Literatura científica selecionada sobre o tema "Direct and inverse-Problem solving"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Direct and inverse-Problem solving".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Direct and inverse-Problem solving"
Sorokin, S. B. "Direct method for solving the inverse coefficient problem". Sibirskii zhurnal industrial'noi matematiki 24, n.º 2 (18 de junho de 2021): 134–47. http://dx.doi.org/10.33048/sibjim.2021.24.211.
Texto completo da fonteNikitin, A. V., L. V. Mikhaylov, A. V. Mikhaylov, Yu L. Gobov, V. N. Kostin e Ya G. Smorodinskii. "Reconstruction of the shape of a flaw in ferromagnetic plate by solving inverse problem of magnetostatics and series of direct problems". Defektoskopiâ, n.º 9 (2 de outubro de 2024): 67–72. http://dx.doi.org/10.31857/s0130308224090086.
Texto completo da fonteXue, Qi Wen, Xiu Yun Du e Ga Ping Wang. "Solving the Inverse Heat Conduction Problem with Multi-Variables". Advanced Materials Research 168-170 (dezembro de 2010): 195–99. http://dx.doi.org/10.4028/www.scientific.net/amr.168-170.195.
Texto completo da fonteKravchenko, Vladislav V., e Lady Estefania Murcia-Lozano. "An Approach to Solving Direct and Inverse Scattering Problems for Non-Selfadjoint Schrödinger Operators on a Half-Line". Mathematics 11, n.º 16 (16 de agosto de 2023): 3544. http://dx.doi.org/10.3390/math11163544.
Texto completo da fonteAskerbekova, J. A. "NUMERICAL ALGORITHM FOR SOLVING THE CONTINUATION PROBLEM FOR THE ACOUSTIC EQUATION". BULLETIN Series of Physics & Mathematical Sciences 70, n.º 2 (30 de junho de 2020): 7–13. http://dx.doi.org/10.51889/2020-2.1728-7901.01.
Texto completo da fonteOyama, Eimei, Taro Maeda e Susumu Tachi. "A human system learning model for solving the inverse kinematics problem by direct inverse modeling". Systems and Computers in Japan 27, n.º 8 (1996): 53–68. http://dx.doi.org/10.1002/scj.4690270805.
Texto completo da fonteChmielowska, Agata, Rafał Brociek e Damian Słota. "Reconstructing the Heat Transfer Coefficient in the Inverse Fractional Stefan Problem". Fractal and Fractional 9, n.º 1 (16 de janeiro de 2025): 43. https://doi.org/10.3390/fractalfract9010043.
Texto completo da fonteTemirbekov, N. М., S. I. Kabanikhin, L. N. Тemirbekova e Zh E. Demeubayeva. "Gelfand-Levitan integral equation for solving coefficient inverse problem". Bulletin of the National Engineering Academy of the Republic of Kazakhstan 85, n.º 3 (15 de setembro de 2022): 158–67. http://dx.doi.org/10.47533/2020.1606-146x.184.
Texto completo da fonteShishlenin, M. A., N. S. Novikov e D. V. Klyuchinskiy. "On the recovering of acoustic attenuation in 2D acoustic tomography". Journal of Physics: Conference Series 2099, n.º 1 (1 de novembro de 2021): 012046. http://dx.doi.org/10.1088/1742-6596/2099/1/012046.
Texto completo da fonteDurdiev, D. K., e J. Z. Nuriddinov. "On investigation of the inverse problem for a parabolic integro-differential equation with a variable coefficient of thermal conductivity". Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki 30, n.º 4 (dezembro de 2020): 572–84. http://dx.doi.org/10.35634/vm200403.
Texto completo da fonteTeses / dissertações sobre o assunto "Direct and inverse-Problem solving"
Abdelaziz, Batoul. "Direct algorithms for solving some inverse source problems". Thesis, Compiègne, 2014. http://www.theses.fr/2014COMP1956/document.
Texto completo da fonteThis thesis deals with inverse source problems in 2 cases : stationary sources in 2D and 3D elliptic equations and a non-stationary source in a diffusion equation. the main form of sources considered are pointwise sources (monopoles, dipoles and multipolar sources) having compact support within a finite number of small subdomains modeling EEG/MEG problems and Bioluminescence Tomography (BLT) problems. The purpose o this thesis is mainly to propose robust identification methods that enable us to reconstruct the number, the intensity and the location of the sources. Direct algebraic methods are used to identify the stationary siurces and a quasi-algebraic method mixed with an optimieation method is employed to recover sources with time-variable intensities. Numerical results are shown to prove the robustness of our identification algorithms
Christofori, Pamela. "The effect of direct instruction math curriculum on higher-order problem solving". [Tampa, Fla.] : University of South Florida, 2005. http://purl.fcla.edu/fcla/etd/SFE0001287.
Texto completo da fonteLesnic, Daniel. "Boundary element methods for solving steady potential flow problems and direct and inverse unsteady heat conduction problems". Thesis, University of Leeds, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.404773.
Texto completo da fonteManoochehrnia, Pooyan. "Characterisatiοn οf viscοelastic films οn substrate by acοustic micrοscοpy. Direct and inverse prοblems". Electronic Thesis or Diss., Normandie, 2024. http://www.theses.fr/2024NORMLH38.
Texto completo da fonteIn the framework of this PhD thesis, the characterisation of the thick and thin films deposited on asubstrate has been done using acoustic microscopy via direct and inverse problem-solving algorithms.Namely the Strohm’s method is used for direct problem-solving while a variety of mathematical modelsincluding Debye series model (DSM), transmission line model (TLM) and spectral method using ratiobetween multiple reflections model (MRM) have been used to solve inverse-problem. A specificapplication of acoustic microscopy has been used consisting of mounting the plane-wave high frequency(50 MHz and 200MHz) transducers instead of use of the traditional focus transducers used for acousticimaging as well as using full-wave A-scan which could be well extended to bulk analysis of consecutivescans. Models have been validated experimentally by a thick film made of epoxy-resin with thicknessof about 100μm and a thin film made of polish of about 8μm. The characterised parameters includemechanical parameters (e.g. density and thickness) as well as viscoelastic parameters (e.g. acousticlongitudinal velocity and acoustic attenuation) and occasionally transducer phase-shift
Lopez, Lurdes. "HELPING AT-RISK STUDENTS SOLVE MATHEMATICAL WORD PROBLEMS THROUGH THE USE OF DIRECT INSTRUCTION AND PROBLEM SOLVING STRATEGIES". Master's thesis, University of Central Florida, 2008. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/3193.
Texto completo da fonteM.Ed.
Other
Graduate Studies;
K-8 Math and Science MEd
Lee, Jeanette W. "The effectiveness of a novel direct instructional approach on math word problem solving skills of elementary students with learning disabilities". The Ohio State University, 1992. http://rave.ohiolink.edu/etdc/view?acc_num=osu1298983286.
Texto completo da fonteLi, Xiaobei. "Instrumentation and inverse problem solving for impedance imaging /". Thesis, Connect to this title online; UW restricted, 2006. http://hdl.handle.net/1773/5973.
Texto completo da fonteKang, Sangwoo. "Direct sampling method in inverse electromagnetic scattering problem". Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLS417/document.
Texto completo da fonteThe non-iterative imaging problem within the inverse electromagnetic scattering framework using the direct sampling method (DSM) is considered. Thanks to the combination of the asymptotic expression of the scattered near-field or far-field and of the small obstacle hypothesis the analytical expressions of the DSM indicator function are presented in various configurations such as 2D/3D configurations and/or mono-/multi-static configurations and/or limited-/full-view case and/or mono-/multi-frequency case. Once the analytical expression obtained, its structure is analyzed and improvements proposed. Our approach is validated using synthetic data and experimental ones when available. First, the mathematical structure of DSM at a fixed frequency in 2D various scattering problems is established allowing a theoretical analysis of its efficiency and limitations. To overcome the known limitations an alternative direct sampling method (DSMA) is proposed. Next, the multi-frequency case is investigated by introducing and analyzing the multi-frequency DSM (MDSM) and the multi-frequency DSMA (MDSMA).Finally, our approach is extended to 3D inverse electromagnetic scattering problems for which the choice of the polarization of the test dipole is a key parameter. Thanks to our analytical analysis it can be made based on the polarization of the incident field
MacNeil, Toinette. "An LP approach to solving the inverse problem of electrocardiography". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape3/PQDD_0021/MQ57220.pdf.
Texto completo da fonteHilal, Mohammed Azeez. "Domain decomposition like methods for solving an electrocardiography inverse problem". Thesis, Nantes, 2016. http://www.theses.fr/2016NANT4060.
Texto completo da fonteThe aim of the this thesis is to study an electrocardiography (ECG) problem, modeling the cardiac electrical activity by using the stationary bidomain model. Tow types of modeling are considered :The modeling based on direct mathematical model and the modeling based on an inverse Cauchy problem. In the first case, the direct problem is solved by using domain decomposition methods and the approximation by finite elements method. For the inverse Cauchy problem of ECG, it was reformulated into a fixed point problem. In the second case, the existence and uniqueness of fixed point based on the topological degree of Leray-Schauder is showed. Then, some regularizing and stable iterative algorithms based on the techniques of domain decomposition method was developed. Finally, the efficiency and the accurate of the obtained results was discussed
Livros sobre o assunto "Direct and inverse-Problem solving"
Taler, Jan, e Piotr Duda. Solving Direct and Inverse Heat Conduction Problems. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/978-3-540-33471-2.
Texto completo da fonteNowożyński, Krzysztof. Methods of solving a one-dimensional magnetotelluric inverse problem. Warszawa: Państwowe Wydawn. Nauk., 1987.
Encontre o texto completo da fonteRobson, Mike. Problem-solving in groups. Wantage: MRA International, 1988.
Encontre o texto completo da fonteGilhooly, K. J. Thinking: Directed, undirected, and creative. 2a ed. London: Academic Press, 1988.
Encontre o texto completo da fonteVoronin, Evgeniy, Aleksandr Chibunichev e Yuriy Blohinov. Reliability of solving inverse problems of analytical photogrammetry. ru: INFRA-M Academic Publishing LLC., 2023. http://dx.doi.org/10.12737/2010462.
Texto completo da fonteYi, Sŏk-chae. Saengae nŭngnyŏk chʻŭkchŏng togu kaebal yŏnʼgu: Ŭisa sotʻong nŭngnyŏk, munje haegyŏl nŭngnyŏk, chagi chudojŏk haksŭp nŭngnyŏk ŭl chungsim ŭro = A study on the development of life-skills : communication, problem solving, and self-directed learning. Sŏul-si: Hanʼguk Kyoyuk Kaebarwŏn, 2003.
Encontre o texto completo da fonteT, Herman Gabor, e Sabatier Pierre Célestin 1935-, eds. Basic methods of tomography and inverse problems: A set of lectures. Bristol: A. Hilger, 1987.
Encontre o texto completo da fonteLasankin, Serey. Carbon neutralization of steelmaking, energy and cement industries. Silhouettes of the carbon-neutral industry. ru: INFRA-M Academic Publishing LLC., 2024. http://dx.doi.org/10.12737/2122427.
Texto completo da fonteKolesnichenko, Ol'ga. Theoretical and legal foundations for assessing and compensating for harm to health in the physical sense: rejection of the formula “cannot be assessed, cannot be compensated” in domestic civil law. ru: Publishing Center RIOR, 2024. http://dx.doi.org/10.29039/02141-5.
Texto completo da fonteFisher, Kimball. Leading self-directed work teams: A guide to developing new team leadership skills. New York: McGraw-Hill, 1993.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Direct and inverse-Problem solving"
Hauptman, Herbert A. "The Phase Problem: A Problem in Constrained Global Optimization". In Direct Methods for Solving Macromolecular Structures, 381–88. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-015-9093-8_33.
Texto completo da fonteWoolfson, Michael M. "Random Approaches to the Phase Problem". In Direct Methods of Solving Crystal Structures, 203–13. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4899-3692-9_20.
Texto completo da fonteHauptman, Herbert A. "The Phase Problem of X-Ray Crystallography: Overview". In Direct Methods for Solving Macromolecular Structures, 3–10. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-015-9093-8_1.
Texto completo da fonteSayre, David. "Note on “Superlarge” Structures and Their Phase Problem". In Direct Methods of Solving Crystal Structures, 353–56. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4899-3692-9_33.
Texto completo da fonteHeidrich-Meisner, Verena, e Christian Igel. "Evolution Strategies for Direct Policy Search". In Parallel Problem Solving from Nature – PPSN X, 428–37. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-87700-4_43.
Texto completo da fonteNovotny, Antonio André. "A New Non-Iterative Reconstruction Method for Solving a Class of Inverse Problems". In Fundamental Concepts and Models for the Direct Problem, 1007–23. Brasilia, DF, Brazil: Biblioteca Central da Universidade de Brasilia, 2022. http://dx.doi.org/10.4322/978-65-86503-83-8.c25.
Texto completo da fonteGiacovazzo, C., L. Manna e D. Siliqi. "Direct Methods and Molecular Replacement Techniques: The Translation Problem". In Direct Methods for Solving Macromolecular Structures, 487–97. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-015-9093-8_46.
Texto completo da fonteHughes, Evan J. "Many Objective Optimisation: Direct Objective Boundary Identification". In Parallel Problem Solving from Nature – PPSN X, 733–42. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-87700-4_73.
Texto completo da fonteLunin, V. Y. "The Likelihood Based Choice of Priors in Statistical Approaches to the Phase Problem". In Direct Methods for Solving Macromolecular Structures, 451–54. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-015-9093-8_40.
Texto completo da fonteTitarenko, Sofya S., Igor M. Kulikov, Igor G. Chernykh, Maxim A. Shishlenin, Olga I. Krivorot’ko, Dmitry A. Voronov e Mark Hildyard. "Multilevel Parallelization: Grid Methods for Solving Direct and Inverse Problems". In Communications in Computer and Information Science, 118–31. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-55669-7_10.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Direct and inverse-Problem solving"
Vovk, Serhii, e Valentyn Borulko. "Solving Linear Inverse Problems via Criterion of Minimum Extent". In 2024 IEEE 29th International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory (DIPED), 61–66. IEEE, 2024. http://dx.doi.org/10.1109/diped63529.2024.10706177.
Texto completo da fonteSavenko, Petro. "Cauchy’s Generalized Problem in Solving a Nonlinear Three-parameter Spectral Problem". In 2020 IEEE XXVth International Seminar/Workshop Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory (DIPED). IEEE, 2020. http://dx.doi.org/10.1109/diped49797.2020.9273364.
Texto completo da fonteAlexin, S. G., e O. O. Drobakhin. "Inverse problem solving for layered dielectric structure using Newton-Kantorovich iterative scheme with increased accuracy". In 2009 International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory (DIPED 2009). IEEE, 2009. http://dx.doi.org/10.1109/diped.2009.5307276.
Texto completo da fonteXu, Kaida, Yonghong Zhang, Linli Xie e Yong Fan. "A broad W-band detector utilizing zero-bias direct detection circuitry". In 2011 International Conference on Computational Problem-Solving (ICCP). IEEE, 2011. http://dx.doi.org/10.1109/iccps.2011.6092273.
Texto completo da fonteSavenko, P., M. Tkach e L. Protsakh. "Implicit Function Method in Solving of Nonlinear Two-Dimensional Spectral Problem". In XIth International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic Acoustic Wave Theory. IEEE, 2006. http://dx.doi.org/10.1109/diped.2006.314317.
Texto completo da fontePotapov, A. P. "Horizontal Well Electric Logging Data Interpretation on the Basis of Direct and Inverse Problem Solving". In Saint Petersburg 2010. Netherlands: EAGE Publications BV, 2010. http://dx.doi.org/10.3997/2214-4609.20145460.
Texto completo da fonteMarinenko, A. V. "DiInSo software package for solving direct and inverse problems of electrotomography in non-typical problem definition". In Engineering and Mining Geophysics 2020. European Association of Geoscientists & Engineers, 2020. http://dx.doi.org/10.3997/2214-4609.202051125.
Texto completo da fonteAbboudi, S., E. A. Artioukhine e H. Riad. "Estimation of Transient Boundary Conditions in a Multimaterial: Computational and Experimental Analysis". In ASME 1998 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1998. http://dx.doi.org/10.1115/imece1998-0735.
Texto completo da fonteAndriychuk, M. I., e Y. F. Kuleshnyk. "Solving the electromagnetic wave scattering problem by integral equation method". In 2017 XXIInd International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory (DIPED). IEEE, 2017. http://dx.doi.org/10.1109/diped.2017.8100610.
Texto completo da fonteKhardikov, Vyacheslav V., Ekaterina O. Yarko e Sergey L. Prosvirnin. "Fast Algorithm for Solving of the Light Diffraction Problem on Planar Periodic Structures". In 2007 XIIth International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory. IEEE, 2007. http://dx.doi.org/10.1109/diped.2007.4373578.
Texto completo da fonteRelatórios de organizações sobre o assunto "Direct and inverse-Problem solving"
Wald, Joseph K. Solving the 'Inverse' Problem in Terrain Modeling. Fort Belvoir, VA: Defense Technical Information Center, outubro de 1994. http://dx.doi.org/10.21236/ada285860.
Texto completo da fonteOsipov, G. S. Methodological basis for solving the inverse problem for multi-stage fuzzy relational equations. Сахалинский Государственный Университет, 2018. http://dx.doi.org/10.18411/olimp-2018-10.
Texto completo da fonteArmstrong, Jerawan C., e Jeffrey A. Favorite. Applications of Mesh Adaptive Direct Search Algorithms to Solve Inverse Transport Problem: Unknown Interface Location. Office of Scientific and Technical Information (OSTI), setembro de 2013. http://dx.doi.org/10.2172/1095220.
Texto completo da fonteGosnell, Greer, John List e Robert Metcalfe. A New Approach to an Age-Old Problem: Solving Externalities by Incenting Workers Directly. Cambridge, MA: National Bureau of Economic Research, junho de 2016. http://dx.doi.org/10.3386/w22316.
Texto completo da fonteDopfer, Jaqui. Öffentlichkeitsbeteiligung bei diskursiven Konfliktlösungsverfahren auf regionaler Ebene. Potentielle Ansätze zur Nutzung von Risikokommunikation im Rahmen von e-Government. Sonderforschungsgruppe Institutionenanalyse, 2003. http://dx.doi.org/10.46850/sofia.3933795605.
Texto completo da fonteShifrin, Kusiel S., e Ilin G. Zolotov. The Determination of Macro- and Microphysical Characteristics of Aerosol Spatial Inhomogeneities in the Lower Part of the Marine Atmospheric Boundary Layer from the Backscattered Lidar Signal (the Direct and Inverse Problem). Fort Belvoir, VA: Defense Technical Information Center, janeiro de 2001. http://dx.doi.org/10.21236/ada390607.
Texto completo da fonteChang, Michael Alan, Alejandra Magana, Bedrich Benes, Dominic Kao e Judith Fusco. Driving Interdisciplinary Collaboration through Adapted Conjecture Mapping: A Case Study with the PECAS Mediator. Digital Promise, maio de 2022. http://dx.doi.org/10.51388/20.500.12265/156.
Texto completo da fonteZacamy, Jenna, e Jeremy Roschelle. Navigating the Tensions: How Could Equity-relevant Research Also Be Agile, Open, and Scalable? Digital Promise, agosto de 2022. http://dx.doi.org/10.51388/20.500.12265/159.
Texto completo da fonteINVERSION METHOD OF UNCERTAIN PARAMETERS FOR TRUSS STRUCTURES BASED ON GRAPH NEURAL NETWORKS. The Hong Kong Institute of Steel Construction, dezembro de 2023. http://dx.doi.org/10.18057/ijasc.2023.19.4.5.
Texto completo da fonte