Artigos de revistas sobre o tema "Disease Prediction and Monitoring Modelling"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Disease Prediction and Monitoring Modelling".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Orakwue, Stella I., e Nkolika O. Nwazor. "Plant Disease Detection and Monitoring Using Artificial Neural Network". International Journal of Scientific Research and Management 10, n.º 01 (3 de janeiro de 2022): 715–22. http://dx.doi.org/10.18535/ijsrm/v10i1.ec01.
Texto completo da fonteKAIMI, I., e P. J. DIGGLE. "A hierarchical model for real-time monitoring of variation in risk of non-specific gastrointestinal infections". Epidemiology and Infection 139, n.º 12 (9 de fevereiro de 2011): 1854–62. http://dx.doi.org/10.1017/s0950268811000057.
Texto completo da fonteWang, Y. P., N. H. Idris, F. M. Muharam, N. Asib e Alvin M. S. Lau. "Comparison of different variable selection methods for predicting the occurrence of Metisa Plana in oil palm plantation using machine learning". IOP Conference Series: Earth and Environmental Science 1274, n.º 1 (1 de dezembro de 2023): 012008. http://dx.doi.org/10.1088/1755-1315/1274/1/012008.
Texto completo da fonteSharma, V., S. K. Ghosh e S. Khare. "A PROPOSED FRAMEWORK FOR SURVEILLANCE OF DENGUE DISEASE AND PREDICTION". International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLVIII-M-1-2023 (21 de abril de 2023): 317–23. http://dx.doi.org/10.5194/isprs-archives-xlviii-m-1-2023-317-2023.
Texto completo da fonteVelasquez-Camacho, Luisa, Marta Otero, Boris Basile, Josep Pijuan e Giandomenico Corrado. "Current Trends and Perspectives on Predictive Models for Mildew Diseases in Vineyards". Microorganisms 11, n.º 1 (27 de dezembro de 2022): 73. http://dx.doi.org/10.3390/microorganisms11010073.
Texto completo da fonteAlodat, Iyas. "Analysing and predicting COVID-19 AI tracking using artificial intelligence". International Journal of Modeling, Simulation, and Scientific Computing 12, n.º 03 (17 de abril de 2021): 2141005. http://dx.doi.org/10.1142/s1793962321410051.
Texto completo da fonteHelget, Lindsay N., David J. Dillon, Bethany Wolf, Laura P. Parks, Sally E. Self, Evelyn T. Bruner, Evan E. Oates e Jim C. Oates. "Development of a lupus nephritis suboptimal response prediction tool using renal histopathological and clinical laboratory variables at the time of diagnosis". Lupus Science & Medicine 8, n.º 1 (agosto de 2021): e000489. http://dx.doi.org/10.1136/lupus-2021-000489.
Texto completo da fonteChua, Felix, Rama Vancheeswaran, Adrian Draper, Tejal Vaghela, Matthew Knight, Rahul Mogal, Jaswinder Singh et al. "Early prognostication of COVID-19 to guide hospitalisation versus outpatient monitoring using a point-of-test risk prediction score". Thorax 76, n.º 7 (10 de março de 2021): 696–703. http://dx.doi.org/10.1136/thoraxjnl-2020-216425.
Texto completo da fonteMasih, Adven, e Alexander N. Medvedev. "Evaluating the performance of support vector machines based on different kernel methods for forecasting air pollutants". Вестник ВГУ. Серия: Системный анализ и информационные технологии, n.º 3 (30 de setembro de 2020): 5–14. http://dx.doi.org/10.17308/sait.2020.3/3035.
Texto completo da fonteMrara, Busisiwe, Fathima Paruk, Constance Sewani-Rusike e Olanrewaju Oladimeji. "Development and validation of a clinical prediction model of acute kidney injury in intensive care unit patients at a rural tertiary teaching hospital in South Africa: a study protocol". BMJ Open 12, n.º 7 (julho de 2022): e060788. http://dx.doi.org/10.1136/bmjopen-2022-060788.
Texto completo da fonteEswaran, Sarojini, Bharathiraj L.T e Jayanthi S. "Modelling of ambient air quality, Coimbatore, India". E3S Web of Conferences 117 (2019): 00002. http://dx.doi.org/10.1051/e3sconf/201911700002.
Texto completo da fonteLin, Lingmin, Kailai Liu, Huan Feng, Jing Li, Hengle Chen, Tao Zhang, Boyun Xue e Jiarui Si. "Glucose trajectory prediction by deep learning for personal home care of type 2 diabetes mellitus: modelling and applying". Mathematical Biosciences and Engineering 19, n.º 10 (2022): 10096–107. http://dx.doi.org/10.3934/mbe.2022472.
Texto completo da fonteLiebenstund, Lisa, Mark Coburn, Christina Fitzner, Antje Willuweit, Karl-Josef Langen, Jingjin Liu, Michael Veldeman e Anke Höllig. "Predicting experimental success: a retrospective case-control study using the rat intraluminal thread model of stroke". Disease Models & Mechanisms 13, n.º 12 (22 de outubro de 2020): dmm044651. http://dx.doi.org/10.1242/dmm.044651.
Texto completo da fonteKulkarni, Mrunalini Harish, Chaitanya Kulkarni, K. Suresh Babu, Saima Ahmed Rahin, Shweta Singh e D. Dinesh Kumar. "Data Fusion Approach for Managing Clinical Data in an Industrial Environment using IoT". Scientific Programming 2022 (23 de maio de 2022): 1–10. http://dx.doi.org/10.1155/2022/3603238.
Texto completo da fonteSethy, Prabira Kumar, Santi Kumari Behera, Nithiyakanthan Kannan, Sridevi Narayanan e Chanki Pandey. "Smart paddy field monitoring system using deep learning and IoT". Concurrent Engineering 29, n.º 1 (28 de janeiro de 2021): 16–24. http://dx.doi.org/10.1177/1063293x21988944.
Texto completo da fonteJones, K. L., R. C. A. Thompson e S. S. Godfrey. "Social networks: a tool for assessing the impact of perturbations on wildlife behaviour and implications for pathogen transmission". Behaviour 155, n.º 7-9 (2018): 689–730. http://dx.doi.org/10.1163/1568539x-00003485.
Texto completo da fonteZhao, Hongwei, Naveed N. Merchant, Alyssa McNulty, Tiffany A. Radcliff, Murray J. Cote, Rebecca S. B. Fischer, Huiyan Sang e Marcia G. Ory. "COVID-19: Short term prediction model using daily incidence data". PLOS ONE 16, n.º 4 (14 de abril de 2021): e0250110. http://dx.doi.org/10.1371/journal.pone.0250110.
Texto completo da fonteJombart, Thibaut, Stéphane Ghozzi, Dirk Schumacher, Timothy J. Taylor, Quentin J. Leclerc, Mark Jit, Stefan Flasche et al. "Real-time monitoring of COVID-19 dynamics using automated trend fitting and anomaly detection". Philosophical Transactions of the Royal Society B: Biological Sciences 376, n.º 1829 (31 de maio de 2021): 20200266. http://dx.doi.org/10.1098/rstb.2020.0266.
Texto completo da fonteStefanescu, Simona, Relu Cocoș, Adina Turcu-Stiolica, Elena-Silvia Shelby, Marius Matei, Mihaela-Simona Subtirelu, Andreea-Daniela Meca et al. "Prediction of Treatment Outcome with Inflammatory Biomarkers after 2 Months of Therapy in Pulmonary Tuberculosis Patients: Preliminary Results". Pathogens 10, n.º 7 (22 de junho de 2021): 789. http://dx.doi.org/10.3390/pathogens10070789.
Texto completo da fonteANDERSON, D. P., D. S. L. RAMSEY, G. NUGENT, M. BOSSON, P. LIVINGSTONE, P. A. J. MARTIN, E. SERGEANT, A. M. GORMLEY e B. WARBURTON. "A novel approach to assess the probability of disease eradication from a wild-animal reservoir host". Epidemiology and Infection 141, n.º 7 (23 de janeiro de 2013): 1509–21. http://dx.doi.org/10.1017/s095026881200310x.
Texto completo da fontePrzybilla, Jens, Peter Ahnert, Holger Bogatsch, Frank Bloos, Frank M. Brunkhorst, Michael Bauer, Markus Loeffler, Martin Witzenrath, Norbert Suttorp e Markus Scholz. "Markov State Modelling of Disease Courses and Mortality Risks of Patients with Community-Acquired Pneumonia". Journal of Clinical Medicine 9, n.º 2 (5 de fevereiro de 2020): 393. http://dx.doi.org/10.3390/jcm9020393.
Texto completo da fonteShi, Lei, Xiaoliang Feng, Longxing Qi, Yanlong Xu e Sulan Zhai. "Modeling and Predicting the Influence of PM2.5 on Children’s Respiratory Diseases". International Journal of Bifurcation and Chaos 30, n.º 15 (9 de dezembro de 2020): 2050235. http://dx.doi.org/10.1142/s0218127420502351.
Texto completo da fonteSuzuki, Ayako, e Hiroshi Nishiura. "Transmission dynamics of varicella before, during and after the COVID-19 pandemic in Japan: a modelling study". Mathematical Biosciences and Engineering 19, n.º 6 (2022): 5998–6012. http://dx.doi.org/10.3934/mbe.2022280.
Texto completo da fonteSibarani, Imelda Juliana Br, Katherina Meylda Loy S e Suharjito Suharjito. "Enhancing Predictive Accuracy for Differentiated Thyroid Cancer (DTC) Recurrence Through Advanced Data Mining Techniques". TIN: Terapan Informatika Nusantara 5, n.º 1 (21 de junho de 2024): 11–22. http://dx.doi.org/10.47065/tin.v5i1.5237.
Texto completo da fonteThomas, Charlotte M., Joseph F. Standing, Catherine Smith, Satveer K. Mahil, Richard B. Warren, Jonathan Barker, Sam Norton, Zehra Arkir, Teresa Tsakok e Monica Arenas-Hernandez. "BT34 Minimizing drug exposure in psoriasis using a therapeutic drug monitoring dashboard". British Journal of Dermatology 191, Supplement_1 (28 de junho de 2024): i204—i205. http://dx.doi.org/10.1093/bjd/ljae090.431.
Texto completo da fonteFerrari, Simone, Alessandro Santus e Luca Tendas. "Validation of a numerical software for the simulation of the pollutant dispersion from traffic in a real case: Some preliminary results". EPJ Web of Conferences 299 (2024): 01010. http://dx.doi.org/10.1051/epjconf/202429901010.
Texto completo da fonteMaciukiewicz, M., J. Schniering, H. Gabrys, M. Brunner, C. Blüthgen, C. Meier, M. Guckenberger et al. "OP0150 MACHINE LEARNING APPROACHES FOR RISK MODELLING IN INTERSTITIAL LUNG DISEASE ASSOCIATED WITH SYSTEMIC SCLEROSIS USING HIGH DIMENSIONAL IMAGE ANALYSIS". Annals of the Rheumatic Diseases 80, Suppl 1 (19 de maio de 2021): 90. http://dx.doi.org/10.1136/annrheumdis-2021-eular.2517.
Texto completo da fonteKantasiripitak, W., S. G. WIcha, D. Thomas, I. Hoffman, M. Ferrante, S. Vermeire, K. van Hoeve e E. Dreesen. "P531 A model-based tool for guiding infliximab induction dosing to maximise long-term deep remission in children with inflammatory bowel diseases". Journal of Crohn's and Colitis 17, Supplement_1 (30 de janeiro de 2023): i659—i661. http://dx.doi.org/10.1093/ecco-jcc/jjac190.0661.
Texto completo da fonteBose, Sanjukta N., Adam Verigan, Jade Hanson, Luis M. Ahumada, Sharon R. Ghazarian, Neil A. Goldenberg, Arabela Stock e Jeffrey P. Jacobs. "Early identification of impending cardiac arrest in neonates and infants in the cardiovascular ICU: a statistical modelling approach using physiologic monitoring data". Cardiology in the Young 29, n.º 11 (9 de setembro de 2019): 1340–48. http://dx.doi.org/10.1017/s1047951119002002.
Texto completo da fonteDrake, Wonder P., Connie Hsia, Lobelia Samavati, Michelle Yu, Jessica Cardenas, Fabiola G. Gianella, John Boscardin e Laura L. Koth. "Risk Indicators of Sarcoidosis Evolution-Unified Protocol (RISE-UP): protocol for a multi-centre, longitudinal, observational study to identify clinical features that are predictive of sarcoidosis progression". BMJ Open 13, n.º 4 (abril de 2023): e071607. http://dx.doi.org/10.1136/bmjopen-2023-071607.
Texto completo da fonteGerasimenko, Petr V. "Modeling the number of COVID-19 cases in St. Petersburg in the period 2020–2022". City Healthcare 3, n.º 3 (30 de setembro de 2022): 30–38. http://dx.doi.org/10.47619/2713-2617.zm.2022.v.3i3;30-38.
Texto completo da fonteGerasimenko, Petr V. "Modeling the number of COVID-19 cases in St. Petersburg in the period 2020–2022". City Healthcare 3, n.º 3 (30 de setembro de 2022): 30–38. http://dx.doi.org/10.47619/2713-2617.zm.2022.v.3i3;30-38.
Texto completo da fonteGerasimenko, Petr V. "Modeling the number of COVID-19 cases in St. Petersburg in the period 2020–2022". City Healthcare 3, n.º 3 (30 de setembro de 2022): 30–38. http://dx.doi.org/10.47619/2713-2617.zm.2022.v.3i3;30-38.
Texto completo da fonteGerasimenko, Petr V. "Modeling the number of COVID-19 cases in St. Petersburg in the period 2020–2022". City Healthcare 3, n.º 3 (30 de setembro de 2022): 30–38. http://dx.doi.org/10.47619/2713-2617.zm.2022.v.3i3;30-38.
Texto completo da fonteGerasimenko, Petr V. "Modeling the number of COVID-19 cases in St. Petersburg in the period 2020–2022". City Healthcare 3, n.º 3 (30 de setembro de 2022): 30–38. http://dx.doi.org/10.47619/2713-2617.zm.2022.v.3i3;30-38.
Texto completo da fonteGerasimenko, Petr V. "Modeling the number of COVID-19 cases in St. Petersburg in the period 2020–2022". City Healthcare 3, n.º 3 (30 de setembro de 2022): 30–38. http://dx.doi.org/10.47619/2713-2617.zm.2022.v.3i3;30-38.
Texto completo da fonteGerasimenko, Petr V. "Modeling the number of COVID-19 cases in St. Petersburg in the period 2020–2022". City Healthcare 3, n.º 3 (30 de setembro de 2022): 30–38. http://dx.doi.org/10.47619/2713-2617.zm.2022.v.3i3;30-38.
Texto completo da fonteCowled, Brendan D., Fiona Giannini, Sam D. Beckett, Andrew Woolnough, Simon Barry, Lucy Randall e Graeme Garner. "Feral pigs: predicting future distributions". Wildlife Research 36, n.º 3 (2009): 242. http://dx.doi.org/10.1071/wr08115.
Texto completo da fonteBritton, Tom, e Gianpaolo Scalia Tomba. "Estimation in emerging epidemics: biases and remedies". Journal of The Royal Society Interface 16, n.º 150 (janeiro de 2019): 20180670. http://dx.doi.org/10.1098/rsif.2018.0670.
Texto completo da fonteGlauche, Ingmar, Hendrik Liebscher, Christoph Baldow, Matthias Kuhn, Philipp Schulze, Tom Haehnel, Astghik Voskanyan et al. "A New Computational Method to Predict Long-Term Minimal Residual Disease and Molecular Relapse after TKI-Cessation in CML". Blood 128, n.º 22 (2 de dezembro de 2016): 3099. http://dx.doi.org/10.1182/blood.v128.22.3099.3099.
Texto completo da fonteHeasley, Cole, J. Johanna Sanchez, Jordan Tustin e Ian Young. "Systematic review of predictive models of microbial water quality at freshwater recreational beaches". PLOS ONE 16, n.º 8 (26 de agosto de 2021): e0256785. http://dx.doi.org/10.1371/journal.pone.0256785.
Texto completo da fonteMarston, Christopher, Clare Rowland, Aneurin O’Neil, Seth Irish, Francis Wat’senga, Pilar Martín-Gallego, Paul Aplin, Patrick Giraudoux e Clare Strode. "Developing the Role of Earth Observation in Spatio-Temporal Mosquito Modelling to Identify Malaria Hot-Spots". Remote Sensing 15, n.º 1 (22 de dezembro de 2022): 43. http://dx.doi.org/10.3390/rs15010043.
Texto completo da fonteEjma-Multański, Adam, Anna Wajda e Agnieszka Paradowska-Gorycka. "Cell Cultures as a Versatile Tool in the Research and Treatment of Autoimmune Connective Tissue Diseases". Cells 12, n.º 20 (19 de outubro de 2023): 2489. http://dx.doi.org/10.3390/cells12202489.
Texto completo da fonteSánchez-pérez, Isabel, Jorge Melones Herrero, Alicia Villacampa, T. Sofia Figueiras, Carmela Calés, Carlos F. Sanchez Ferrer, Adoración Gómez Quiroga e Concha Peiro. "P160 MODELLING CARDIOVASCULAR TOXICITY IN CELLULO ASSOCIATED WITH ANTITUMORALS". Journal of Hypertension 42, Suppl 3 (setembro de 2024): e119. http://dx.doi.org/10.1097/01.hjh.0001063512.42008.51.
Texto completo da fonteSkendžić, Sandra, Monika Zovko, Ivana Pajač Živković, Vinko Lešić e Darija Lemić. "The Impact of Climate Change on Agricultural Insect Pests". Insects 12, n.º 5 (12 de maio de 2021): 440. http://dx.doi.org/10.3390/insects12050440.
Texto completo da fonteZhao, Wei, Daolun Zhang, Thomas Storme, André Baruchel, Xavier Declèves e Evelyne Jacqz-Aigrain. "POPULATION PHARMACOKINETICS AND DOSING OPTIMIZATION OF TEICOPLANIN IN CHILDREN WITH MALIGNANT HAEMATOLOGICAL DISEASE". Archives of Disease in Childhood 101, n.º 1 (14 de dezembro de 2015): e1.41-e1. http://dx.doi.org/10.1136/archdischild-2015-310148.46.
Texto completo da fontePerera, Rafael, Richard Stevens, Jeffrey K. Aronson, Amitava Banerjee, Julie Evans, Benjamin G. Feakins, Susannah Fleming et al. "Long-term monitoring in primary care for chronic kidney disease and chronic heart failure: a multi-method research programme". Programme Grants for Applied Research 9, n.º 10 (agosto de 2021): 1–218. http://dx.doi.org/10.3310/pgfar09100.
Texto completo da fonteAkhgar, Ahmad, Dominic Sinibaldi, Lingmin Zeng, Alton B. Farris, Jason Cobb, Monica Battle, David Chain et al. "Urinary markers differentially associate with kidney inflammatory activity and chronicity measures in patients with lupus nephritis". Lupus Science & Medicine 10, n.º 1 (janeiro de 2023): e000747. http://dx.doi.org/10.1136/lupus-2022-000747.
Texto completo da fontePerlini, Cinzia, Simone Garzon, Massimo Franchi, Valeria Donisi, Michela Rimondini, Mariachiara Bosco, Stefano Uccella et al. "Risk perception and affective state on work exhaustion in obstetrics during the COVID-19 pandemic". Open Medicine 17, n.º 1 (1 de janeiro de 2022): 1599–611. http://dx.doi.org/10.1515/med-2022-0571.
Texto completo da fonteZhang, Xianyu, Shiyao Lu, Hui Li, Xin Liu, Jun Wang, Liuhong Zeng, Zhipeng Lu et al. "Abstract P1-05-27: Liquid Biopsy for HER2 Status Assessment in Breast Cancer Using Surrogate DNA Methylation Markers". Cancer Research 83, n.º 5_Supplement (1 de março de 2023): P1–05–27—P1–05–27. http://dx.doi.org/10.1158/1538-7445.sabcs22-p1-05-27.
Texto completo da fonte