belmega, Romain Negrel e Luca Sanguinetti. "Distributed Stochastic Optimization via Matrix Exponential Learning". IEEE Transactions on Signal Processing 65, n.º 9 (1 de maio de 2017): 2277–90. http://dx.doi.org/10.1109/tsp.2017.2656847.
Texto completo da fonteGratton, Cristiano, Naveen K. D. Venkategowda, Reza Arablouei e Stefan Werner. "Privacy-Preserved Distributed Learning With Zeroth-Order Optimization". IEEE Transactions on Information Forensics and Security 17 (2022): 265–79. http://dx.doi.org/10.1109/tifs.2021.3139267.
Texto completo da fonteBlot, Michael, David Picard, Nicolas Thome e Matthieu Cord. "Distributed optimization for deep learning with gossip exchange". Neurocomputing 330 (fevereiro de 2019): 287–96. http://dx.doi.org/10.1016/j.neucom.2018.11.002.
Texto completo da fonteYoung, M. Todd, Jacob D. Hinkle, Ramakrishnan Kannan e Arvind Ramanathan. "Distributed Bayesian optimization of deep reinforcement learning algorithms". Journal of Parallel and Distributed Computing 139 (maio de 2020): 43–52. http://dx.doi.org/10.1016/j.jpdc.2019.07.008.
Texto completo da fonteNedic, Angelia. "Distributed Gradient Methods for Convex Machine Learning Problems in Networks: Distributed Optimization". IEEE Signal Processing Magazine 37, n.º 3 (maio de 2020): 92–101. http://dx.doi.org/10.1109/msp.2020.2975210.
Texto completo da fonteLin, I.-Cheng. "Learning and Optimization over Robust Networked Systems". ACM SIGMETRICS Performance Evaluation Review 52, n.º 3 (9 de janeiro de 2025): 23–26. https://doi.org/10.1145/3712170.3712179.
Texto completo da fonteGao, Hongchang. "Distributed Stochastic Nested Optimization for Emerging Machine Learning Models: Algorithm and Theory". Proceedings of the AAAI Conference on Artificial Intelligence 37, n.º 13 (26 de junho de 2023): 15437. http://dx.doi.org/10.1609/aaai.v37i13.26804.
Texto completo da fonteChoi, Dojin, Jiwon Wee, Sangho Song, Hyeonbyeong Lee, Jongtae Lim, Kyoungsoo Bok e Jaesoo Yoo. "k-NN Query Optimization for High-Dimensional Index Using Machine Learning". Electronics 12, n.º 11 (24 de maio de 2023): 2375. http://dx.doi.org/10.3390/electronics12112375.
Texto completo da fonteYang, Peng, e Ping Li. "Distributed Primal-Dual Optimization for Online Multi-Task Learning". Proceedings of the AAAI Conference on Artificial Intelligence 34, n.º 04 (3 de abril de 2020): 6631–38. http://dx.doi.org/10.1609/aaai.v34i04.6139.
Texto completo da fonteTeses / dissertações sobre o assunto "Distributed optimization and learning"
Funkquist, Mikaela, e Minghua Lu. "Distributed Optimization Through Deep Reinforcement Learning". Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-293878.
Texto completo da fonteFörstärkningsinlärningsmetoder tillåter självlärande enheter att spela video- och brädspel autonomt. Projektet siktar på att studera effektiviteten hos förstärkningsinlärningsmetoderna Q-learning och deep Q-learning i dynamiska problem. Målet är att träna upp robotar så att de kan röra sig genom ett varuhus på bästa sätt utan att kollidera. En virtuell miljö skapades, i vilken algoritmerna testades genom att simulera agenter som rörde sig. Algoritmernas effektivitet utvärderades av hur snabbt agenterna lärde sig att utföra förutbestämda uppgifter. Resultatet visar att Q-learning fungerar bra för enkla problem med få agenter, där system med två aktiva agenter löstes snabbt. Deep Q-learning fungerar bättre för mer komplexa system som innehåller fler agenter, men fall med suboptimala rörelser uppstod. Båda algoritmerna visade god potential inom deras respektive områden, däremot måste förbättringar göras innan de kan användas i verkligheten.
Kandidatexjobb i elektroteknik 2020, KTH, Stockholm
Konečný, Jakub. "Stochastic, distributed and federated optimization for machine learning". Thesis, University of Edinburgh, 2017. http://hdl.handle.net/1842/31478.
Texto completo da fonteArmond, Kenneth C. Jr. "Distributed Support Vector Machine Learning". ScholarWorks@UNO, 2008. http://scholarworks.uno.edu/td/711.
Texto completo da fontePatvarczki, Jozsef. "Layout Optimization for Distributed Relational Databases Using Machine Learning". Digital WPI, 2012. https://digitalcommons.wpi.edu/etd-dissertations/291.
Texto completo da fonteOuyang, Hua. "Optimal stochastic and distributed algorithms for machine learning". Diss., Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/49091.
Texto completo da fonteEl, Gamal Mostafa. "Distributed Statistical Learning under Communication Constraints". Digital WPI, 2017. https://digitalcommons.wpi.edu/etd-dissertations/314.
Texto completo da fonteDai, Wei. "Learning with Staleness". Research Showcase @ CMU, 2018. http://repository.cmu.edu/dissertations/1209.
Texto completo da fonteLu, Yumao. "Kernel optimization and distributed learning algorithms for support vector machines". Diss., Restricted to subscribing institutions, 2005. http://uclibs.org/PID/11984.
Texto completo da fonteDinh, The Canh. "Distributed Algorithms for Fast and Personalized Federated Learning". Thesis, The University of Sydney, 2023. https://hdl.handle.net/2123/30019.
Texto completo da fonteReddi, Sashank Jakkam. "New Optimization Methods for Modern Machine Learning". Research Showcase @ CMU, 2017. http://repository.cmu.edu/dissertations/1116.
Texto completo da fonteLivros sobre o assunto "Distributed optimization and learning"
Jiang, Jiawei, Bin Cui e Ce Zhang. Distributed Machine Learning and Gradient Optimization. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-3420-8.
Texto completo da fonteWang, Huiwei, Huaqing Li e Bo Zhou. Distributed Optimization, Game and Learning Algorithms. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-4528-7.
Texto completo da fonteJoshi, Gauri. Optimization Algorithms for Distributed Machine Learning. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-19067-4.
Texto completo da fonteTatarenko, Tatiana. Game-Theoretic Learning and Distributed Optimization in Memoryless Multi-Agent Systems. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-65479-9.
Texto completo da fonteOblinger, Diana G. Distributed learning. Boulder, Colo: CAUSE, 1996.
Encontre o texto completo da fonteMajhi, Sudhan, Rocío Pérez de Prado e Chandrappa Dasanapura Nanjundaiah, eds. Distributed Computing and Optimization Techniques. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-2281-7.
Texto completo da fonteGiselsson, Pontus, e Anders Rantzer, eds. Large-Scale and Distributed Optimization. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-97478-1.
Texto completo da fonteLü, Qingguo, Xiaofeng Liao, Huaqing Li, Shaojiang Deng e Shanfu Gao. Distributed Optimization in Networked Systems. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-8559-1.
Texto completo da fonteAbdulrahman Younis Ali Younis Kalbat. Distributed and Large-Scale Optimization. [New York, N.Y.?]: [publisher not identified], 2016.
Encontre o texto completo da fonteOtto, Daniel, Gianna Scharnberg, Michael Kerres e Olaf Zawacki-Richter, eds. Distributed Learning Ecosystems. Wiesbaden: Springer Fachmedien Wiesbaden, 2023. http://dx.doi.org/10.1007/978-3-658-38703-7.
Texto completo da fonteCapítulos de livros sobre o assunto "Distributed optimization and learning"
Joshi, Gauri, e Shiqiang Wang. "Communication-Efficient Distributed Optimization Algorithms". In Federated Learning, 125–43. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-96896-0_6.
Texto completo da fonteJiang, Jiawei, Bin Cui e Ce Zhang. "Distributed Gradient Optimization Algorithms". In Distributed Machine Learning and Gradient Optimization, 57–114. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-3420-8_3.
Texto completo da fonteJiang, Jiawei, Bin Cui e Ce Zhang. "Distributed Machine Learning Systems". In Distributed Machine Learning and Gradient Optimization, 115–66. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-3420-8_4.
Texto completo da fonteJoshi, Gauri. "Distributed Optimization in Machine Learning". In Synthesis Lectures on Learning, Networks, and Algorithms, 1–12. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-19067-4_1.
Texto completo da fonteLin, Zhouchen, Huan Li e Cong Fang. "ADMM for Distributed Optimization". In Alternating Direction Method of Multipliers for Machine Learning, 207–40. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-9840-8_6.
Texto completo da fonteJiang, Jiawei, Bin Cui e Ce Zhang. "Basics of Distributed Machine Learning". In Distributed Machine Learning and Gradient Optimization, 15–55. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-3420-8_2.
Texto completo da fonteScheidegger, Carre, Arpit Shah e Dan Simon. "Distributed Learning with Biogeography-Based Optimization". In Lecture Notes in Computer Science, 203–15. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-21827-9_21.
Texto completo da fonteGonzález-Mendoza, Miguel, Neil Hernández-Gress e André Titli. "Quadratic Optimization Fine Tuning for the Learning Phase of SVM". In Advanced Distributed Systems, 347–57. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11533962_31.
Texto completo da fonteWang, Huiwei, Huaqing Li e Bo Zhou. "Cooperative Distributed Optimization in Multiagent Networks with Delays". In Distributed Optimization, Game and Learning Algorithms, 1–17. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-4528-7_1.
Texto completo da fonteWang, Huiwei, Huaqing Li e Bo Zhou. "Constrained Consensus of Multi-agent Systems with Time-Varying Topology". In Distributed Optimization, Game and Learning Algorithms, 19–37. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-4528-7_2.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Distributed optimization and learning"
Patil, Aditya, Sanket Lodha, Sonal Deshmukh, Rupali S. Joshi, Vaishali Patil e Sudhir Chitnis. "Battery Optimization Using Machine Learning". In 2024 IEEE International Conference on Blockchain and Distributed Systems Security (ICBDS), 1–5. IEEE, 2024. https://doi.org/10.1109/icbds61829.2024.10837428.
Texto completo da fonteKhan, Malak Abid Ali, Luo Senlin, Hongbin Ma, Abdul Khalique Shaikh, Ahlam Almusharraf e Imran Khan Mirani. "Optimization of LoRa for Distributed Environments Based on Machine Learning". In 2024 IEEE Asia Pacific Conference on Wireless and Mobile (APWiMob), 137–42. IEEE, 2024. https://doi.org/10.1109/apwimob64015.2024.10792952.
Texto completo da fonteChao, Liangchen, Bo Zhang, Hengpeng Guo, Fangheng Ji e Junfeng Li. "UAV Swarm Collaborative Transmission Optimization for Machine Learning Tasks". In 2024 IEEE 30th International Conference on Parallel and Distributed Systems (ICPADS), 504–11. IEEE, 2024. http://dx.doi.org/10.1109/icpads63350.2024.00072.
Texto completo da fonteShamir, Ohad, e Nathan Srebro. "Distributed stochastic optimization and learning". In 2014 52nd Annual Allerton Conference on Communication, Control, and Computing (Allerton). IEEE, 2014. http://dx.doi.org/10.1109/allerton.2014.7028543.
Texto completo da fonteHulse, Daniel, Brandon Gigous, Kagan Tumer, Christopher Hoyle e Irem Y. Tumer. "Towards a Distributed Multiagent Learning-Based Design Optimization Method". In ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/detc2017-68042.
Texto completo da fonteLi, Naihao, Jiaqi Wang, Xu Liu, Lanfeng Wang e Long Zhang. "Contrastive Learning-based Meta-Learning Sequential Recommendation". In 2024 International Conference on Distributed Computing and Optimization Techniques (ICDCOT). IEEE, 2024. http://dx.doi.org/10.1109/icdcot61034.2024.10515699.
Texto completo da fonteVaidya, Nitin H. "Security and Privacy for Distributed Optimization & Distributed Machine Learning". In PODC '21: ACM Symposium on Principles of Distributed Computing. New York, NY, USA: ACM, 2021. http://dx.doi.org/10.1145/3465084.3467485.
Texto completo da fonteLiao, Leonardo, e Yongqiang Wu. "Distributed Polytope ARTMAP: A Vigilance-Free ART Network for Distributed Supervised Learning". In 2009 International Joint Conference on Computational Sciences and Optimization, CSO. IEEE, 2009. http://dx.doi.org/10.1109/cso.2009.63.
Texto completo da fonteWang, Shoujin, Fan Wang e Yu Zhang. "Learning Rate Decay Algorithm Based on Mutual Information in Deep Learning". In 2024 International Conference on Distributed Computing and Optimization Techniques (ICDCOT). IEEE, 2024. http://dx.doi.org/10.1109/icdcot61034.2024.10515368.
Texto completo da fonteAnand, Aditya, Lakshay Rastogi, Ansh Agarwaal e Shashank Bhardwaj. "Refraction-Learning Based Whale Optimization Algorithm with Opposition-Learning and Adaptive Parameter Optimization". In 2024 Third International Conference on Distributed Computing and Electrical Circuits and Electronics (ICDCECE). IEEE, 2024. http://dx.doi.org/10.1109/icdcece60827.2024.10548420.
Texto completo da fonteRelatórios de organizações sobre o assunto "Distributed optimization and learning"
Stuckey, Peter, e Toby Walsh. Learning within Optimization. Fort Belvoir, VA: Defense Technical Information Center, abril de 2013. http://dx.doi.org/10.21236/ada575367.
Texto completo da fonteNygard, Kendall E. Distributed Optimization in Aircraft Mission Scheduling. Fort Belvoir, VA: Defense Technical Information Center, maio de 1995. http://dx.doi.org/10.21236/ada300064.
Texto completo da fonteMeyer, Robert R. Large-Scale Optimization Via Distributed Systems. Fort Belvoir, VA: Defense Technical Information Center, novembro de 1989. http://dx.doi.org/10.21236/ada215136.
Texto completo da fonteShead, Timothy, Jonathan Berry, Cynthia Phillips e Jared Saia. Information-Theoretically Secure Distributed Machine Learning. Office of Scientific and Technical Information (OSTI), novembro de 2019. http://dx.doi.org/10.2172/1763277.
Texto completo da fonteGraesser, Arthur C., e Robert A. Wisher. Question Generation as a Learning Multiplier in Distributed Learning Environments. Fort Belvoir, VA: Defense Technical Information Center, outubro de 2001. http://dx.doi.org/10.21236/ada399456.
Texto completo da fonteVoon, B. K., e M. A. Austin. Structural Optimization in a Distributed Computing Environment. Fort Belvoir, VA: Defense Technical Information Center, janeiro de 1991. http://dx.doi.org/10.21236/ada454846.
Texto completo da fonteHays, Robert T. Theoretical Foundation for Advanced Distributed Learning Research. Fort Belvoir, VA: Defense Technical Information Center, maio de 2001. http://dx.doi.org/10.21236/ada385457.
Texto completo da fonteChen, J. S. J. Distributed-query optimization in fragmented data-base systems. Office of Scientific and Technical Information (OSTI), agosto de 1987. http://dx.doi.org/10.2172/7183881.
Texto completo da fonteNocedal, Jorge. Nonlinear Optimization Methods for Large-Scale Learning. Office of Scientific and Technical Information (OSTI), outubro de 2019. http://dx.doi.org/10.2172/1571768.
Texto completo da fonteLumsdaine, Andrew. Scalable Second Order Optimization for Machine Learning. Office of Scientific and Technical Information (OSTI), maio de 2022. http://dx.doi.org/10.2172/1984057.
Texto completo da fonte