Literatura científica selecionada sobre o tema "Direct cortical stimulation"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Direct cortical stimulation".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Direct cortical stimulation"
Foster, Brett L., e Josef Parvizi. "Direct cortical stimulation of human posteromedial cortex". Neurology 88, n.º 7 (18 de janeiro de 2017): 685–91. http://dx.doi.org/10.1212/wnl.0000000000003607.
Texto completo da fonteNitsche, Michael A., Astrid Schauenburg, Nicolas Lang, David Liebetanz, Cornelia Exner, Walter Paulus e Frithjof Tergau. "Facilitation of Implicit Motor Learning by Weak Transcranial Direct Current Stimulation of the Primary Motor Cortex in the Human". Journal of Cognitive Neuroscience 15, n.º 4 (1 de maio de 2003): 619–26. http://dx.doi.org/10.1162/089892903321662994.
Texto completo da fonteSaleem, Yusra, Komal . e Stephen Riaz. "Transcranial Direct Current Stimulation (TDCS)." International Journal of Endorsing Health Science Research (IJEHSR) 10, n.º 4 (25 de novembro de 2022): 441–45. http://dx.doi.org/10.29052/ijehsr.v10.i4.2022.441-445.
Texto completo da fonteSchuh, Lori, e Ivo Drury. "Intraoperative electrocorticography and direct cortical electrical stimulation". Seminars in Anesthesia, Perioperative Medicine and Pain 16, n.º 1 (março de 1997): 46–55. http://dx.doi.org/10.1016/s0277-0326(97)80007-4.
Texto completo da fonteOishi, M., K. Suzuki, O. Sasaki, S. Nakazato, K. Kitazawa, T. Takao e T. Koike. "Crossed aphasia elicited by direct cortical stimulation". Neurology 67, n.º 7 (9 de outubro de 2006): 1306–7. http://dx.doi.org/10.1212/01.wnl.0000238468.84401.d4.
Texto completo da fonteLuders, H. O., I. Derakhshan, M. Oishi, K. Suzuki, O. Sasaki, S. Nakazato, K. Kitazawa, T. Takao e T. Koike. "CROSSED APHASIA ELICITED BY DIRECT CORTICAL STIMULATION". Neurology 68, n.º 19 (7 de maio de 2007): 1638–40. http://dx.doi.org/10.1212/01.wnl.0000265607.23814.05.
Texto completo da fonteSehatpour, Pejman, Devin Adair, Stephanie Rohrig, Aleksandra Kaszowska, Alexander David, Michael Epstein, Joanna Di Costanzo e Daniel C. Javitt. "Cortical Modulation using Transcranial Direct Current Stimulation." Brain Stimulation 7, n.º 2 (março de 2014): e4. http://dx.doi.org/10.1016/j.brs.2014.01.017.
Texto completo da fonteSehatpour, Pejman, Devin Adair, Stephanie Rohrig, Joanna DiCostanzo e Daniel C. Javitt. "Transcranial Direct Current Stimulation Modulates Cortical Networks". Brain Stimulation 10, n.º 1 (janeiro de 2017): e7. http://dx.doi.org/10.1016/j.brs.2016.11.040.
Texto completo da fonteKrings, Timo, Bradley R. Buchbinder, William E. Butler, Keith H. Chiappa, Hong J. jiang, Bruce R. Rosen e G. Rees Cosgrove. "Stereotactic Transcranial Magnetic Stimulation: Correlation with Direct Electrical Cortical Stimulation". Neurosurgery 41, n.º 6 (1 de dezembro de 1997): 1319–26. http://dx.doi.org/10.1097/00006123-199712000-00016.
Texto completo da fonteWong, Pei-Ling, Yea-Ru Yang, Shih-Fong Huang e Ray-Yau Wang. "Effects of Transcranial Direct Current Stimulation Followed by Treadmill Training on Dual-Task Walking and Cortical Activity in Chronic Stroke: A Double-Blinded Randomized Controlled Trial". Journal of Rehabilitation Medicine 55 (21 de março de 2023): jrm00379. http://dx.doi.org/10.2340/jrm.v55.5258.
Texto completo da fonteTeses / dissertações sobre o assunto "Direct cortical stimulation"
Lacuey, Lecumberri Nuria. "Human autonomic and respiratory responses to direct cortical electrical stimulation". Doctoral thesis, Universitat Autònoma de Barcelona, 2018. http://hdl.handle.net/10803/666840.
Texto completo da fontePatients with epilepsy are well known to be at increased risk of sudden unexpected death. The risk of Sudden Unexpected Death in Epilepsy Patients (SUDEP) ranges from 0.35 to 2.3 per 1000 people per year in community-based populations, to 6.3 to 9.3 in epilepsy surgery candidates. SUDEP’s precise agonal mechanisms are unknown, although recent evidence from the Mortality in Epilepsy Monitoring Units Study (MORTEMUS) points to combined respiratory and cardiovascular collapse driving the fatal event. Adverse autonomic nervous system signs are prominent during seizures. Cardiac arrhythmias (bradycardia, asystole, tachyarrhythmias) in approximately 72% of epilepsy patients, post-ictal hypotension, impaired baroreflex sensitivity (potentially compromising cerebral blood flow), enhanced sympathetic outflow, expressed as increased sweating and decreased inter-ictal nocturnal heart rate variability (HRV) are common. Severe alteration of breathing is typically seen in generalized tonic clonic seizures (GTCS). Electroencephalogram (EEG) characteristics, including post-ictal generalized EEG suppression (PGES), are suggestive of high SUDEP-risk, strongly correlate with increased sweating and decreased HRV, and may be accompanied by profound hypotension. Neural mechanisms underlying these patterns need to be defined. Epilepsy is a prototypic cortical disorder, where most of the symptoms are produced by the activation or inhibition of specific regions in the cortex. Epileptiform discharges involving a specific area in the brain may induce symptoms related with that area’s functionality. In a similar manner, electrical brain stimulation can be used to map brain functions. Although several studies using brain electrical stimulation have suggested the possible role of cortical structures in respiration and autonomic control, reports from some investigators have indicated mixed findings, such that there is no consensus on the precise areas of cortex concerned. We aimed to identify cortical sites with roles in respiratory and/or autonomic control and to correlate seizure induced activation or inhibition of these structures to particular peri-ictal autonomic and breathing patterns recognized as potential indices of risk for death. This study describes the role of several limbic/paralimbic structures in respiration and human blood pressure control, and pathomechanisms of breathing and autonomic responses during epileptic seizures, providing insights into mechanisms of failure in SUDEP.
Austin, Vivienne Catherine Marie. "fMRI investigation of a model of direct cortical stimulation in rodent brain". Thesis, University of Oxford, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.275373.
Texto completo da fonteUsami, Kiyohide. "Sleep modulates cortical connectivity and excitability in humans: direct evidence from neural activity induced by single-pulse electrical stimulation". Kyoto University, 2015. http://hdl.handle.net/2433/202800.
Texto completo da fonteKobayashi, Katsuya. "Different Mode of Afferents Determines the Frequency Range of High Frequency Activities in the Human Brain: Direct Electrocorticographic Comparison between Peripheral Nerve and Direct Cortical Stimulation". Kyoto University, 2015. http://hdl.handle.net/2433/202676.
Texto completo da fonteFloyd, John Tyler. "Lower Extremity Transcranial Direct Current Stimulation (TDCS)| The Effect of Montage and Medium on Cortical Excitability". Thesis, University of Central Arkansas, 2018. http://pqdtopen.proquest.com/#viewpdf?dispub=10686422.
Texto completo da fonteThe dissertation consists of three parts. The first part is a systematic review of the literature regarding transcranial direct current stimulation (tDCS) and its effects on lower extremity motor behaviors and corticospinal excitability of the lower extremity representation of the motor cortex in healthy subjects. The second part investigates how different electrode montages and electrode conductance mediums affect corticospinal excitability of the tibialis anterior (TA) representation of the motor cortex in healthy subjects. The third part studies how different electrode montage and electrode conductance medium combinations affect ankle tracking accuracy in healthy subjects regarding the dominant lower extremity.
Amadi, Ugwechi. "Transcranial stimulation to enhance cortical plasticity in the healthy and stroke-affected motor system". Thesis, University of Oxford, 2012. http://ora.ox.ac.uk/objects/uuid:bb27ac6f-a79d-459a-b5a0-e9a209ac7132.
Texto completo da fonteHuang, Austin. "Cortical Stimulation Mapping of Heschl’s Gyrus in the Auditory Cortex for Tinnitus Treatment". Scholarship @ Claremont, 2019. https://scholarship.claremont.edu/cmc_theses/2073.
Texto completo da fonteQin, Jing. "The effects of transcranial direct current stimulation (tDCS) on balance control in Parkinson's disease (PD)". Thesis, Queensland University of Technology, 2021. https://eprints.qut.edu.au/211438/1/Jing_Qi_Thesis.pdf.
Texto completo da fonteGordon, Pedro Caldana. "Excitabilidade cortical motora como preditora de resposta na esquizofrenia". Universidade de São Paulo, 2018. http://www.teses.usp.br/teses/disponiveis/5/5169/tde-14022019-084004/.
Texto completo da fonteThe development of transcranial magnetic stimulation allowed the study of motor evoked potentials by applying direct stimuli to the brain cortex in a non-invasive fashion. Different stimulation protocols were observed to yield different response patterns, which were later associated with the functioning of cortical GABAergic and glutamatergic circuits, assembled as motor cortex excitability indices. Also, deviations from normality of such indices were observed in several clinical conditions, including mental disorders such as schizophrenia. The use of these measurements also helped the development of transcranial direct current stimulation (tDCS), a technique which was shown to promote neuromodulatory effects in central nervous system, with potential treatment applications. This technique has been used with success in the treatment of auditory hallucinations in patients with schizophrenia. The use of tDCS might also be effective in the treatment of negative symptoms of schizophrenia, and motor cortex excitability analysis might be used to clarify its physiological effects and act as a possible treatment response predictor. The aim of the present study is to evaluate the motor cortical excitability profile of individuals with schizophrenia, as well as possible influences of tDCS over these measurements. With this aim, we selected a cohort of subjects with schizophrenia who participated in a randomized placebo controlled clinical trial using transcranial direct current stimulation (and sham stimulation for placebo), and measuring motor cortical excitability during baseline evaluation, after the first stimulation session, and at the time of the primary outcome evaluation. The transcranial direct current stimulation protocol used in the present study involved the use of 2 electrodes of area 5x7 cm, anode placed over the region corresponding to the left dorsolateral prefrontal cortex, and cathode over the left cortical temporoparietal juntion. A current of 2 mA intensity was applied for 20 minutes. Each subject underwent a total of 10 sessions. We found that age was correlated to reduced intracortical inhibition, as has been previously found in healthy subjects. Regarding changes of motor cortical excitability following a transcranial direct current stimulation session, we observed that subjects that received the active stimulation displayed an increase in intracortical inhibition, as opposed to those who received sham stimulation, which did not present with any significant change. Results suggest that transcranial direct current stimulation session, using the parameters described in this study, led to an increase in intracortical inhibition. Given previous evidence of intracortical inhibition deficit in individuals with schizophrenia, it is possible that the observed phenomenon corresponds to a treatment mechanism of the electrical stimulation in this population. This need to be confirmed by comparing such changes in cortical excitability to objective measurements of clinical improvement. In case that is confirmed, measurement of motor cortical excitability may have a valuable application as a marker of treatment response and clinical outcome for patients with schizophrenia
Kan, Benjamin. "Effect of transcranial direct current stimulation (tDCS) on maximal voluntary isometric strength and endurance of the elbow flexors". Thesis, Edith Cowan University, Research Online, Perth, Western Australia, 2011. https://ro.ecu.edu.au/theses/375.
Texto completo da fonteLivros sobre o assunto "Direct cortical stimulation"
Nitsche, Michael A., Andrea Antal, David Liebetanz, Nicolas Lang, Frithjof Tergau e Walter Paulus. Neuroplasticity induced by transcranial direct current stimulation. Editado por Charles M. Epstein, Eric M. Wassermann e Ulf Ziemann. Oxford University Press, 2012. http://dx.doi.org/10.1093/oxfordhb/9780198568926.013.0017.
Texto completo da fonteRotenberg, Alexander, Alvaro Pascual-Leone e Alan D. Legatt. Transcranial Electrical and Magnetic Stimulation. Editado por Donald L. Schomer e Fernando H. Lopes da Silva. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780190228484.003.0028.
Texto completo da fonteNuwer, Marc R., e Stephan Schuele. Electrocorticography. Editado por Donald L. Schomer e Fernando H. Lopes da Silva. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780190228484.003.0030.
Texto completo da fonteGad, Heba, Daniel Bateman e Paul E. Holtzheimer. Neurostimulation Therapies, Side Effects, Risks, and Benefits. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780199374656.003.0016.
Texto completo da fonteMason, Peggy. Basal Ganglia. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780190237493.003.0025.
Texto completo da fonteIlmoniemi, Risto J., e Jari Karhu. TMS and electroencephalography: methods and current advances. Editado por Charles M. Epstein, Eric M. Wassermann e Ulf Ziemann. Oxford University Press, 2012. http://dx.doi.org/10.1093/oxfordhb/9780198568926.013.0037.
Texto completo da fonteOʼShea, Jacinta, e Matthew F. S. Rushworth. Higher visual cognition: search, neglect, attention, and eye movements. Editado por Charles M. Epstein, Eric M. Wassermann e Ulf Ziemann. Oxford University Press, 2012. http://dx.doi.org/10.1093/oxfordhb/9780198568926.013.0028.
Texto completo da fonteCapítulos de livros sobre o assunto "Direct cortical stimulation"
Mehdorn, H. Maximillian, Simone Goebel e Arya Nabavi. "Direct Cortical Stimulation and fMRI". In fMRI, 169–75. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-34342-1_13.
Texto completo da fonteMehdorn, Maximillian H., Simone Goebel e Arya Nabavi. "Direct Cortical Stimulation and fMRI". In fMRI, 121–26. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-540-68132-8_12.
Texto completo da fonteMehdorn, H. Maximilian, Simone Goebel e Arya Nabavi. "Direct Cortical Stimulation and fMRI". In fMRI, 311–20. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-41874-8_21.
Texto completo da fontePolanía, Rafael, Michael A. Nitsche e Walter Paulus. "Modulation of Functional Connectivity with Transcranial Direct Current Stimulation". In Cortical Connectivity, 133–44. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-662-45797-9_7.
Texto completo da fonteRadhu, Natasha, Daniel M. Blumberger e Zafiris J. Daskalakis. "Cortical Inhibition and Excitation in Neuropsychiatric Disorders Using Transcranial Magnetic Stimulation". In Transcranial Direct Current Stimulation in Neuropsychiatric Disorders, 85–102. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-33967-2_6.
Texto completo da fonteRies, Stephanie K., Kesshi Jordan, Robert T. Knight e Mitchel Berger. "Lesion-Behavior Awake Mapping with Direct Cortical and Subcortical Stimulation". In Lesion-to-Symptom Mapping, 257–70. New York, NY: Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2225-4_14.
Texto completo da fonteRego, Gabriel, Lucas Murrins Marques, Marília Lira da Silveira Coêlho e Paulo Sérgio Boggio. "Modulating the Social and Affective Brain with Transcranial Stimulation Techniques". In Social and Affective Neuroscience of Everyday Human Interaction, 255–70. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-08651-9_15.
Texto completo da fonteCallejón-Leblic, M. A., e Pedro C. Miranda. "A Computational Parcellated Brain Model for Electric Field Analysis in Transcranial Direct Current Stimulation". In Brain and Human Body Modeling 2020, 81–99. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-45623-8_5.
Texto completo da fonteLei, Tingju, Ding Ma e Feng Jiang. "Mapping the Cortical Activation Changes Induced by Transcranial Direct Current Stimulation: A fNIRS-tDCS Study". In Proceedings of the 6th International Asia Conference on Industrial Engineering and Management Innovation, 355–61. Paris: Atlantis Press, 2015. http://dx.doi.org/10.2991/978-94-6239-145-1_34.
Texto completo da fonteTatemoto, Tsuyoshi, Tomofumi Yamaguchi, Yohei Otaka, Kunitsugu Kondo e Satoshi Tanaka. "Anodal Transcranial Direct Current Stimulation over the Lower Limb Motor Cortex Increases the Cortical Excitability with Extracephalic Reference Electrodes". In Converging Clinical and Engineering Research on Neurorehabilitation, 829–34. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-34546-3_135.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Direct cortical stimulation"
Hong, Yirye, June Sic Kim e Chun Kee Chung. "Direct Cortical Stimulation for inducing Artificial Speech Perception: A Preliminary Study". In 2023 11th International Winter Conference on Brain-Computer Interface (BCI). IEEE, 2023. http://dx.doi.org/10.1109/bci57258.2023.10078541.
Texto completo da fonteSellers, Kristin K., William L. Schuerman, Heather E. Dawes, Edward F. Chang e Matthew K. Leonard. "Comparison of Common Artifact Rejection Methods applied to Direct Cortical and Peripheral Stimulation in Human ECoG". In 2019 9th International IEEE/EMBS Conference on Neural Engineering (NER). IEEE, 2019. http://dx.doi.org/10.1109/ner.2019.8716980.
Texto completo da fonteThomas, Chris, Abhishek Datta e Adam Woods. "Effect of Aging on Cortical Current Flow Due to Transcranial Direct Current Stimulation: Considerations for Safety". In 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2018. http://dx.doi.org/10.1109/embc.2018.8513014.
Texto completo da fonteKhan, Bilal, Nathan Hervey, Ann Stowe, Timea Hodics e George Alexandrakis. "Use of functional near-infrared spectroscopy to monitor cortical plasticity induced by transcranial direct current stimulation". In SPIE BiOS, editado por Nikiforos Kollias, Bernard Choi, Haishan Zeng, Hyun Wook Kang, Bodo E. Knudsen, Brian J. Wong, Justus F. Ilgner et al. SPIE, 2013. http://dx.doi.org/10.1117/12.2003446.
Texto completo da fonteDutta, Anirban, Rahima S. Boulenouar, David Guiraud e Michael A. Nitsche. "Delineating the effects of anodal transcranial direct current stimulation on myoelectric control based on slow cortical potentials". In 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2014. http://dx.doi.org/10.1109/embc.2014.6944277.
Texto completo da fonteCao, Pengjia, Kaijie Wu, Mingjie Sun, Xinyu Chai e Qiushi Ren. "Evoked Cortical Potential and Optic Nerve Response after Direct Electrical Stimulation of the Optic Nerve in Rabbits". In 2007 IEEE/ICME International Conference on Complex Medical Engineering. IEEE, 2007. http://dx.doi.org/10.1109/iccme.2007.4381951.
Texto completo da fonteLeote, J., R. Loucao, M. Lauterbach, J. Monteiro, R. G. Nunes, C. Viegas, A. Perez-Hick, A. Silvestre e H. A. Ferreira. "Understanding network reorganization after glioma regrowth: comparing connectivity measures from functional magnetic resonance imaging to direct cortical stimulation". In 2019 IEEE 6th Portuguese Meeting on Bioengineering (ENBENG). IEEE, 2019. http://dx.doi.org/10.1109/enbeng.2019.8692523.
Texto completo da fonteLellis, Caio de Almeida, Marco Alejandro Menacho Herbas, Glaucia Borges Dantas e Leonardo Rizier Galvão. "Transcranial Direct Current Stimulation in the Management of Refractory Symptoms of Parkinson’s Disease: A Systematic Review". In XIII Congresso Paulista de Neurologia. Zeppelini Editorial e Comunicação, 2021. http://dx.doi.org/10.5327/1516-3180.221.
Texto completo da fonteVenkatakrishnan, A., J. L. Contreras-Vidal, M. Sandrini e L. G. Cohen. "Independent component analysis of resting brain activity reveals transient modulation of local cortical processing by transcranial direct current stimulation". In 2011 33rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2011. http://dx.doi.org/10.1109/iembs.2011.6091998.
Texto completo da fonteBernardo, Juliana Matos Ferreira, Artur Bruno Silva Gomes, Felipe Jatobá Leite Nonato de Sá, Júlia Gonçalves Ferreira e Maria Rosa da Silva. "Phantom pain: pathophysiology and therapeutic approaches". In XIII Congresso Paulista de Neurologia. Zeppelini Editorial e Comunicação, 2021. http://dx.doi.org/10.5327/1516-3180.496.
Texto completo da fonteRelatórios de organizações sobre o assunto "Direct cortical stimulation"
Koven, William, Gordon Grau, Benny Ron e Tetsuya Hirano. Improving fry quality, survival and growth in commercially farmed fish by dietary stimulation of thyroid hormone production in premetamorphosing larvae. United States Department of Agriculture, 2004. http://dx.doi.org/10.32747/2004.7695856.bard.
Texto completo da fonte