Literatura científica selecionada sobre o tema "Diffusions affines"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Diffusions affines".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Diffusions affines"
Kelly, Leah, Eckhard Platen e Michael Sørensen. "Estimation for discretely observed diffusions using transform functions". Journal of Applied Probability 41, A (2004): 99–118. http://dx.doi.org/10.1239/jap/1082552193.
Texto completo da fonteKelly, Leah, Eckhard Platen e Michael Sørensen. "Estimation for discretely observed diffusions using transform functions". Journal of Applied Probability 41, A (2004): 99–118. http://dx.doi.org/10.1017/s0021900200112239.
Texto completo da fonteLinetsky, Vadim. "On the transition densities for reflected diffusions". Advances in Applied Probability 37, n.º 2 (junho de 2005): 435–60. http://dx.doi.org/10.1239/aap/1118858633.
Texto completo da fonteLinetsky, Vadim. "On the transition densities for reflected diffusions". Advances in Applied Probability 37, n.º 02 (junho de 2005): 435–60. http://dx.doi.org/10.1017/s0001867800000252.
Texto completo da fonteSpreij, Peter, e Enno Veerman. "Affine Diffusions with Non-Canonical State Space". Stochastic Analysis and Applications 30, n.º 4 (julho de 2012): 605–41. http://dx.doi.org/10.1080/07362994.2012.684322.
Texto completo da fonteDAUMAIL, LAURENT, e PATRICK FLORCHINGER. "A CONSTRUCTIVE EXTENSION OF ARTSTEIN'S THEOREM TO THE STOCHASTIC CONTEXT". Stochastics and Dynamics 02, n.º 02 (junho de 2002): 251–63. http://dx.doi.org/10.1142/s0219493702000418.
Texto completo da fonteJin, Danqi, Jie Chen, Cedric Richard, Jingdong Chen e Ali H. Sayed. "Affine Combination of Diffusion Strategies Over Networks". IEEE Transactions on Signal Processing 68 (2020): 2087–104. http://dx.doi.org/10.1109/tsp.2020.2975346.
Texto completo da fonteGlasserman, Paul, e Kyoung-Kuk Kim. "Saddlepoint approximations for affine jump-diffusion models". Journal of Economic Dynamics and Control 33, n.º 1 (janeiro de 2009): 15–36. http://dx.doi.org/10.1016/j.jedc.2008.04.007.
Texto completo da fonteHao, Lei, Yali Huang, Yuehua Gao, Xiaoxi Chen e Peiguang Wang. "Nonrigid Registration of Prostate Diffusion-Weighted MRI". Journal of Healthcare Engineering 2017 (2017): 1–12. http://dx.doi.org/10.1155/2017/9296354.
Texto completo da fonteDuffie, Darrell, Jun Pan e Kenneth Singleton. "Transform Analysis and Asset Pricing for Affine Jump-diffusions". Econometrica 68, n.º 6 (novembro de 2000): 1343–76. http://dx.doi.org/10.1111/1468-0262.00164.
Texto completo da fonteTeses / dissertações sobre o assunto "Diffusions affines"
Dahbi, Houssem. "Ρarametric estimatiοn fοr a class οf multidimensiοnal affine prοcesses". Electronic Thesis or Diss., Normandie, 2024. http://www.theses.fr/2024NORMR089.
Texto completo da fonteThis thesis deals with statistical inference of some particular affine diffusion processes in the state space \R_+^m\times\R^n, where m,n\in\N. Such subclass of diffusions, denoted by \mathit{AD}(m,n), is applied to the pricing of bond and stock options, which is illustrated for the Vasicek, Cox-Ingersoll-Ross (CIR) and Heston models. In this thesis, we consider two different cases : the first one is when m=1 and n\in\N and the second one is when m=2 and n=1. For the \mathit{AD}(1,n) model, we introduce, in Chapter 2, a classification result where we distinguish three different cases : subcritical, critical and supercritical. Then, we study the stationarity and the ergodicity of its solution under some assumptions on the drift parameters. For the parameter estimation problem, we use two different methods: the maximum likelihood estimation (MLE) and the conditional least squares estimation (CLSE). In Chapter 2, we present the estimator obtained by the MLE method based on continuous time observations and we study its consistency and its asymptotic behavior in ergodic and particular non-ergodic cases. In Chapter 3, we present the estimator obtained by the CLSE method based on continuous then discrete time observations with high frequency and infinite horizon and we study its consistency and its asymptotic behavior in ergodic and particular non-ergodic cases. It is worth to note here that we obtain the same asymptotic results in both discrete and continuous sets under additional assumptions on the discretization step \Delta_N. In Chapter 4, we study the \mathit{AD}(2,1) model, called also double Heston model, we introduce first its classification with respect to subcritical, critical and supercritical case and we establish the relative stationarity and ergodicity theorems. In the statistical part of this chapter, we study the MLE and the CLSE of the ergodic double Heston model based on continuous time observations and we introduce its consistency and asymtotic normality theorems for each estimation method
Guida, Francesco. "Measure-valued affine and polynomial diffusions and applications to energy modeling". Doctoral thesis, Università degli studi di Trento, 2022. http://hdl.handle.net/11572/336816.
Texto completo da fonteLahiri, Joydeep. "Affine jump diffusion models for the pricing of credit default swaps". Thesis, University of Reading, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.529979.
Texto completo da fonteZhang, Xiang. "Essays on empirical performance of affine jump-diffusion option pricing models". Thesis, University of Oxford, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.552834.
Texto completo da fonteBambe, Moutsinga Claude Rodrigue. "Transform analysis of affine jump diffusion processes with applications to asset pricing". Diss., Pretoria : [s.n.], 2008. http://upetd.up.ac.za/thesis/available/etd-06112008-162807.
Texto completo da fonteNunes, João Pedro Vidal. "Exponential-affine diffusion term structure models : dimension, time-homogeneity, and stochastic volatility". Thesis, University of Warwick, 2000. http://wrap.warwick.ac.uk/111008/.
Texto completo da fontePrandi, Dario. "Geometry and analysis of control-affine systems: motion planning, heat and Schrödinger evolution". Doctoral thesis, SISSA, 2014. http://hdl.handle.net/20.500.11767/3913.
Texto completo da fonteBloch, Daniel. "Modèles de diffusion à sauts affine et quadratique : application aux nouvelles options exotiques dans les marchés actions et hybrides". Paris 6, 2006. http://www.theses.fr/2006PA066635.
Texto completo da fonteThis thesis is concerned with the pricing of exotic options within an affine quadratic jump diffusion model. In this case the computational difficulties can be reduced to solving a system of Riccati equations a number of times and performing a numerical integration using the resulting values via the FFT technique. We then present the variance swap contract and explain the reasons why it became a traded underlying. Since the variance swap contract is just a forward on the annualised realised variance we choose to infer its dynamic from the dynamic of the stock price. We therefore make the variance swap the new underlying and diffuse it over time in order to price options on the quadratic variation and more generally derivatives on the volatility. The properties of the affine-quadratic model allow us in some special cases to recover closed-form solutions. To conclude we extend the approach to the hybrid markets and consider the equity-rate and equity-credit products
Gleeson, Cameron Banking & Finance Australian School of Business UNSW. "Pricing and hedging S&P 500 index options : a comparison of affine jump diffusion models". Awarded by:University of New South Wales. School of Banking and Finance, 2005. http://handle.unsw.edu.au/1959.4/22379.
Texto completo da fonteEzzine, Ahmed. "Some topics in mathematical finance. Non-affine stochastic volatility jump diffusion models. Stochastic interest rate VaR models". Doctoral thesis, Universite Libre de Bruxelles, 2004. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/211156.
Texto completo da fonteLivros sobre o assunto "Diffusions affines"
Duffie, Darrell. Transform analysis and asset pricing for affine jump-diffusions. Cambridge, MA: National Bureau of Economic Research, 1999.
Encontre o texto completo da fonteAlfonsi, Aurélien. Affine Diffusions and Related Processes: Simulation, Theory and Applications. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-05221-2.
Texto completo da fonteNunes, João Pedro Vidal. Exponential-affine diffusion term structure models: Dimension, time-homogeneity, and stochastic volatility. [s.l.]: typescript, 2000.
Encontre o texto completo da fonteDurham, J. Benson. Jump-diffusion processes and affine term structure models: Additional closed-form approximate solutions, distributional assumptions for jumps, and parameter estimates. Washington, D.C: Federal Reserve Board, 2005.
Encontre o texto completo da fonteAlfonsi, Aurélien. Affine Diffusions and Related Processes: Simulation, Theory and Applications. Springer, 2015.
Encontre o texto completo da fonteAlfonsi, Aurélien. Affine Diffusions and Related Processes: Simulation, Theory and Applications. Springer, 2016.
Encontre o texto completo da fonteAlfonsi, Aurélien. Affine Diffusions and Related Processes: Simulation, Theory and Applications. Springer International Publishing AG, 2015.
Encontre o texto completo da fontevan der Voort, Hein, e Peter Bakker. Polysynthesis and Language Contact. Editado por Michael Fortescue, Marianne Mithun e Nicholas Evans. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199683208.013.23.
Texto completo da fonteCapítulos de livros sobre o assunto "Diffusions affines"
Alfonsi, Aurélien. "Real Valued Affine Diffusions". In Bocconi & Springer Series, 1–36. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-05221-2_1.
Texto completo da fonteBaldeaux, Jan, e Eckhard Platen. "Pricing Using Affine Diffusions". In Functionals of Multidimensional Diffusions with Applications to Finance, 199–217. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-00747-2_8.
Texto completo da fonteAlfonsi, Aurélien. "The Heston Model and Multidimensional Affine Diffusions". In Bocconi & Springer Series, 93–121. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-05221-2_4.
Texto completo da fonteBaldeaux, Jan, e Eckhard Platen. "Affine Diffusion Processes on the Euclidean Space". In Functionals of Multidimensional Diffusions with Applications to Finance, 181–98. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-00747-2_7.
Texto completo da fonteBaldeaux, Jan, e Eckhard Platen. "Solvable Affine Processes on the Euclidean State Space". In Functionals of Multidimensional Diffusions with Applications to Finance, 219–41. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-00747-2_9.
Texto completo da fontePollari, Mika, Tuomas Neuvonen e Jyrki Lötjönen. "Affine Registration of Diffusion Tensor MR Images". In Medical Image Computing and Computer-Assisted Intervention – MICCAI 2006, 629–36. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11866763_77.
Texto completo da fonteAlfonsi, Aurélien. "Wishart Processes and Affine Diffusions on Positive Semidefinite Matrices". In Bocconi & Springer Series, 123–82. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-05221-2_5.
Texto completo da fonteBerger, Marc A. "Random Affine Iterated Function Systems: Mixing and Encoding". In Diffusion Processes and Related Problems in Analysis, Volume II, 315–46. Boston, MA: Birkhäuser Boston, 1992. http://dx.doi.org/10.1007/978-1-4612-0389-6_15.
Texto completo da fonteMohammed, Salah-Eldin A. "Lyapunov Exponents and Stochastic Flows of Linear and Affine Hereditary Systems". In Diffusion Processes and Related Problems in Analysis, Volume II, 141–69. Boston, MA: Birkhäuser Boston, 1992. http://dx.doi.org/10.1007/978-1-4612-0389-6_7.
Texto completo da fonteLeemans, Alexander, Jan Sijbers, Steve De Backer, Everhard Vandervliet e Paul M. Parizel. "Affine Coregistration of Diffusion Tensor Magnetic Resonance Images Using Mutual Information". In Advanced Concepts for Intelligent Vision Systems, 523–30. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11558484_66.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Diffusions affines"
Gogineni, Vinay Chakravarthi, e Mrityunjoy Chakraborty. "Diffusion Affine Projection Algorithm for Multitask Networks". In 2018 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC). IEEE, 2018. http://dx.doi.org/10.23919/apsipa.2018.8659481.
Texto completo da fonteShi, Juan, Jingen Ni e Xiaoping Chen. "Variable step-size diffusion proportionate affine projection algorithm". In 2016 IEEE International Workshop on Acoustic Signal Enhancement (IWAENC). IEEE, 2016. http://dx.doi.org/10.1109/iwaenc.2016.7602940.
Texto completo da fonteRipaccioli, Giulio, Jason B. Siegel, Anna G. Stefanopoulou e Stefano Di Cairano. "Derivation and Simulation Results of a Hybrid Model Predictive Control for Water Purge Scheduling in a Fuel Cell". In ASME 2009 Dynamic Systems and Control Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/dscc2009-2729.
Texto completo da fonteSitjongsataporn, Suchada, Sethakarn Prongnuch e Theerayod Wiangtong. "Diffusion Affine Projection Sign Algorithm based on QR-Decomposition". In 2021 9th International Electrical Engineering Congress (iEECON). IEEE, 2021. http://dx.doi.org/10.1109/ieecon51072.2021.9440282.
Texto completo da fonteSong, Pucha, Haiquan Zhao e Yingying Zhu. "Diffusion Affine Projection M-Estimate Algorithm for Multitask Networks". In 2021 IEEE 16th Conference on Industrial Electronics and Applications (ICIEA). IEEE, 2021. http://dx.doi.org/10.1109/iciea51954.2021.9516274.
Texto completo da fonteAlghunaim, S. A., K. Yuan e A. H. Sayed. "Dual Coupled Diffusion for Distributed Optimization with Affine Constraints". In 2018 IEEE Conference on Decision and Control (CDC). IEEE, 2018. http://dx.doi.org/10.1109/cdc.2018.8619343.
Texto completo da fonteXiangfen Zhang, Hong Ye e Zuolei Sun. "Affine invariant diffusion smoothing strategy for vector-valued images". In 2009 International Conference on Future BioMedical Information Engineering (FBIE 2009). IEEE, 2009. http://dx.doi.org/10.1109/fbie.2009.5405768.
Texto completo da fonteGogineni, Vinay Chakravarthi, e Mrityunjoy Chakraborty. "Partial Diffusion Affine Projection Algorithm Over Clustered Multitask Networks". In 2019 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, 2019. http://dx.doi.org/10.1109/iscas.2019.8702110.
Texto completo da fonteMiguel Bravo, Jorge. "Pricing Survivor Bonds with Affine-Jump Diffusion Stochastic Mortality Models". In ICEEG '21: 2021 The 5th International Conference on E-Commerce, E-Business and E-Government. New York, NY, USA: ACM, 2021. http://dx.doi.org/10.1145/3466029.3466037.
Texto completo da fonteRaviv, Dan, Michael M. Bronstein, Alexander M. Bronstein, Ron Kimmel e Nir Sochen. "Affine-invariant diffusion geometry for the analysis of deformable 3D shapes". In 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2011. http://dx.doi.org/10.1109/cvpr.2011.5995486.
Texto completo da fonteRelatórios de organizações sobre o assunto "Diffusions affines"
Duffie, Darrell, Jun Pan e Kenneth Singleton. Transform Analysis and Asset Pricing for Affine Jump-Diffusions. Cambridge, MA: National Bureau of Economic Research, abril de 1999. http://dx.doi.org/10.3386/w7105.
Texto completo da fonteDresner, L. Asymptotic behavior of solutions of diffusion-like partial differential equations invariant to a family of affine groups. Office of Scientific and Technical Information (OSTI), julho de 1990. http://dx.doi.org/10.2172/6697591.
Texto completo da fonte