Literatura científica selecionada sobre o tema "Distributed Acoustic Sensing (DAS)"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Distributed Acoustic Sensing (DAS)".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Artigos de revistas sobre o assunto "Distributed Acoustic Sensing (DAS)"

1

Chambers, Derrick, Peiyao Li, Harpreet Sethi e Jeffery Shragge. "Monitoring industrial acoustics with distributed acoustic sensing". Journal of the Acoustical Society of America 151, n.º 4 (abril de 2022): A58. http://dx.doi.org/10.1121/10.0010648.

Texto completo da fonte
Resumo:
True-phase distributed acoustic sensing (DAS), a technique which uses low-power laser pulses to monitor along-fiber strain in optical cable, has proven useful in many geophysical research areas, including down-hole monitoring in oil/gas extraction, near-surface characterization, detecting and locating regional and global earthquakes, urban monitoring. Most of the geophysical applications to date, however, have focused on recording elastic waves propagating through solid media. In this work, we explore the response of DAS for recording acoustic propagation in air, as a function of fiber type and configuration, over frequency bands useful for monitoring industrial environments. We also present methods of creating simple fiber-composite sensing units for improving sensitivity, and strategies for combining solid-earth and acoustic monitoring to create an effective seismoacoustic array with a single DAS interrogator.
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Shang, Ying, Maocheng Sun, Chen Wang, Jian Yang, Yuankai Du, Jichao Yi, Wenan Zhao, Yingying Wang, Yanjie Zhao e Jiasheng Ni. "Research Progress in Distributed Acoustic Sensing Techniques". Sensors 22, n.º 16 (13 de agosto de 2022): 6060. http://dx.doi.org/10.3390/s22166060.

Texto completo da fonte
Resumo:
Distributed acoustic sensing techniques based on Rayleigh scattering have been widely used in many applications due to their unique advantages, such as long-distance detection, high spatial resolution, and wide sensing bandwidth. In this paper, we provide a review of the recent advancements in distributed acoustic sensing techniques. The research progress and operation principles are systematically reviewed. The pivotal technologies and solutions applied to distributed acoustic sensing are introduced in terms of polarization fading, coherent fading, spatial resolution, frequency response, signal-to-noise ratio, and sensing distance. The applications of the distributed acoustic sensing are covered, including perimeter security, earthquake monitoring, energy exploration, underwater positioning, and railway monitoring. The potential developments of the distributed acoustic sensing techniques are also discussed.
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Abadi, Shima, William S. Wilcock e Brad P. Lipovsky. "Detecting hydro-acoustic signals using Distributed Acoustics Sensing technology". Journal of the Acoustical Society of America 152, n.º 4 (outubro de 2022): A201. http://dx.doi.org/10.1121/10.0016027.

Texto completo da fonte
Resumo:
Distributed Acoustic Sensing (DAS) is a relatively new technology that transforms fiber optic cables, typically used for telecommunications, into dense sensor arrays, capable of meter-scale recordings up to ∼100 km. The interest in these technologies for ocean exploration and monitoring has risen in recent years. These systems enable continuous and highly sensitive measurements of both temporal and spatial acoustic data. In this presentation, we use data recorded during a 4-day DAS experiment on the twin cables of the Ocean Observatories Initiative (OOI) Regional Cabled Array (RCA) extending off central Oregon. We demonstrate the capabilities of DAS in recording a wide range of acoustic signals including the 20-Hz call of fin whales, the 15-Hz calls and harmonics of the Northeast Pacific blue whale, and ship noises. We use beamforming and the time difference of arrival (TDOA) algorithm to find the bearing and the location of the signal of interest. We also explain the DAS array response and its sensitivity to paths arriving parallel or perpendicular to the cable and discuss the best practices to overcome the challenges in analyzing this large data set.
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Shen, Zhichao, Wenbo Wu e Ying-Tsong Lin. "High-resolution observations of shallow-water acoustic propagation with distributed acoustic sensing". Journal of the Acoustical Society of America 156, n.º 4 (1 de outubro de 2024): 2237–49. http://dx.doi.org/10.1121/10.0030400.

Texto completo da fonte
Resumo:
Distributed acoustic sensing (DAS), converting fiber-optic cables into dense acoustic sensors, is a promising technology that offers a cost-effective and scalable solution for long-term, high-resolution studies in ocean acoustics. In this paper, the telecommunication cable of Martha's Vineyard Coastal Observatory (MVCO) is used to explore the feasibility of cable localization and shallow-water sound propagation with a mobile acoustic source. The MVCO DAS array records coherent, high-quality acoustic signals in the frequency band of 105–160 Hz, and a two-step inversion method is used to improve the location accuracy of DAS channels, reducing the location uncertainty to ∼2 m. The DAS array with refined channel positions enables the high-resolution observation of acoustic modal interference. Numerical simulations that reproduce the observed interference pattern suggest a compressional speed of 1750 m/s in the sediment, which is consistent with previous in situ geoacoustic measurements. These findings demonstrate the long-term potential of DAS for high-resolution ocean acoustic studies.
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Ellmauthaler, Andreas, Brian C. Seabrook, Glenn A. Wilson, John Maida, Jeff Bush, Michel LeBlanc, James Dupree e Mauricio Uribe. "Distributed acoustic sensing of subsea wells". Leading Edge 39, n.º 11 (novembro de 2020): 801–7. http://dx.doi.org/10.1190/tle39110801.1.

Texto completo da fonte
Resumo:
Topside distributed acoustic sensing (DAS) of subsea wells requires advanced optical engineering solutions to compensate for reduced acoustic bandwidth, optical losses, and back reflections that are accumulated through umbilicals, multiple wet- and dry-mate optical connectors, splices, optical feedthrough systems, and downhole fibers. To address these issues, we introduce a novel DAS solution based on subsea fiber topology consisting of two transmission fibers from topside and an optical circulator deployed in the optical flying lead at the subsea tree. This solution limits the sensing fiber portion to the downhole fiber, located below the subsea tree, and enables dry-tree-equivalent acoustic sampling frequencies of more than 10 kHz while eliminating all back reflections from multiple subsea connectors above the tree. When combined with enhanced backscatter single-mode fiber, this gives rise to a DAS interrogation system that is capable of providing dry-tree-equivalent acoustic sensing performance over the entire length of the subsea well, regardless of the tie-back distance. It also enables the same spectral-based DAS processing algorithms developed for seismic, sand control, injector/producer profiling, and well integrity on dry-tree wells to be applied directly to subsea DAS data. The performance of this subsea DAS system has been validated through a series of laboratory and field trials. We show the results of the tests and discuss how the system is deployed within subsea infrastructure.
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Schmidt, Henrik. "Distributed acoustic sensing in shallow water". Journal of the Acoustical Society of America 120, n.º 5 (novembro de 2006): 3297. http://dx.doi.org/10.1121/1.4778019.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Rosalie, Cedric, Nik Rajic, Patrick Norman e Claire Davis. "Acoustic Source Localisation Using Distributed Sensing". Procedia Engineering 188 (2017): 499–507. http://dx.doi.org/10.1016/j.proeng.2017.04.514.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Schick, Yannik, Guilherme H. Weber, Marco Da Silva, Cicero Martelli e Mark W. Hlawitschka. "Flow monitoring in a bubble column reactor by Distributed Acoustic Sensing". tm - Technisches Messen 91, s1 (1 de agosto de 2024): 14–19. http://dx.doi.org/10.1515/teme-2024-0048.

Texto completo da fonte
Resumo:
Zusammenfassung Im Rahmen dieser Publikation berichten wir über den experimentellen Einsatz von Distributed Acoustic Sensing zur Überwachung eines Blasensäulenreaktors. Für diese Art von chemischen Reaktoren gibt es eine Vielzahl von grundlegenden Anwendungen, die eine detaillierte Überwachung der internen Strömungsdynamik erfordern. Im Zuge experimenteller Untersuchungen zeigt Distributed Acoustic Sensing die Fähigkeit, Messungen eines Hydrophons auf nicht-intrusiveWeise zu reproduzieren und mechanische Vibrationsmuster, die mit großen und kleinen Blasen verbunden sind, mit einer hohen räumlichen Auflösung zu erkennen. Die vielversprechenden Ergebnisse unterstreichen, dass Distributed Acoustic Sensing für die Echtzeitüberwachung von Blasensäulenreaktoren geeignet ist und räumlich aufgelöste Erkenntnisse über die Strömungseigenschaften liefert. Diese Studie ebnet denWeg für die weitere Erforschung der Anwendung von Distributed Acoustic Sensing in Blasensäulenreaktoren.
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Becker, Matthew, Thomas Coleman, Christopher Ciervo, Matthew Cole e Michael Mondanos. "Fluid pressure sensing with fiber-optic distributed acoustic sensing". Leading Edge 36, n.º 12 (dezembro de 2017): 1018–23. http://dx.doi.org/10.1190/tle36121018.1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Douglass, Alexander S., John Ragland e Shima Abadi. "Overview of distributed acoustic sensing technology and recently acquired data sets". Journal of the Acoustical Society of America 153, n.º 3_supplement (1 de março de 2023): A64. http://dx.doi.org/10.1121/10.0018174.

Texto completo da fonte
Resumo:
Fiber optic distributed acoustic sensing (DAS) is a recent innovation utilized primarily in the seismic community for measuring seismic acoustics signals at low frequencies (single digit Hz and below). The technique utilizes strain rates in a fiber optic cable, observed via the backscatter of light pulses, to measure the acoustic field. Recently, the capabilities of this technology to measure higher frequency acoustic fields (10s to 100s of Hz) have been explored. Low frequency marine mammals calls at ∼20 Hz and ship noises have been successfully recorded, and a recent experiment demonstrated the capability to record up to ∼500 Hz. This talk provides an overview of DAS technology and introduces two recent experiments for studying water column acoustics with DAS. A 4-day experiment conducted in November 2020 as part of the Ocean Observatories Initiative (OOI) provides data along two fiber optic cables extending west from the coast of Oregon by 65 km and 95 km, reaching depths of 590 m and 1575 m, respectively. DASCAL22, a recent experiment from October 2022, simultaneously recorded data using DAS at 2 kHz sampling rate on a cable extending 3.54km at ∼100 m depth and multiple moored hydrophones placed close to the DAS cable, allowing direct comparison between a new and existing technology.
Estilos ABNT, Harvard, Vancouver, APA, etc.
Mais fontes

Teses / dissertações sobre o assunto "Distributed Acoustic Sensing (DAS)"

1

Hu, Di. "Fully Distributed Multi-parameter Sensors Based on Acoustic Fiber Bragg Gratings". Diss., Virginia Tech, 2017. http://hdl.handle.net/10919/85112.

Texto completo da fonte
Resumo:
A fully distributed multi-parameter acoustic sensing technology is proposed. Current fully distributed sensing techniques are exclusively based on intrinsic scatterings in optical fibers. They demonstrate long sensing span, but their limited applicable parameters (temperature and strain) and costly interrogation systems have prevented their widespread applications. A novel concept of acoustic fiber Bragg grating (AFBG) is conceived with inspiration from optical fiber Bragg grating (FBG). This AFBG structure exploits periodic spatial perturbations on an elongated waveguide to sense variations in the spectrum of an acoustic wave. It achieves ten times higher sensitivity than the traditional time-of-flight measurement system using acoustic pulses. A fast interrogation method is developed to avoid frequency scan, reducing both the system response time (from 3min to <1ms) and total cost. Since acoustic wave propagates with low attenuation along varieties of solid materials (metal, silica, sapphire, etc.), AFBG can be fabricated on a number of waveguides and to sense multiple parameters. Sub-millimeter metal wire and optical fiber based AFBGs have been demonstrated experimentally for effective temperature (25~700 degC) and corrosion sensing. A hollow borosilicate tube is demonstrated for simultaneous temperature (25~200 degC) and pressure (15~75 psi) sensing using two types of acoustic modes. Furthermore, a continuous 0.6 m AFBG is employed for distributed temperature sensing up to 500 degC and to accurately locate the 0.18 m long heated section. Sensing parameters, sensitivity and range of an AFBG can be tuned to fit a specific application by selecting acoustic waveguides with different materials and/or geometries. Therefore, AFBG is a fully distributed sensing technology with tremendous potentiality.
Ph. D.
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

dos, Santos Maia Correa Julia. "Distributed Acoustic Sensing for Seismic Imaging and Reservoir Monitoring Applied to CO2 Geosequestration". Thesis, Curtin University, 2018. http://hdl.handle.net/20.500.11937/75668.

Texto completo da fonte
Resumo:
The thesis is focused on the evaluation of distributed acoustic sensing (DAS) technique applied to seismic imaging and monitoring of CO2 geosequestration. It utilises the data acquired at the CO2CRC Otway site (Victoria) and the National Geosequestration Laboratory (Western Australia) to explore capabilities of the sensing technique, optimise data acquisition and processing, and compare it to other seismic sensors. Surface and downhole acquisition geometries and a range of fibre optic cables and deployment techniques were considered.
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Marcon, Leonardo. "Development of high performance distributed acoustic sensors based on Rayleigh backscattering". Doctoral thesis, Università degli studi di Padova, 2019. http://hdl.handle.net/11577/3423194.

Texto completo da fonte
Resumo:
Distributed optical fiber sensing is a thriving research field that is finding practical applications in a variety of different fields including processes at extreme temperatures, security and civil engineering. The monitoring of dynamic perturbations, usually defined in the literature as distributed acoustic sensing (DAS), can be realized with excellent performance exploiting Rayleigh backscattering both in time and frequency domain. Devices implementing Rayleigh-based DAS are already commercially available. In this thesis the results of my three-year research are presented, reporting the development of high performance distributed acoustic sensors based on Rayleigh backscattering, and their applications. The research has focused on improving the spatial resolution of the chirped-pulse phase-sensitive optical time-domain reflectometer and on developing a novel algorithm to realize real distributed acoustic sensing with high spatial resolution and high acoustic bandwidth for the optical frequency-domain reflectometer (OFDR). Finally the early results of a measurement campaign performed in collaboration with the European Organization for Nuclear Research (CERN), where distributed optical fiber sensors were used to monitor superconducting lines and magnets, are presented and discussed.
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Ciervo, Christopher M. "Establishing Hydraulic Connectivity in Bedrock by Measuring the Hydromechanical Response of Fractures with Distributed Acoustic Sensing (DAS)". Thesis, California State University, Long Beach, 2018. http://pqdtopen.proquest.com/#viewpdf?dispub=10840951.

Texto completo da fonte
Resumo:

Fiber optic Distributed Acoustic Sensing (DAS) is based on the principles of Coherent Rayleigh Optical Time Domain Reflectometry, where light pulses are fired through an optical fiber, and photon backscatter is measured with an optical sensor. Strain in the fiber causes changes in the amplitude and phase of backscattered light. Using light’s two-way travel time, the optical sensor measures strain at distributed points along the length of fiber. In this work, DAS was adapted to establish hydraulic connectivity in bedrock by measuring hydromechanical strain in an observation well, as periodic well tests were conducted at mHz frequencies at an interrogation well ~30 m away. A lognormal relationship with a strong degree of interdependence was found between measured displacements and pressure amplitudes. This behavior is consistent with the semi-logarithmic closure law of fractured rock. The nanometer scale displacements reported here, however, suggest closure occurring as in-contact asperities deform, rather than opposing fracture surfaces coming into contact.

Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Wild, Graham. "Distributed optical fibre smart sensors for acoustic sensing in the structural health monitoring of robust aerospace vehicles". Thesis, Edith Cowan University, Research Online, Perth, Western Australia, 2010. https://ro.ecu.edu.au/theses/1873.

Texto completo da fonte
Resumo:
The use of distributed optical fibre smart sensors for the detection of acoustic signals in the Structural Health Monitoring (SHM) of robust aerospace vehicles has been demonstrated. Current distributed optical fibre sensors are multiplexed along a single fibre. Inherent problems exist with a multiplexed architecture. Two significant issues are; the possibility of fibre breakage, and the possibility of failure of the single transmitter, the single receiver, or the single processor. In a ‘smart’ architecture, the intelligence, as well as the sensors, is distributed. Hence, if destructive damage occurs, then the SHM system can continue to operate in all other locations on the vehicle, making the system robust. Work on the optical fibre sensors was limited to acoustic signals. This included acoustic emissions, acousto-ultrasonics, acoustic transmissions and other dynamic strain signals. Fibre Bragg Gratings (FBGs) were chosen as the optical fibre sensor for the detection of the acoustic signals. FBGs offer significant advantages over other types of optical fibre sensors. The most significant of these is the ease of multiplexing and their versatility, i.e. the ability of FBGs to detect a significant number of measurands. In the work on optical fibre sensing, we showed the implementation of an innovative detection system. This Transmit Reflect Detection System (TRDS) made use of both the transmitted and reflected signals from the FBG. The TRDS is an improvement on conventional power detection where either the transmitted or reflected component is used. The TRDS was used to successfully detect all types of dynamic and static signals, the most significant being the acoustic emission from a lead pencil break test. The use of the FBG sensor as a receiver for acoustic communications was also shown. Acoustic communications have been proposed for use in the SHM of robust aerospace vehicles with the use of autonomous agents, e.g. inspection or repair robots. The FBG receivers were compared with PZT receivers. When communicating through aluminium, the FBG performance was not as good as the PZT receiver, specifically due to the properties of the FBG which limit the frequency response. However, in Carbon Fibre Composites (CFC), the FBG outperformed the PZT due to the properties of the CFC. We also note that when contained within the thermal packaging the FBG had a very interesting frequency response, likely due to the suspended beam nature of the structure. This type of packaging could be used to tune the response of the FBG sensor. The work on the distributed optical fibre smart sensors showed the implementation of a Smart Transducer Interface Module (STIM), which used the TRDS with a Digital Signal Processor (DSP). The output of the TRDS was differentially amplified with a high speed amplifier, and the output was passed to the ADC onboard the DSP. The DSP was also used to toggle on and off output, including closed loop actuation, and controlling a 1550nm laser, which would represent the source used in the implemented system. The use of STIM to form a distributed optical fibre sensor network was also shown in principle.
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Wang, Yunjing. "Fiber-Optic Sensors for Fully-Distributed Physical, Chemical and Biological Measurement". Diss., Virginia Tech, 2013. http://hdl.handle.net/10919/19222.

Texto completo da fonte
Resumo:
Distributed sensing is highly desirable in a wide range of civil, industrial and military applications. The current technologies for distributed sensing are mainly based on the detection of optical signals resulted from different elastic or non-elastic light-matter interactions including Rayleigh, Raman and Brillouin scattering. However, they can measure temperature or strain only to date. Therefore, there is a need for technologies that can further expand measurement parameters even to chemical and biological stimuli to fulfill different application needs.
This dissertation presents a fully-distributed fiber-optic sensing technique based on a traveling long-period grating (T-LPG) in a single-mode fiber. The T-LPG is generated by pulsed acoustic waves that propagate along the fiber. When there are changes in the fiber surrounding medium or in the fiber surface coating, induced by various physical, chemical or biological stimuli, the optical transmission spectrum of the T-LPG may shift. Therefore, by measuring the T-LPG resonance wavelength at different locations along the fiber, distributed measurement can be realized for a number of parameters beyond temperature and strain.
Based on this platform, fully-distributed temperature measurement in a 2.5m fiber was demonstrated. Then by coating the fiber with functional coatings, fully-distributed biological and chemical sensing was also demonstrated. In the biological sensing experiment, immunoglobulin G (IgG) was immobilized onto the fiber surface, and the experimental results show that only specific antigen-antibody binding can introduce a measurable shift in the transmission optical spectrum of the T-LPG when it passes through the pretreated fiber segment. In the hydrogen sensing experiment, the fiber was coated with a platinum (Pt) catalyst layer, which is heated by the thermal energy released from Pt-assisted combustion of H2 and O2, and the resulted temperature change gives rise to a measurable T-LPG wavelength shift when the T-LPG passes through. Hydrogen concentration from 1% to 3.8% was detected in the experiment. This technique may also permit measurement of other quantities by changing the functional coating on the fiber; therefore it is expected to be capable of other fully-distributed sensing applications.  

Ph. D.
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Schilke, Sven. "Importance du couplage des capteurs distribués à fibre optique dans le cadre des VSP". Thesis, Paris Sciences et Lettres (ComUE), 2017. http://www.theses.fr/2017PSLEM042/document.

Texto completo da fonte
Resumo:
Les capteurs distribués à fibre optique (aussi nommés DAS) sont une nouvelle technologie d'acquisition sismique qui utilise des câbles traditionnels à fibre optique pour fournir une mesure de la déformation le long du câble. Ce système d'acquisition est largement utilisé dans les profils sismiques verticaux (PSV). Le couplage est un facteur clé qui a une grande influence sur la qualité des données. Alors que, pour les acquisitions PSV, les géophones sont attachés à la paroi du puits, le câble de fibre optique est soit cimenté derrière le tubage, soit attaché avec des pinces rigides au tubage ou simplement descendu dans le puits. Cette dernière stratégie de déploiement donne généralement le plus petit rapport signal sur bruit, mais est considérée comme la plus rentable en particulier pour les installations dans des puits existants. Cette thèse porte sur la problématique du couplage du DAS quand le câble est simplement descendu dans le puits. Nous développons des modèles numériques pour analyser les données réelles. L'interprétation de ces résultats nous permet de conclure qu'un contact immédiat du câble avec la paroi du puits avec une force de contact calculée est nécessaire pour fournir des bonnes conditions de couplage. Sur la base de ces résultats, nous proposons des solutions pour optimiser davantage les acquisitions avec le système DAS. Nous modifions numériquement la force de contact et les propriétés élastiques du câble DAS et démontrons comment ces modifications peuvent améliorer mais aussi détériorer la qualité des données. Enfin, nous proposons un algorithme de détection du couplage qui permet d'assurer l'acquisition de données réelles avec un rapport signal / bruit élevé
Distributed Acoustic Sensing (DAS) is a new technology of seismic acquisition that relies on traditional fibre-optic cables to provide inline strain measurement. This acquisition system is largely used in vertical seismic profiling (VSP) surveys. Coupling is a key factor influencing data quality. While geophones and accelerometers are clamped to the borehole wall during VSP surveys, the fibre cable is either clamped and then cemented behind the casing, or attached with rigid clamps to the tubing, or loosely lowered into the borehole. The latter deployment strategy, also called wireline deployment, usually acquires the lowest level of signal but is regarded as the most cost-effective in particular for existing well installations. This PhD thesis addresses the problematic of coupling of DAS using wireline deployment. We develop numerical models that are used to analyse real data. The interpretation of these results allows us concluding that an immediate contact of the cable with the borehole wall with a computed contact force is required to provide good coupling conditions. Based on those findings, we propose solutions to further optimise DAS acquisitions. We numerically modify the contact force and the elastic properties of the DAS cable and show how these modifications can improve but also deteriorate data quality. Finally, we propose a coupling detection algorithm that is applied to real datasets and allows ensuring the acquisition of data with a high signal-to-noise ratio
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Huynh, Camille. "Real-time seismic monitoring using DAS fiber-optic instrumentation and machine learning : towards autonomous classification of natural and anthropogenic events". Electronic Thesis or Diss., Strasbourg, 2025. http://www.theses.fr/2025STRAH001.

Texto completo da fonte
Resumo:
Ces dernières années, une nouvelle technologie basée sur l'utilisation de fibres optiques est apparue pour surveiller les événements acoustiques naturels ou anthropogéniques : la détection acoustique distribuée (Distributed Acoustic Sensing - DAS). Cette technologie innovante permet de mesurer les vibrations sismiques à très haute résolution spatiale sur des distances allant de quelques dizaines de mètres à plusieurs centaines de kilomètres. Bien que ces données soient plus volumineuses et plus complexes à traiter que celles des sismomètres traditionnels, elles offrent des perspectives prometteuses, notamment pour l'analyse des champs d'ondes générés par les tremblements de terre, la détection des glissements de terrain, la surveillance de divers événements anthropogéniques (tels que les déplacements de piétons, les mouvements de véhicules, ou les signaux sismiques provenant des activités humaines), les événements de faible amplitude ou très localisés, et la localisation précise de l'origine de ces événements sismiques. L'objectif de cette thèse est de développer et de tester des chaînes d'analyse de données automatisées en utilisant des approches basées sur l'IA pour détecter, classer et analyser les données DAS à fibre optique en temps quasi réel. L'objectif est axé sur la surveillance locale et régionale de zones spécifiques afin de permettre la détection et l'identification en temps réel d'événements naturels tels que les tremblements de terre et les glissements de terrain
In recent years, alongside traditional seismometer-based approaches, a new technology based on the use of optical fibers has emerged for monitoring natural or anthropogenic acoustic events: Distributed Acoustic Sensing (DAS). This innovative technology enables the measurement of seismic vibrations at very high spatial resolution over distances ranging from tens of meters to several hundred kilometers. Although these data are larger and more complex to process than those from traditional seismometers, they offer promising perspectives, particularly for analyzing the wavefields generated by earthquakes, detecting landslides, monitoring various anthropogenic events (such as pedestrian movements, vehicle movements, or seismic signals from human activities), low-amplitude or highly localized events, and precisely locating the origin of these seismic events. The goal of this thesis is to develop and test automated data analysis chains using AI-based approaches to detect, classify and analyze near-real-time fiber-optics DAS data. The objective is focused on local and regional monitoring of specific areas to enable the real-time detection and identification of natural events such as earthquakes and landslides
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Schilke, Sven. "Importance du couplage des capteurs distribués à fibre optique dans le cadre des VSP". Electronic Thesis or Diss., Paris Sciences et Lettres (ComUE), 2017. http://www.theses.fr/2017PSLEM042.

Texto completo da fonte
Resumo:
Les capteurs distribués à fibre optique (aussi nommés DAS) sont une nouvelle technologie d'acquisition sismique qui utilise des câbles traditionnels à fibre optique pour fournir une mesure de la déformation le long du câble. Ce système d'acquisition est largement utilisé dans les profils sismiques verticaux (PSV). Le couplage est un facteur clé qui a une grande influence sur la qualité des données. Alors que, pour les acquisitions PSV, les géophones sont attachés à la paroi du puits, le câble de fibre optique est soit cimenté derrière le tubage, soit attaché avec des pinces rigides au tubage ou simplement descendu dans le puits. Cette dernière stratégie de déploiement donne généralement le plus petit rapport signal sur bruit, mais est considérée comme la plus rentable en particulier pour les installations dans des puits existants. Cette thèse porte sur la problématique du couplage du DAS quand le câble est simplement descendu dans le puits. Nous développons des modèles numériques pour analyser les données réelles. L'interprétation de ces résultats nous permet de conclure qu'un contact immédiat du câble avec la paroi du puits avec une force de contact calculée est nécessaire pour fournir des bonnes conditions de couplage. Sur la base de ces résultats, nous proposons des solutions pour optimiser davantage les acquisitions avec le système DAS. Nous modifions numériquement la force de contact et les propriétés élastiques du câble DAS et démontrons comment ces modifications peuvent améliorer mais aussi détériorer la qualité des données. Enfin, nous proposons un algorithme de détection du couplage qui permet d'assurer l'acquisition de données réelles avec un rapport signal / bruit élevé
Distributed Acoustic Sensing (DAS) is a new technology of seismic acquisition that relies on traditional fibre-optic cables to provide inline strain measurement. This acquisition system is largely used in vertical seismic profiling (VSP) surveys. Coupling is a key factor influencing data quality. While geophones and accelerometers are clamped to the borehole wall during VSP surveys, the fibre cable is either clamped and then cemented behind the casing, or attached with rigid clamps to the tubing, or loosely lowered into the borehole. The latter deployment strategy, also called wireline deployment, usually acquires the lowest level of signal but is regarded as the most cost-effective in particular for existing well installations. This PhD thesis addresses the problematic of coupling of DAS using wireline deployment. We develop numerical models that are used to analyse real data. The interpretation of these results allows us concluding that an immediate contact of the cable with the borehole wall with a computed contact force is required to provide good coupling conditions. Based on those findings, we propose solutions to further optimise DAS acquisitions. We numerically modify the contact force and the elastic properties of the DAS cable and show how these modifications can improve but also deteriorate data quality. Finally, we propose a coupling detection algorithm that is applied to real datasets and allows ensuring the acquisition of data with a high signal-to-noise ratio
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Becerril, Carlos Ernesto. "Développement de la mesure acoustique distribuée (DAS) à basse fréquence pour la détection des tsunamis". Electronic Thesis or Diss., Université Côte d'Azur, 2024. http://www.theses.fr/2024COAZ5078.

Texto completo da fonte
Resumo:
À ce jour, aucun système efficace d'alerte rapide aux tsunamis (TEWS pour ses initiales en anglais) n'a encore été mis en place à l'échelle mondiale. Cette situation reflète un défi proverbial dans le domaine des géosciences : Instrumenter les fonds marins du monde entier et mener des observations à long terme avec une couverture spatiale et temporelle suffisante. Un paradigme sous la forme d'une nouvelle technologie photonique a été proposé pour une surveillance véritablement multi-échelle, tout en maintenant des coûts relativement bas. La détection acoustique distribuée (DAS) utilise les fibres optiques elles-mêmes pour mesurer la distribution spatiale des propriétés environnementales en chaque point de la fibre optique. En exploitant les plus d'un million de kilomètres de fibres optiques posées sur les continents et les océans, la communauté scientifique disposerait d'un réseau mondial permanent de surveillance composé de capteurs à composante unique, très sensibles et densément espacés, capables de fournir des données en temps réel et en continu. Bien qu'il ait été démontré que le DAS est capable d'enregistrer des phénomènes océanographiques de longue période tels que les marées et les ondes de gravité, et que des observations empiriques de sensibilité aux variations de pression du fond marin aient été rapportées, le mécanisme de détection de la pression dans le DAS reste à décrire quantitativement. Dans ce contexte, cette thèse vise à fournir une preuve de concept d'une architecture DAS spécifique (détection sensible à la phase utilisant des impulsions laser chirpées) adaptée aux applications TEWS. Pour atteindre cet objectif, ce travail a évalué la sensibilité requise et examine les performances de l'instrument DAS pour s'assurer de la détection des vagues de tsunami. Un modèle dérivé des déformations (strain) du fond marin potentiellement induites par les vagues de tsunami est présenté et montre que la compliance du sol marin et l'effet de Poisson sur le câble sont les principaux mécanismes par lesquels le DAS est censé enregistrer le passage des vagues de tsunami. L'analyse du modèle dérivé est étayée par des simulations physiques tridimensionnelles entièrement couplées de la rupture sismique, des ondes sismo-acoustiques et de la propagation des ondes de tsunami. En outre, comme pour la plupart des instruments, la sensibilité aux basses fréquences est principalement entravée par le bruit de 1/f de l'instrument. Ce travail identifie plusieurs améliorations dans le matériel opto-électronique afin de réduire le bruit de l'instrument et d'augmenter la sensibilité aux signaux à basse fréquence pertinents pour les signaux de tsunami, en particulier dans le régime de 1 à 10 mHz. L'analyse théorique et les simulations numériques présentées dans ce travail montrent qu'il est réellement possible de détecter les vagues de tsunami à l'aide de câbles à fibres optiques
To date, an effective Tsunami Early-Warning System (TEWS) at a global scale is not yet in place. This reflects a proverbial challenge in geosciences: To instrument the world's ocean floors and conduct long-term observations with sufficient spatial and temporal coverage. A paradigm in the form of a novel photonic technology has been proposed for truly multi-scale monitoring, whilst keeping costs relatively low. Distributed Acoustic Sensing (DAS) uses optical fibers themselves to measure the spatial distribution of environmental properties along every point of the optic fiber. By leveraging the more than one million kilometers of optical fiber laid across the continents and oceans, the scientific community stands to gain permanent, global monitoring network of densely-spaced, highly sensitive single-component sensors, capable of providing continuous real-time data. Although it's been shown that DAS is capable of recording long-period oceanographic phenomena such as tides and gravity waves waves, and empirical observations of sensitivity to seafloor pressure variations; the pressure detection mechanism in DAS remains to be quantitatively described.Within this context, this thesis aims to provide a proof-of-concept of a specific DAS architecture (phase-sensitive detection employing chirped laser pulses) suitable for TEWS applications. Towards this objective, this work assessed the sensitivity required, and considers DAS instrument performance to ascertain detection of tsunami waves. A derived model of the expected seafloor strains potentially induced by tsunami waves is presented and finds seafloor compliance and the Poisson effect on the cable as the primary mechanisms through which DAS is anticipated to record the passage of tsunami waves. The analysis of the derived model is supported by fully coupled 3-D physics-based simulations of earthquake rupture, seismo-acoustic waves and tsunami wave propagation. Furthermore, as most instrumentation, the sensitivity at low frequencies is primarily hindered by 1/f instrument noise. This work identifies several enhancements in the opto-electronic hardware towards reducing instrument noise, and increase of sensitivity to low-frequency signals relevant to tsunami signals, specifically in the 1-10 mHz regime. The theoretical analysis and numerical simulations presented in this work point to the real possibility of detecting tsunami waves using fiber optic cables
Estilos ABNT, Harvard, Vancouver, APA, etc.
Mais fontes

Livros sobre o assunto "Distributed Acoustic Sensing (DAS)"

1

Singal, S. P., ed. Acoustic Remote Sensing Applications. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/bfb0009557.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Bradley, Stuart. Atmospheric acoustic remote sensing. Boca Raton: CRC Press, 2008.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

P, Singal S., ed. Acoustic remote sensing applications. Berlin: Springer-Verlag, 1997.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Elhoseny, Mohamed, Xiaohui Yuan e Salah-ddine Krit, eds. Distributed Sensing and Intelligent Systems. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-64258-7.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Coluccia, Giulio, Chiara Ravazzi e Enrico Magli. Compressed Sensing for Distributed Systems. Singapore: Springer Singapore, 2015. http://dx.doi.org/10.1007/978-981-287-390-3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Mazzeo, Pier Luigi, Paolo Spagnolo e Thomas B. Moeslund, eds. Activity Monitoring by Multiple Distributed Sensing. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-13323-2.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

1947-, Dakin John, ed. The Distributed fibre optic sensing handbook. Kempston, Bedford, UK: IFS Publications, 1990.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Gao, Fei. Multi-wave Electromagnetic-Acoustic Sensing and Imaging. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-3716-0.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Sniatala, Pawel, M. Hadi Amini e Kianoosh G. Boroojeni. Fundamentals of Brooks–Iyengar Distributed Sensing Algorithm. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-33132-0.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

United States. National Aeronautics and Space Administration. Scientific and Technical Information Program., ed. Distributed acoustic receptivity in laminar flow control configurations. [Washington, DC]: National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Program, 1992.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Mais fontes

Capítulos de livros sobre o assunto "Distributed Acoustic Sensing (DAS)"

1

Li, Zhiheng. "Exploiting CNN-BiLSTM Model for Distributed Acoustic Sensing Event Recognition". In Advances in Intelligent Systems Research, 333–41. Dordrecht: Atlantis Press International BV, 2024. http://dx.doi.org/10.2991/978-94-6463-512-6_36.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Kosuke, Nakashima, Fujioka Kazuyori, Ueno Shinya, Yamazaki Mitsuru, Yashima Atsushi, Murata Yoshinobu e Sawada Kazuhide. "Structural Health Monitoring of Expressway Embankment Using Distributed Acoustic Sensing (DAS)". In Environmental Science and Engineering, 161–71. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-99-9203-4_11.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Ma, G., W. Qin, C. Shi, H. Zhou, Y. Li e C. Li. "Electrical Discharge Localization for Gas Insulated Line Based on Distributed Acoustic Sensing". In Lecture Notes in Electrical Engineering, 606–14. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-31676-1_57.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Shahabudin, Mohd Safuwan Bin, Nor Farisha Binti Muhamad Krishnan e Farahida Hanim Binti Mausor. "Spiking Neural Network for Microseismic Events Detection Using Distributed Acoustic Sensing Data". In Lecture Notes in Networks and Systems, 317–26. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-66965-1_31.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Chandran, Satishvaran Ragu, Hisham Mohamad, Muhammad Yusoff Mohd Nasir, Muhammad Farid Ghazali, Muhammad Aizzuddin Abdullah e Vorathin Epin. "A Comparative Study of Seismic Characteristics Between Distributed Acoustic Sensing (DAS) and Geophones". In Advances in Civil Engineering Materials, 771–83. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-0751-5_66.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Jensen, Andrew L., William A. Redford, Nimran P. Shergill, Luke B. Beardslee e Carly M. Donahue. "Identification of Bird Species in Large Multi-channel Data Streams Using Distributed Acoustic Sensing". In Conference Proceedings of the Society for Experimental Mechanics Series, 97–107. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-68142-4_13.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Zhang, Cheng-Cheng, e Bin Shi. "Evaluating Dark Fiber Distributed Acoustic and Strain Sensing for Shallow Ground Movement Monitoring: A Field Trial". In Environmental Science and Engineering, 665–73. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-99-9061-0_47.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Vantassel, Joseph P., Brady R. Cox, Peter G. Hubbard, Michael Yust, Farnyuh Menq, Kyle Spikes e Dante Fratta. "Effectiveness of Distributed Acoustic Sensing for Acquiring Surface Wave Dispersion Data Using Multichannel Analysis of Surface Waves". In Proceedings of the 4th International Conference on Performance Based Design in Earthquake Geotechnical Engineering (Beijing 2022), 1000–1008. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-11898-2_77.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Aimar, Mauro, Brady R. Cox e Sebastiano Foti. "Surface Wave Testing with Distributed Acoustic Sensing Measurements to Estimate the Shear-Wave Velocity and the Small-Strain Damping Ratio". In Springer Series in Geomechanics and Geoengineering, 145–52. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-34761-0_18.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Wang, Zheng, Tao Xie, Cheng-Cheng Zhang e Bin Shi. "Assessing the Impact of Borehole Coupling Materials on Shallow Downhole Fiber-Optic Distributed Acoustic Sensing (FO-DAS) Using Laboratory Simulations". In Environmental Science and Engineering, 51–60. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-99-9069-6_4.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.

Trabalhos de conferências sobre o assunto "Distributed Acoustic Sensing (DAS)"

1

Badillo, Diego, e Marcelo A. Soto. "Acoustic Source Localisation Based on Distributed Acoustic Sensing and Sequential Least Squares Programming". In Optical Sensors, SF4C.4. Washington, D.C.: Optica Publishing Group, 2024. https://doi.org/10.1364/sensors.2024.sf4c.4.

Texto completo da fonte
Resumo:
A method based on beamforming and sequential least squares programming is proposed for acoustic source localisation using fibre-optic distributed acoustic sensors. The method is experimentally validated and compared with another state-of-the-art approach.
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Lu, Ping. "High Performance Distributed Acoustic Sensing Enabled by Continuously Enhanced Backscattering Fiber". In Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides, BW2A.1. Washington, D.C.: Optica Publishing Group, 2024. https://doi.org/10.1364/bgpp.2024.bw2a.1.

Texto completo da fonte
Resumo:
We developed a grating-based specialty single-mode fiber that is compatible with most distributed acoustic/vibrational sensing interrogators. Laboratory and field-based testing results with improved sensing performance including SNR and position accuracy will be discussed. Full-text article not available; see video presentation
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Ning, Ivan Lim Chen, e Paul Sava. "Multicomponent distributed acoustic sensing". In SEG Technical Program Expanded Abstracts 2016. Society of Exploration Geophysicists, 2016. http://dx.doi.org/10.1190/segam2016-13952981.1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Crickmore, R. I., C. Minto, A. Godfrey e R. Ellwood. "Quantitative Underwater Acoustic Measurements Using Distributed Acoustic Sensing". In Optical Fiber Sensors. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/ofs.2022.w4.15.

Texto completo da fonte
Resumo:
Detection of surface and underwater targets was carried out using distributed acoustic sensing on the seabed fibre optic cables at a depth of ~180m. The cable’s pressure responsivity was measured and beamforming was demonstrated
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Parker, Tom R., Arran Gillies, Sergey V. Shatalin e Mahmoud Farhadiroushan. "The intelligent distributed acoustic sensing". In OFS2014 23rd International Conference on Optical Fiber Sensors, editado por José M. López-Higuera, Julian D. C. Jones, Manuel López-Amo e José L. Santos. SPIE, 2014. http://dx.doi.org/10.1117/12.2064889.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Kirkendall, Clay. "Distributed Acoustic and Seismic Sensing". In OFC/NFOEC 2007 - 2007 Conference on Optical Fiber Communication and the National Fiber Optic Engineers Conference. IEEE, 2007. http://dx.doi.org/10.1109/ofc.2007.4348619.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Gonzalez-Herraez, Miguel, Maria R. Fernandez-Ruiz, Regina Magalhaes, Luis Costa, Hugo F. Martins, Carlos Becerril, Sonia Martin-Lopez et al. "Distributed Acoustic Sensing in Seismology". In Optical Fiber Sensors. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/ofs.2022.th2.1.

Texto completo da fonte
Resumo:
We review the use of Distributed Acoustic Sensing for the characterization of tele-seismic and micro-seismic activity. We show that this tool may offer impressive new capabilities in the field of seismology, particularly in underwater scenarios.
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Gonzalez-Herraez, Miguel, Maria R. Fernandez-Ruiz, Regina Magalhaes, Luis Costa, Hugo F. Martins, Andrés Garcia-Ruiz, Sonia Martin-Lopez, Ethan Williams, Zhongwen Zhan e Roel Vantilho. "Distributed acoustic sensing in seismology". In Optical Fiber Sensors. Washington, D.C.: OSA, 2021. http://dx.doi.org/10.1364/ofs.2020.th2.1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Jin, Zhicheng, Jiageng Chen, Yanming Chang, Qingwen Liu e Zuyuan He. "Silicon Photonic Distributed Acoustic Sensing Interrogator". In Optical Fiber Sensors. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/ofs.2023.th5.5.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Clarke, A., D. Miller, T. Parker e J. Greer. "Advanced Applications of Distributed Acoustic Sensing". In EAGE/DGG Workshop 2017. Netherlands: EAGE Publications BV, 2017. http://dx.doi.org/10.3997/2214-4609.201700151.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.

Relatórios de organizações sobre o assunto "Distributed Acoustic Sensing (DAS)"

1

Baker, Michael, Robert Abbott e William O'Rourke. The Cryosphere/Ocean Distributed Acoustic Sensing (CODAS) Experiment. Office of Scientific and Technical Information (OSTI), setembro de 2023. http://dx.doi.org/10.2172/2430275.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Quinn, Meghan. Geotechnical effects on fiber optic distributed acoustic sensing performance. Engineer Research and Development Center (U.S.), julho de 2021. http://dx.doi.org/10.21079/11681/41325.

Texto completo da fonte
Resumo:
Distributed Acoustic Sensing (DAS) is a fiber optic sensing system that is used for vibration monitoring. At a minimum, DAS is composed of a fiber optic cable and an optic analyzer called an interrogator. The oil and gas industry has used DAS for over a decade to monitor infrastructure such as pipelines for leaks, and in recent years changes in DAS performance over time have been observed for DAS arrays that are buried in the ground. This dissertation investigates the effect that soil type, soil temperature, soil moisture, time in-situ, and vehicle loading have on DAS performance for fiber optic cables buried in soil. This was accomplished through a field testing program involving two newly installed DAS arrays. For the first installation, a new portion of DAS array was added to an existing DAS array installed a decade prior. The new portion of the DAS array was installed in four different soil types: native fill, sand, gravel, and an excavatable flowable fill. Soil moisture and temperature sensors were buried adjacent to the fiber optic cable to monitor seasonal environmental changes over time. Periodic impact testing was performed at set locations along the DAS array for over one year. A second, temporary DAS array was installed to test the effect of vehicle loading on DAS performance. Signal to Noise Ratio (SNR) of the DAS response was used for all the tests to evaluate the system performance. The results of the impact testing program indicated that the portions of the array in gravel performed more consistently over time. Changes in soil moisture or soil temperature did not appear to affect DAS performance. The results also indicated that time DAS performance does change somewhat over time. Performance variance increased in new portions of array in all material types through time. The SNR in portions of the DAS array in native silty sand material dropped slightly, while the SNR in portions of the array in sand fill and flowable fill material decreased significantly over time. This significant change in performance occurred while testing halted from March 2020 to August 2020 due to the Covid-19 pandemic. These significant changes in performance were observed in the new portion of test bed, while the performance of the prior installation remained consistent. It may be that, after some time in-situ, SNR in a DAS array will reach a steady state. Though it is unfortunate that testing was on pause while changes in DAS performance developed, the observed changes emphasize the potential of DAS to be used for infrastructure change-detection monitoring. In the temporary test bed, increasing vehicle loads were observed to increase DAS performance, although there was considerable variability in the measured SNR. The significant variation in DAS response is likely due to various industrial activities on-site and some disturbance to the array while on-boarding and off-boarding vehicles. The results of this experiment indicated that the presence of load on less than 10% of an array channel length may improve DAS performance. Overall, this dissertation provides guidance that can help inform the civil engineering community with respect to installation design recommendations related to DAS used for infrastructure monitoring.
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Viens, Loic. Distributed Acoustic Sensing as a Monitoring Tool at LANL. Office of Scientific and Technical Information (OSTI), outubro de 2023. http://dx.doi.org/10.2172/2203386.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Siebenaler, Shane. PR-015-163766-R01 Field Testing of Distributed Acoustic Sensing Systems. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), julho de 2018. http://dx.doi.org/10.55274/r0011503.

Texto completo da fonte
Resumo:
Distributed acoustic sensing (DAS) technology utilizes a fiber-optic cable as a distributed vibration sensor that can be installed in a right-of-way to monitor for pipeline leaks and to identify third-party interference (TPI), such as mechanized excavation, hand digging, etc. Various laboratory tests have been performed to demonstrate that DAS has the potential to be a flexible solution for pipeline operators. A key gap that needs to be assessed is the ability of the technology to serve its intended leak detection and TPI functions while not generating alarms at any other times. The most comprehensive means of performing such an evaluation is through an actual field demonstration of DAS technology on an operational pipeline. This report documents a ten-week-long test of four commercially available DAS technologies on an operational pipeline. The pipeline segment is 25-kilometers in length, and the systems were configured to autonomously alarm to leaks and mechanical digging. This research demonstrates the real-world performance of such systems and provides qualitative information in regards to the operational requirements for sustained deployment of DAS technology. This document has a related webinar. (member login required)
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Becker, Matthew. Phase I Project: Fiber Optic Distributed Acoustic Sensing for Periodic Hydraulic Tests. Office of Scientific and Technical Information (OSTI), dezembro de 2017. http://dx.doi.org/10.2172/1430694.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Porritt, Robert, Robert Abbott e Christian Poppeliers. Quantitative assessment of Distributed Acoustic Sensing at the Source Physics Experiment, Phase II. Office of Scientific and Technical Information (OSTI), novembro de 2021. http://dx.doi.org/10.2172/1833177.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Porritt, Robert, Robert Abbott e Christian Poppeliers. Quantitative assessment of Distributed Acoustic Sensing at the Source Physics Experiment, Phase II. Office of Scientific and Technical Information (OSTI), janeiro de 2022. http://dx.doi.org/10.2172/1855336.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Viens, Loic. Probing the Solid Earth and the Hydrosphere with Ocean-Bottom Distributed Acoustic Sensing. Office of Scientific and Technical Information (OSTI), novembro de 2023. http://dx.doi.org/10.2172/2205032.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Bruno, Michael S., Kang Lao, Nicky Oliver e Matthew Becker. Use of Fiber Optic Distributed Acoustic Sensing for Measuring Hydraulic Connectivity for Geothermal Applications. Office of Scientific and Technical Information (OSTI), abril de 2018. http://dx.doi.org/10.2172/1434494.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Ichinose, G., e R. Mellors. Seismic Array Analysis Using Fiber-Optic Distributed Acoustic Sensing on Small Local and Regional Earthquakes. Office of Scientific and Technical Information (OSTI), agosto de 2021. http://dx.doi.org/10.2172/1818399.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia