Literatura científica selecionada sobre o tema "Dirichlet allocation"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Dirichlet allocation".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Dirichlet allocation"
Du, Lan, Wray Buntine, Huidong Jin e Changyou Chen. "Sequential latent Dirichlet allocation". Knowledge and Information Systems 31, n.º 3 (10 de junho de 2011): 475–503. http://dx.doi.org/10.1007/s10115-011-0425-1.
Texto completo da fonteSchwarz, Carlo. "Ldagibbs: A Command for Topic Modeling in Stata Using Latent Dirichlet Allocation". Stata Journal: Promoting communications on statistics and Stata 18, n.º 1 (março de 2018): 101–17. http://dx.doi.org/10.1177/1536867x1801800107.
Texto completo da fonteYoshida, Takahiro, Ryohei Hisano e Takaaki Ohnishi. "Gaussian hierarchical latent Dirichlet allocation: Bringing polysemy back". PLOS ONE 18, n.º 7 (12 de julho de 2023): e0288274. http://dx.doi.org/10.1371/journal.pone.0288274.
Texto completo da fonteArchambeau, Cedric, Balaji Lakshminarayanan e Guillaume Bouchard. "Latent IBP Compound Dirichlet Allocation". IEEE Transactions on Pattern Analysis and Machine Intelligence 37, n.º 2 (fevereiro de 2015): 321–33. http://dx.doi.org/10.1109/tpami.2014.2313122.
Texto completo da fontePion-Tonachini, Luca, Scott Makeig e Ken Kreutz-Delgado. "Crowd labeling latent Dirichlet allocation". Knowledge and Information Systems 53, n.º 3 (19 de abril de 2017): 749–65. http://dx.doi.org/10.1007/s10115-017-1053-1.
Texto completo da fonteS.S., Ramyadharshni, e Pabitha Dr.P. "Topic Categorization on Social Network Using Latent Dirichlet Allocation". Bonfring International Journal of Software Engineering and Soft Computing 8, n.º 2 (30 de abril de 2018): 16–20. http://dx.doi.org/10.9756/bijsesc.8390.
Texto completo da fonteSyed, Shaheen, e Marco Spruit. "Exploring Symmetrical and Asymmetrical Dirichlet Priors for Latent Dirichlet Allocation". International Journal of Semantic Computing 12, n.º 03 (setembro de 2018): 399–423. http://dx.doi.org/10.1142/s1793351x18400184.
Texto completo da fonteLi, Gen, e Hazri Jamil. "Teacher professional learning community and interdisciplinary collaborative teaching path under the informationization basic education model". Yugoslav Journal of Operations Research, n.º 00 (2024): 29. http://dx.doi.org/10.2298/yjor2403029l.
Texto completo da fonteGarg, Mohit, e Priya Rangra. "Bibliometric Analysis of Latent Dirichlet Allocation". DESIDOC Journal of Library & Information Technology 42, n.º 2 (28 de fevereiro de 2022): 105–13. http://dx.doi.org/10.14429/djlit.42.2.17307.
Texto completo da fonteChauhan, Uttam, e Apurva Shah. "Topic Modeling Using Latent Dirichlet allocation". ACM Computing Surveys 54, n.º 7 (30 de setembro de 2022): 1–35. http://dx.doi.org/10.1145/3462478.
Texto completo da fonteTeses / dissertações sobre o assunto "Dirichlet allocation"
Ponweiser, Martin. "Latent Dirichlet Allocation in R". WU Vienna University of Economics and Business, 2012. http://epub.wu.ac.at/3558/1/main.pdf.
Texto completo da fonteSeries: Theses / Institute for Statistics and Mathematics
Arnekvist, Isac, e Ludvig Ericson. "Finding competitors using Latent Dirichlet Allocation". Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-186386.
Texto completo da fonteDet finns ett intresse av att kunna identifiera affärskonkurrenter, men detta blir allt svårare på en ständigt växande och alltmer global marknad. Syftet med denna rapport är att undersöka om Latent Dirichlet Allocation (LDA) kan användas för att identifiera och rangordna konkurrenter. Detta genom att jämföra avstånden mellan LDA-representationerna av dessas företagsbeskrivningar. Effektiviteten av LDA i detta syfte jämfördes med den för bag-of-words samt slumpmässig ordning, detta med hjälp av några vanliga informationsteoretiska mått. Flera olika avståndsmått utvärderades för att bestämma vilken av dessa som bäst åstadkommer att konkurrerande företag hamnar nära varandra. I detta fall fanns Cosine similarity överträffa andra avståndsmått. Medan både LDA och bag-of-words konstaterades vara signifikant bättre än slumpmässig ordning så fanns att LDA presterar kvalitativt sämre än bag-of-words. Uträkning av avståndsmått var dock betydligt snabbare med LDA-representationer. Att omvandla webbinnehåll till LDA-representationer fångar dock vissa ospecifika likheter som inte nödvändigt beskriver konkurrenter. Det kan möjligen vara fördelaktigt att använda LDA-representationer ihop med någon ytterligare datakälla och/eller heuristik.
Choubey, Rahul. "Tag recommendation using Latent Dirichlet Allocation". Thesis, Kansas State University, 2011. http://hdl.handle.net/2097/9785.
Texto completo da fonteDepartment of Computing and Information Sciences
Doina Caragea
The vast amount of data present on the internet calls for ways to label and organize this data according to specific categories, in order to facilitate search and browsing activities. This can be easily accomplished by making use of folksonomies and user provided tags. However, it can be difficult for users to provide meaningful tags. Tag recommendation systems can guide the users towards informative tags for online resources such as websites, pictures, etc. The aim of this thesis is to build a system for recommending tags to URLs available through a bookmark sharing service, called BibSonomy. We assume that the URLs for which we recommend tags do not have any prior tags assigned to them. Two approaches are proposed to address the tagging problem, both of them based on Latent Dirichlet Allocation (LDA) Blei et al. [2003]. LDA is a generative and probabilistic topic model which aims to infer the hidden topical structure in a collection of documents. According to LDA, documents can be seen as mixtures of topics, while topics can be seen as mixtures of words (in our case, tags). The first approach that we propose, called topic words based approach, recommends the top words in the top topics representing a resource as tags for that particular resource. The second approach, called topic distance based approach, uses the tags of the most similar training resources (identified using the KL-divergence Kullback and Liebler [1951]) to recommend tags for a test untagged resource. The dataset used in this work was made available through the ECML/PKDD Discovery Challenge 2009. We construct the documents that are provided as input to LDA in two ways, thus producing two different datasets. In the first dataset, we use only the description and the tags (when available) corresponding to a URL. In the second dataset, we crawl the URL content and use it to construct the document. Experimental results show that the LDA approach is not very effective at recommending tags for new untagged resources. However, using the resource content gives better results than using the description only. Furthermore, the topic distance based approach is better than the topic words based approach, when only the descriptions are used to construct documents, while the topic words based approach works better when the contents are used to construct documents.
Risch, Johan. "Detecting Twitter topics using Latent Dirichlet Allocation". Thesis, Uppsala universitet, Institutionen för informationsteknologi, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-277260.
Texto completo da fonteLiu, Zelong. "High performance latent dirichlet allocation for text mining". Thesis, Brunel University, 2013. http://bura.brunel.ac.uk/handle/2438/7726.
Texto completo da fonteKulhanek, Raymond Daniel. "A Latent Dirichlet Allocation/N-gram Composite Language Model". Wright State University / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=wright1379520876.
Texto completo da fonteAnaya, Leticia H. "Comparing Latent Dirichlet Allocation and Latent Semantic Analysis as Classifiers". Thesis, University of North Texas, 2011. https://digital.library.unt.edu/ark:/67531/metadc103284/.
Texto completo da fonteJaradat, Shatha. "OLLDA: Dynamic and Scalable Topic Modelling for Twitter : AN ONLINE SUPERVISED LATENT DIRICHLET ALLOCATION ALGORITHM". Thesis, KTH, Skolan för informations- och kommunikationsteknik (ICT), 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-177535.
Texto completo da fonteTillhandahålla högkvalitativa ämnen slutsats i dagens stora och dynamiska korpusar, såsom Twitter, är en utmanande uppgift. Detta är särskilt utmanande med tanke på att innehållet i den här miljön innehåller korta texter och många förkortningar. Projektet föreslår en förbättring med en populär online ämnen modellering algoritm för Latent Dirichlet Tilldelning (LDA), genom att införliva tillsyn för att göra den lämplig för Twitter sammanhang. Denna förbättring motiveras av behovet av en enda algoritm som uppnår båda målen: analysera stora mängder av dokument, inklusive nya dokument som anländer i en bäck, och samtidigt uppnå hög kvalitet på ämnen "upptäckt i speciella fall miljöer, till exempel som Twitter. Den föreslagna algoritmen är en kombination av en online-algoritm för LDA och en övervakad variant av LDA - Labeled LDA. Prestanda och kvalitet av den föreslagna algoritmen jämförs med dessa två algoritmer. Resultaten visar att den föreslagna algoritmen har visat bättre prestanda och kvalitet i jämförelse med den övervakade varianten av LDA, och det uppnådde bättre resultat i fråga om kvalitet i jämförelse med den online-algoritmen. Dessa förbättringar gör vår algoritm till ett attraktivt alternativ när de tillämpas på dynamiska miljöer, som Twitter. En miljö för att analysera och märkning uppgifter är utformad för att förbereda dataset innan du utför experimenten. Möjliga användningsområden för den föreslagna algoritmen är tweets rekommendation och trender upptäckt.
Yalamanchili, Hima Bindu. "A Novel Approach For Cancer Characterization Using Latent Dirichlet Allocation and Disease-Specific Genomic Analysis". Wright State University / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=wright1527600876174758.
Texto completo da fonteSheikha, Hassan. "Text mining Twitter social media for Covid-19 : Comparing latent semantic analysis and latent Dirichlet allocation". Thesis, Högskolan i Gävle, Avdelningen för datavetenskap och samhällsbyggnad, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-32567.
Texto completo da fonteLivros sobre o assunto "Dirichlet allocation"
Shi, Feng. Learn About Latent Dirichlet Allocation in R With Data From the News Articles Dataset (2016). 1 Oliver's Yard, 55 City Road, London EC1Y 1SP United Kingdom: SAGE Publications, Ltd., 2019. http://dx.doi.org/10.4135/9781526495693.
Texto completo da fonteShi, Feng. Learn About Latent Dirichlet Allocation in Python With Data From the News Articles Dataset (2016). 1 Oliver's Yard, 55 City Road, London EC1Y 1SP United Kingdom: SAGE Publications, Ltd., 2019. http://dx.doi.org/10.4135/9781526497727.
Texto completo da fonteAugmenting Latent Dirichlet Allocation and Rank Threshold Detection with Ontologies. CreateSpace Independent Publishing Platform, 2014.
Encontre o texto completo da fonteJockers, Matthew L. Theme. University of Illinois Press, 2017. http://dx.doi.org/10.5406/illinois/9780252037528.003.0008.
Texto completo da fonteCapítulos de livros sobre o assunto "Dirichlet allocation"
Li, Hang. "Latent Dirichlet Allocation". In Machine Learning Methods, 439–71. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-3917-6_20.
Texto completo da fonteTang, Yi-Kun, Xian-Ling Mao e Heyan Huang. "Labeled Phrase Latent Dirichlet Allocation". In Web Information Systems Engineering – WISE 2016, 525–36. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-48740-3_39.
Texto completo da fonteMoon, Gordon E., Israt Nisa, Aravind Sukumaran-Rajam, Bortik Bandyopadhyay, Srinivasan Parthasarathy e P. Sadayappan. "Parallel Latent Dirichlet Allocation on GPUs". In Lecture Notes in Computer Science, 259–72. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-93701-4_20.
Texto completo da fonteCalvo, Hiram, Ángel Hernández-Castañeda e Jorge García-Flores. "Author Identification Using Latent Dirichlet Allocation". In Computational Linguistics and Intelligent Text Processing, 303–12. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-77116-8_22.
Texto completo da fonteHao, Jing, e Hongxi Wei. "Latent Dirichlet Allocation Based Image Retrieval". In Lecture Notes in Computer Science, 211–21. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-68699-8_17.
Texto completo da fonteMaanicshah, Kamal, Manar Amayri e Nizar Bouguila. "Interactive Generalized Dirichlet Mixture Allocation Model". In Lecture Notes in Computer Science, 33–42. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-23028-8_4.
Texto completo da fonteWheeler, Jordan M., Shiyu Wang e Allan S. Cohen. "Latent Dirichlet Allocation of Constructed Responses". In The Routledge International Handbook of Automated Essay Evaluation, 535–55. New York: Routledge, 2024. http://dx.doi.org/10.4324/9781003397618-31.
Texto completo da fonteRus, Vasile, Nobal Niraula e Rajendra Banjade. "Similarity Measures Based on Latent Dirichlet Allocation". In Computational Linguistics and Intelligent Text Processing, 459–70. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-37247-6_37.
Texto completo da fonteBíró, István, e Jácint Szabó. "Latent Dirichlet Allocation for Automatic Document Categorization". In Machine Learning and Knowledge Discovery in Databases, 430–41. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-04174-7_28.
Texto completo da fonteLovato, Pietro, Manuele Bicego, Vittorio Murino e Alessandro Perina. "Robust Initialization for Learning Latent Dirichlet Allocation". In Similarity-Based Pattern Recognition, 117–32. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-24261-3_10.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Dirichlet allocation"
Tahsin, Faiza, Hafsa Ennajari e Nizar Bouguila. "Author Dirichlet Multinomial Allocation Model with Generalized Distribution (ADMAGD)". In 2024 International Symposium on Networks, Computers and Communications (ISNCC), 1–7. IEEE, 2024. http://dx.doi.org/10.1109/isncc62547.2024.10758998.
Texto completo da fonteKoltcov, Sergei, Olessia Koltsova e Sergey Nikolenko. "Latent dirichlet allocation". In the 2014 ACM conference. New York, New York, USA: ACM Press, 2014. http://dx.doi.org/10.1145/2615569.2615680.
Texto completo da fonteChien, Jen-Tzung, Chao-Hsi Lee e Zheng-Hua Tan. "Dirichlet mixture allocation". In 2016 IEEE 26th International Workshop on Machine Learning for Signal Processing (MLSP). IEEE, 2016. http://dx.doi.org/10.1109/mlsp.2016.7738866.
Texto completo da fonteShen, Zhi-Yong, Jun Sun e Yi-Dong Shen. "Collective Latent Dirichlet Allocation". In 2008 Eighth IEEE International Conference on Data Mining (ICDM). IEEE, 2008. http://dx.doi.org/10.1109/icdm.2008.75.
Texto completo da fonteLi, Shuangyin, Guan Huang, Ruiyang Tan e Rong Pan. "Tag-Weighted Dirichlet Allocation". In 2013 IEEE International Conference on Data Mining (ICDM). IEEE, 2013. http://dx.doi.org/10.1109/icdm.2013.11.
Texto completo da fonteHsin, Wei-Cheng, e Jen-Wei Huang. "Multi-dependent Latent Dirichlet Allocation". In 2017 Conference on Technologies and Applications of Artificial Intelligence (TAAI). IEEE, 2017. http://dx.doi.org/10.1109/taai.2017.51.
Texto completo da fonteKrestel, Ralf, Peter Fankhauser e Wolfgang Nejdl. "Latent dirichlet allocation for tag recommendation". In the third ACM conference. New York, New York, USA: ACM Press, 2009. http://dx.doi.org/10.1145/1639714.1639726.
Texto completo da fonteTan, Yimin, e Zhijian Ou. "Topic-weak-correlated Latent Dirichlet allocation". In 2010 7th International Symposium on Chinese Spoken Language Processing (ISCSLP). IEEE, 2010. http://dx.doi.org/10.1109/iscslp.2010.5684906.
Texto completo da fonteXiang, Yingzhuo, Dongmei Yang e Jikun Yan. "The Auto Annotation Latent Dirichlet Allocation". In First International Conference on Information Sciences, Machinery, Materials and Energy. Paris, France: Atlantis Press, 2015. http://dx.doi.org/10.2991/icismme-15.2015.387.
Texto completo da fonteBhutada, Sunil, V. V. S. S. S. Balaram e Vishnu Vardhan Bulusu. "Latent Dirichlet Allocation based multilevel classification". In 2014 International Conference on Control, Instrumentation, Communication and Computational Technologies (ICCICCT). IEEE, 2014. http://dx.doi.org/10.1109/iccicct.2014.6993109.
Texto completo da fonteRelatórios de organizações sobre o assunto "Dirichlet allocation"
Teh, Yee W., David Newman e Max Welling. A Collapsed Variational Bayesian Inference Algorithm for Latent Dirichlet Allocation. Fort Belvoir, VA: Defense Technical Information Center, setembro de 2007. http://dx.doi.org/10.21236/ada629956.
Texto completo da fonteAntón Sarabia, Arturo, Santiago Bazdresch e Alejandra Lelo-de-Larrea. The Influence of Central Bank's Projections and Economic Narrative on Professional Forecasters' Expectations: Evidence from Mexico. Banco de México, dezembro de 2023. http://dx.doi.org/10.36095/banxico/di.2023.21.
Texto completo da fonteMoreno Pérez, Carlos, e Marco Minozzo. “Making Text Talk”: The Minutes of the Central Bank of Brazil and the Real Economy. Madrid: Banco de España, novembro de 2022. http://dx.doi.org/10.53479/23646.
Texto completo da fonteAlonso-Robisco, Andrés, José Manuel Carbó e José Manuel Carbó. Machine Learning methods in climate finance: a systematic review. Madrid: Banco de España, fevereiro de 2023. http://dx.doi.org/10.53479/29594.
Texto completo da fonte