Literatura científica selecionada sobre o tema "Diffusion equations"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Diffusion equations".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Diffusion equations"
Slijepčević, Siniša. "Entropy of scalar reaction-diffusion equations". Mathematica Bohemica 139, n.º 4 (2014): 597–605. http://dx.doi.org/10.21136/mb.2014.144137.
Texto completo da fonteGomez, Francisco, Victor Morales e Marco Taneco. "Analytical solution of the time fractional diffusion equation and fractional convection-diffusion equation". Revista Mexicana de Física 65, n.º 1 (31 de dezembro de 2018): 82. http://dx.doi.org/10.31349/revmexfis.65.82.
Texto completo da fonteBögelein, Verena, Frank Duzaar, Paolo Marcellini e Stefano Signoriello. "Nonlocal diffusion equations". Journal of Mathematical Analysis and Applications 432, n.º 1 (dezembro de 2015): 398–428. http://dx.doi.org/10.1016/j.jmaa.2015.06.053.
Texto completo da fonteSOKOLOV, I. M., e A. V. CHECHKIN. "ANOMALOUS DIFFUSION AND GENERALIZED DIFFUSION EQUATIONS". Fluctuation and Noise Letters 05, n.º 02 (junho de 2005): L275—L282. http://dx.doi.org/10.1142/s0219477505002653.
Texto completo da fonteZubair, Muhammad. "Fractional diffusion equations and anomalous diffusion". Contemporary Physics 59, n.º 4 (11 de setembro de 2018): 406–7. http://dx.doi.org/10.1080/00107514.2018.1515252.
Texto completo da fonteGurevich, Pavel, e Sergey Tikhomirov. "Systems of reaction-diffusion equations with spatially distributed hysteresis". Mathematica Bohemica 139, n.º 2 (2014): 239–57. http://dx.doi.org/10.21136/mb.2014.143852.
Texto completo da fonteFila, Marek, e Ján Filo. "Global behaviour of solutions to some nonlinear diffusion equations". Czechoslovak Mathematical Journal 40, n.º 2 (1990): 226–38. http://dx.doi.org/10.21136/cmj.1990.102377.
Texto completo da fonteAbrashina-Zhadaeva, Natali. "A SPLITTING TYPE ALGORITHM FOR NUMERICAL SOLUTION OF PDES OF FRACTIONAL ORDER". Mathematical Modelling and Analysis 12, n.º 4 (31 de dezembro de 2007): 399–408. http://dx.doi.org/10.3846/1392-6292.2007.12.399-408.
Texto completo da fonteScheel, Arnd, e Erik S. Van Vleck. "Lattice differential equations embedded into reaction–diffusion systems". Proceedings of the Royal Society of Edinburgh: Section A Mathematics 139, n.º 1 (fevereiro de 2009): 193–207. http://dx.doi.org/10.1017/s0308210507000248.
Texto completo da fonteKOLTUNOVA, L. N. "ON AVERAGED DIFFUSION EQUATIONS". Chemical Engineering Communications 114, n.º 1 (abril de 1992): 1–15. http://dx.doi.org/10.1080/00986449208936013.
Texto completo da fonteTeses / dissertações sobre o assunto "Diffusion equations"
Ta, Thi nguyet nga. "Sub-gradient diffusion equations". Thesis, Limoges, 2015. http://www.theses.fr/2015LIMO0137/document.
Texto completo da fonteThis thesis is devoted to the study of evolution problems where the dynamic is governed by sub-gradient diffusion operator. We are interest in two kind of evolution problems. The first problem is governed by local operator of Leray-Lions type with a bounded domain. In this problem, the operator is maximal monotone and does not satisfied the standard polynomial growth control condition. Typical examples appears in the study of non-Neutonian fluid and also in the description of sub-gradient flows dynamics. To study the problem we handle the equation in the context of nonlinear PDE with singular flux. We use the theory of tangential gradient to characterize the state equation that gives the connection between the flux and the gradient of the solution. In the stationary problem, we have the existence of solution, we also get the equivalence between the initial minimization problem, the dual problem and the PDE. In the evolution one, we provide the existence, uniqueness of solution and the contractions. The second problem is governed by a discrete operator. We study the discrete evolution equation which describe the process of collapsing sandpile. This is a typical example of Self-organized critical phenomena exhibited by a critical slop. We consider the discrete evolution equation where the dynamic is governed by sub-gradient of indicator function of the unit ball. We begin by establish the model, we prove existence and uniqueness of the solution. Then by using dual arguments we study the numerical computation of the solution and we present some numerical simulations
Coulon, Anne-Charline. "Propagation in reaction-diffusion equations with fractional diffusion". Doctoral thesis, Universitat Politècnica de Catalunya, 2014. http://hdl.handle.net/10803/277576.
Texto completo da fonteEsta tesis se centra en el comportamiento en tiempos grandes de las soluciones de la ecuación de Fisher- KPP de reacción-difusión con difusión fraccionaria. Este tipo de ecuación surge, por ejemplo, en la propagación espacial o en la propagación de especies biológicas (ratas, insectos,...). En la dinámica de poblaciones, la cantidad que se estudia representa la densidad de la población. Es conocido que, bajo algunas hipótesis específicas, la solución tiende a un estado estable del problema de evolución, cuando el tiempo tiende a infinito. En otras palabras, la población invade el medio, lo que corresponde a la supervivencia de la especie, y nosotros queremos entender con qué velocidad se lleva a cabo esta invasión. Para responder a esta pregunta, hemos creado un nuevo método para estudiar la velocidad de propagación cuando se consideran difusiones fraccionarias, además hemos aplicado este método en tres problemas diferentes. La Parte I de la tesis está dedicada al análisis de la ubicación asintótica de los conjuntos de nivel de la solución de dos problemas diferentes: modelos de Fisher- KPP en medios periódicos y sistemas cooperativos, ambos consideran difusión fraccionaria. En el primer modelo, se prueba que, bajo ciertas hipótesis sobre el medio periódico, la solución se propaga exponencialmente rápido en el tiempo, además encontramos el exponente exacto que aparece en esta velocidad de propagación exponencial. También llevamos a cabo simulaciones numéricas para investigar la dependencia de la velocidad de propagación con la condición inicial. En el segundo modelo, se prueba que la velocidad de propagación es nuevamente exponencial en el tiempo, con un exponente que depende del índice más pequeño de los Laplacianos fraccionarios y también del término de reacción. La Parte II de la tesis ocurre en un entorno de dos dimensiones, donde se reproduce un tipo ecuación de Fisher- KPP con difusión estándar, excepto en una línea del plano, en el que la difusión fraccionada aparece. El plano será llamado "campo" y la línea "camino", como una referencia a las situaciones biológicas que tenemos en mente. De hecho, desde hace tiempo se sabe que la difusión rápida en los caminos puede causar un efecto en la propagación de epidemias. Probamos que la velocidad de propagación es exponencial en el tiempo en el camino, mientras que depende linealmente del tiempo en el campo. Contrariamente a los precisos exponentes obtenidos en la Parte I, para este modelo, no fuimos capaces de dar una localización exacta de los conjuntos de nivel en la carretera y en el campo. La forma de propagación de los conjuntos de nivel en el campo se investiga a través de simulaciones numéricas
Prehl, Janett. "Diffusion on fractals and space-fractional diffusion equations". Doctoral thesis, Universitätsbibliothek Chemnitz, 2010. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-201001068.
Texto completo da fonteThe aim of this thesis is the examination of sub- and superdiffusive processes in fractal structures. The focus of the work concentrates on two separate approaches that are chosen and varied according to the corresponding regime. Thus, we obtain new insights about the underlying mechanisms and a more appropriate way of description for both regimes. In the first part subdiffusion is considered, which plays a crucial role for transport processes, as in living tissues. First, we model the fractal state space via finite Sierpinski carpets with absorbing boundary conditions and we solve the master equation to compute the time development of the probability distribution. To characterize the diffusion on regular as well as random carpets we determine the longest decay time of the probability distribution, the mean exit time and the Random walk dimension. Thus, we can verify the influence of random structures on the diffusive dynamics. In the second part of this thesis superdiffusive processes are studied by means of the diffusion equation. Its second order space derivative is extended to fractional order, which represents the fractal properties of the surrounding media. The resulting space-fractional diffusion equations span a linking regime from the irreversible diffusion equation to the reversible (half) wave equation. The corresponding solutions are analyzed by different entropies, as the Shannon, Tsallis or Rényi entropies and their entropy production rates, which are natural measures of irreversibility. We find an entropy production paradox, i. e. an unexpected increase of the entropy production rate by decreasing irreversibility of the processes. Due to an appropriate rescaling of the entropy we are able to resolve the paradox
Fei, Ning Fei. "Studies in reaction-diffusion equations". Thesis, Heriot-Watt University, 2003. http://hdl.handle.net/10399/310.
Texto completo da fonteGrant, Koryn. "Symmetries and reaction-diffusion equations". Thesis, University of Kent, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.264601.
Texto completo da fonteNinomiya, Hirokazu. "Separatrices of competition-diffusion equations". 京都大学 (Kyoto University), 1995. http://hdl.handle.net/2433/187159.
Texto completo da fonteKyoto Journal of Mathematics, vol35(3), pp.539-567, 1995, http://projecteuclid.org/euclid.kjm/1250518709
Kyoto University (京都大学)
0048
新制・課程博士
博士(理学)
甲第5884号
理博第1591号
新制||理||889(附属図書館)
UT51-95-D203
京都大学大学院工学研究科数学専攻
(主査)教授 西田 孝明, 教授 渡辺 信三, 教授 岩崎 敷久
学位規則第4条第1項該当
Coulon, Chalmin Anne-Charline. "Fast propagation in reaction-diffusion equations with fractional diffusion". Toulouse 3, 2014. http://thesesups.ups-tlse.fr/2427/.
Texto completo da fonteThis thesis focuses on the long time behaviour, and more precisely on fast propagation, in Fisher-KPP reaction diffusion equations involving fractional diffusion. This type of equation arises, for example, in spreading of biological species. Under some specific assumptions, the population invades the medium and we want to understand at which speed this invasion takes place when fractional diffusion is at stake. To answer this question, we set up a new method and apply it on different models. In a first part, we study two different problems, both including fractional diffusion : Fisher-KPP models in periodic media and cooperative systems. In both cases, we prove, under additional assumptions, that the solution spreads exponentially fast in time and we find the precise exponent of propagation. We also carry out numerical simulations to investigate the dependence of the speed of propagation on the initial condition. In a second part, we deal with a two dimensional environment, where reproduction of Fisher-KPP type and usual diffusion occur, except on a line of the plane, on which fractional diffusion takes place. The plane is referred to as "the field" and the line to "the road", as a reference to the biological situations we have in mind. We prove that the speed of propagation is exponential in time on the road, whereas it depends linearly on time in the field. The expansion shape of the level sets in the field is investigated through numerical simulations
Knaub, Karl R. "On the asymptotic behavior of internal layer solutions of advection-diffusion-reaction equations /". Thesis, Connect to this title online; UW restricted, 2001. http://hdl.handle.net/1773/6772.
Texto completo da fonteCoville, Jerome. "Equations de reaction diffusion non-locale". Phd thesis, Université Pierre et Marie Curie - Paris VI, 2003. http://tel.archives-ouvertes.fr/tel-00004313.
Texto completo da fonteCifani, Simone. "On nonlinear fractional convection - diffusion equations". Doctoral thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for matematiske fag, 2011. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-15192.
Texto completo da fonteLivros sobre o assunto "Diffusion equations"
Seizō, Itō. Diffusion equations. Providence, R.I: American Mathematical Society, 1992.
Encontre o texto completo da fonteFavini, Angelo. Degenerate Nonlinear Diffusion Equations. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.
Encontre o texto completo da fonteFavini, Angelo, e Gabriela Marinoschi. Degenerate Nonlinear Diffusion Equations. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-28285-0.
Texto completo da fonteMasao, Nagasawa. Schrödinger equations and diffusion theory. Basel: Birkhäuser Verlag, 1993.
Encontre o texto completo da fonteNagasawa, Masao. Schrödinger Equations and Diffusion Theory. Basel: Springer Basel, 1993. http://dx.doi.org/10.1007/978-3-0348-0560-5.
Texto completo da fonteNagasawa, Masao. Schrödinger Equations and Diffusion Theory. Basel: Birkhäuser Basel, 1993. http://dx.doi.org/10.1007/978-3-0348-8568-3.
Texto completo da fonteLam, King-Yeung, e Yuan Lou. Introduction to Reaction-Diffusion Equations. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-20422-7.
Texto completo da fonteNonlocal diffusion problems. Providence, R.I: American Mathematical Society, 2010.
Encontre o texto completo da fonte1955-, Caristi Gabriella, e Mitidieri Enzo, eds. Reaction diffusion systems. New York: Marcel Dekker, 1998.
Encontre o texto completo da fonteShock waves and reaction-diffusion equations. 2a ed. New York: Springer-Verlag, 1994.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Diffusion equations"
Linge, Svein, e Hans Petter Langtangen. "Diffusion Equations". In Finite Difference Computing with PDEs, 207–322. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-55456-3_3.
Texto completo da fonteShewmon, Paul. "Diffusion Equations". In Diffusion in Solids, 9–51. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-48206-4_1.
Texto completo da fonteItô, Seizô. "Diffusion Equations". In Kôsaku Yosida Collected Papers, 421–87. Tokyo: Springer Japan, 1992. http://dx.doi.org/10.1007/978-4-431-65859-7_6.
Texto completo da fonteKavdia, Mahendra. "Parabolic Differential Equations, Diffusion Equation". In Encyclopedia of Systems Biology, 1621–24. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4419-9863-7_273.
Texto completo da fonteStroock, Daniel W., e S. R. Srinivasa Varadhan. "Stochastic Differential Equations". In Multidimensional Diffusion Processes, 122–35. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/3-540-28999-2_6.
Texto completo da fonteEidelman, Samuil D., Anatoly N. Kochubei e Stepan D. Ivasyshen. "Fractional Diffusion Equations". In Analytic Methods in the Theory of Differential and Pseudo-Differential Equations of Parabolic Type, 321–61. Basel: Birkhäuser Basel, 2004. http://dx.doi.org/10.1007/978-3-0348-7844-9_5.
Texto completo da fonteJüngel, Ansgar. "Drift-Diffusion Equations". In Transport Equations for Semiconductors, 1–29. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-89526-8_5.
Texto completo da fonteMei, Zhen. "Reaction-Diffusion Equations". In Numerical Bifurcation Analysis for Reaction-Diffusion Equations, 1–6. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-04177-2_1.
Texto completo da fonteDa Prato, Giuseppe. "Reaction-Diffusion Equations". In Kolmogorov Equations for Stochastic PDEs, 99–130. Basel: Birkhäuser Basel, 2004. http://dx.doi.org/10.1007/978-3-0348-7909-5_4.
Texto completo da fonteWoyczynski, Wojbor A. "Nonlinear Diffusion Equations". In Diffusion Processes, Jump Processes, and Stochastic Differential Equations, 107–14. Boca Raton: Chapman and Hall/CRC, 2022. http://dx.doi.org/10.1201/9781003216759-9.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Diffusion equations"
Hassanpour, H., E. Nadernejad e H. Miar. "Image enhancement using diffusion equations". In 2007 9th International Symposium on Signal Processing and Its Applications (ISSPA). IEEE, 2007. http://dx.doi.org/10.1109/isspa.2007.4555608.
Texto completo da fontePopescu, Emil, Cristiana Dumitrache, Vasile Mioc e Nedelia A. Popescu. "Fractional diffusion equations and applications". In Flows, Boundaries, Interactions. AIP, 2007. http://dx.doi.org/10.1063/1.2790342.
Texto completo da fonteHanyga, Andrzej. "Fractional diffusion and wave equations". In Mathematical Models and Methods for Smart Materials. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812776273_0017.
Texto completo da fonteQuintana Murillo, Joaqui´n, e Santos Bravo Yuste. "On an Explicit Difference Method for Fractional Diffusion and Diffusion-Wave Equations". In ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/detc2009-86625.
Texto completo da fonteSALVARANI, F., e J. L. VÁZQUEZ. "FROM KINETIC SYSTEMS TO DIFFUSION EQUATIONS". In Proceedings of the 12th Conference on WASCOM 2003. WORLD SCIENTIFIC, 2004. http://dx.doi.org/10.1142/9789812702937_0055.
Texto completo da fonteHwang, Jeehyun, Jeongwhan Choi, Hwangyong Choi, Kookjin Lee, Dongeun Lee e Noseong Park. "Climate Modeling with Neural Diffusion Equations". In 2021 IEEE International Conference on Data Mining (ICDM). IEEE, 2021. http://dx.doi.org/10.1109/icdm51629.2021.00033.
Texto completo da fonteKoprucki, Thomas, e Klaus Gartner. "Discretization scheme for drift-diffusion equations with strong diffusion enhancement". In 2012 12th International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD). IEEE, 2012. http://dx.doi.org/10.1109/nusod.2012.6316560.
Texto completo da fonteISHII, HITOSHI, e HIROYOSHI MITAKE. "TWO REMARKS ON PERIODIC SOLUTIONS OF HAMILTON-JACOBI EQUATIONS". In The International Conference on Reaction-Diffusion System and Viscosity Solutions. WORLD SCIENTIFIC, 2009. http://dx.doi.org/10.1142/9789812834744_0005.
Texto completo da fonteGEORGI, M., e N. JANGLE. "SPIRAL WAVE MOTION IN REACTION-DIFFUSION SYSTEMS". In Proceedings of the International Conference on Differential Equations. WORLD SCIENTIFIC, 2005. http://dx.doi.org/10.1142/9789812702067_0108.
Texto completo da fontePoláčik, P. "SYMMETRY PROPERTIES OF POSITIVE SOLUTIONS OF PARABOLIC EQUATIONS: A SURVEY". In The International Conference on Reaction-Diffusion System and Viscosity Solutions. WORLD SCIENTIFIC, 2009. http://dx.doi.org/10.1142/9789812834744_0009.
Texto completo da fonteRelatórios de organizações sobre o assunto "Diffusion equations"
Wang, Chi-Jen. Analysis of discrete reaction-diffusion equations for autocatalysis and continuum diffusion equations for transport. Office of Scientific and Technical Information (OSTI), janeiro de 2013. http://dx.doi.org/10.2172/1226552.
Texto completo da fonteKallianput, G., I. Mitoma e R. L. Wolpert. Diffusion Equations in Duals of Nuclear Spaces. Fort Belvoir, VA: Defense Technical Information Center, julho de 1988. http://dx.doi.org/10.21236/ada200078.
Texto completo da fonteFujisaki, Masatoshi. Normed Bellman Equation with Degenerate Diffusion Coefficients and Its Application to Differential Equations. Fort Belvoir, VA: Defense Technical Information Center, outubro de 1987. http://dx.doi.org/10.21236/ada190319.
Texto completo da fonteHale, Jack K., e Kunimochi Sakamoto. Shadow Systems and Attractors in Reaction-Diffusion Equations,. Fort Belvoir, VA: Defense Technical Information Center, abril de 1987. http://dx.doi.org/10.21236/ada185804.
Texto completo da fonteWenocur, Michael L. Diffusion First Passage Times: Approximations and Related Differential Equations,. Fort Belvoir, VA: Defense Technical Information Center, janeiro de 1986. http://dx.doi.org/10.21236/ada185592.
Texto completo da fonteFields, Mary A. Modeling Large Scale Troop Movement Using Reaction Diffusion Equations. Fort Belvoir, VA: Defense Technical Information Center, setembro de 1993. http://dx.doi.org/10.21236/ada270701.
Texto completo da fonteHeineike, Benjamin M. Modeling Morphogenesis with Reaction-Diffusion Equations Using Galerkin Spectral Methods. Fort Belvoir, VA: Defense Technical Information Center, maio de 2002. http://dx.doi.org/10.21236/ada403766.
Texto completo da fonteAhmed, Hoda F. Gegenbauer Collocation Algorithm for Solving Twodimensional Time-space Fractional Diffusion Equations. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, agosto de 2019. http://dx.doi.org/10.7546/crabs.2019.08.04.
Texto completo da fonteKnapp, Charles E., e Charles W. Cranfill. Comparison of Numeric to Analytic Solutions for a Class of Nonlinear Diffusion Equations. Office of Scientific and Technical Information (OSTI), outubro de 1992. http://dx.doi.org/10.2172/1193616.
Texto completo da fonteAhmed, Hoda F. Analytic Approximate Solutions for the 1D and 2D Nonlinear Fractional Diffusion Equations of Fisher Type. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, março de 2020. http://dx.doi.org/10.7546/crabs.2020.03.04.
Texto completo da fonte