Literatura científica selecionada sobre o tema "Diffusion du lithium"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Diffusion du lithium".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Diffusion du lithium"
Jun, KyuJung, e Gerbrand Ceder. "(Battery Division Student Research Award Sponsored by Mercedes-Benz Research & Development) Rationalizing Fast Lithium-ion Diffusion in Inorganic Lithium Superionic Conductors". ECS Meeting Abstracts MA2023-02, n.º 7 (22 de dezembro de 2023): 985. http://dx.doi.org/10.1149/ma2023-027985mtgabs.
Texto completo da fonteOciepa, Jozef. "The Search for the Materials That Are Attractive to "Natural" Li Diffusion". ECS Meeting Abstracts MA2022-02, n.º 3 (9 de outubro de 2022): 296. http://dx.doi.org/10.1149/ma2022-023296mtgabs.
Texto completo da fonteXu, Gao, Feng Hao, Mouyi Weng, Jiawang Hong, Feng Pan e Daining Fang. "Strong influence of strain gradient on lithium diffusion: flexo-diffusion effect". Nanoscale 12, n.º 28 (2020): 15175–84. http://dx.doi.org/10.1039/d0nr03746j.
Texto completo da fonteLoburets, A. T., N. B. Senenko, M. A. Mukhtarov, Yu S. Vedula e A. G. Naumovets. "Surface Diffusion in Coadsorbed Layers with Different Mobilities of Adsorbates: (Li +Dy) on Mo(112) and (Li+Sr) on W(112)". Defect and Diffusion Forum 277 (abril de 2008): 201–6. http://dx.doi.org/10.4028/www.scientific.net/ddf.277.201.
Texto completo da fonteRoselieb, Knut, Marc Chaussidon, Denis Mangin e Albert Jambon. "Lithium diffusion in vitreous jadeite (NaAlSi206): An ion microprobe investigation". Neues Jahrbuch für Mineralogie - Abhandlungen 172, n.º 2-3 (1 de maio de 1998): 245–57. http://dx.doi.org/10.1127/njma/172/1998/245.
Texto completo da fonteRupp, Rico, Bart Caerts, André Vantomme, Jan Fransaer e Alexandru Vlad. "Lithium Diffusion in Copper". Journal of Physical Chemistry Letters 10, n.º 17 (22 de agosto de 2019): 5206–10. http://dx.doi.org/10.1021/acs.jpclett.9b02014.
Texto completo da fontePark, Jong Hyun, Hana Yoon, Younghyun Cho e Chung-Yul Yoo. "Investigation of Lithium Ion Diffusion of Graphite Anode by the Galvanostatic Intermittent Titration Technique". Materials 14, n.º 16 (19 de agosto de 2021): 4683. http://dx.doi.org/10.3390/ma14164683.
Texto completo da fonteDörrer, Lars, Philipp Tuchel, Daniel Uxa e Harald Schmidt. "Lithium tracer diffusion in proton-exchanged lithium niobate". Solid State Ionics 365 (julho de 2021): 115657. http://dx.doi.org/10.1016/j.ssi.2021.115657.
Texto completo da fonteZuo, Peng, e Ya-Pu Zhao. "A phase field model coupling lithium diffusion and stress evolution with crack propagation and application in lithium ion batteries". Physical Chemistry Chemical Physics 17, n.º 1 (2015): 287–97. http://dx.doi.org/10.1039/c4cp00563e.
Texto completo da fonteLee, Danwon, Chihyun Nam, Juwon Kim, Bonho Koo, Hyejeong Hyun, Jinkyu Chung, Sungjae Seo et al. "(Battery Student Slam 8 Award Winner) Multi-Clustered Lithium Diffusion in Single-Crystalline NMC Battery Particles". ECS Meeting Abstracts MA2024-01, n.º 5 (9 de agosto de 2024): 704. http://dx.doi.org/10.1149/ma2024-015704mtgabs.
Texto completo da fonteTeses / dissertações sobre o assunto "Diffusion du lithium"
Senyshyn, A., M. Monchak, O. Dolotko e H. Ehrenberg. "Lithium Diffusion and Diffraction". Diffusion fundamentals 21 (2014) 4, S.1, 2014. https://ul.qucosa.de/id/qucosa%3A32392.
Texto completo da fonteLi, Juchuan. "UNDERSTANDING DEGRADATION AND LITHIUM DIFFUSION IN LITHIUM ION BATTERY ELECTRODES". UKnowledge, 2012. http://uknowledge.uky.edu/cme_etds/12.
Texto completo da fonteHeitjans, Paul. "Diffusion in lithium ion conductors – from fundamentals to applications". Universitätsbibliothek Leipzig, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-181798.
Texto completo da fonteSwanson, Claudia H., Michael Schulz, Holger Fritze, Jianmin Shi, Klaus-Dieter Becker, Peter Fielitz e Günter Borchardt. "Examinations of high-temperature properties of stoichiometric lithium niobate". Universitätsbibliothek Leipzig, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-186802.
Texto completo da fonteEpp, Viktor, Christian Brünig, Martin Wilkening, Michael Binnewies e Paul Heitjans. "Lithium diffusion studies of gas-phase synthesized amorphous oxides". Universitätsbibliothek Leipzig, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-188235.
Texto completo da fonteHeitjans, Paul. "Diffusion in lithium ion conductors – from fundamentals to applications". Diffusion fundamentals 20 (2013) 19, S. 1-2, 2013. https://ul.qucosa.de/id/qucosa%3A13583.
Texto completo da fonteRahn, J., E. Hüger, E. Witt, P. Heitjans e H. Schmidt. "Lithium Self-Diffusion in Single Crystalline and Amorphous LiAlO2". Diffusion fundamentals 21 (2014) 16, S.1, 2014. https://ul.qucosa.de/id/qucosa%3A32425.
Texto completo da fonteBerggren, Elin. "Diffusion of Lithium in Boron-doped Diamond Thin Films". Thesis, Uppsala universitet, Molekyl- och kondenserade materiens fysik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-413090.
Texto completo da fonteOhlendorf, Gerd, Denny Richter, Jan Sauerwald e Holger Fritze. "High-temperature electrical conductivity and electromechanical properties of stoichiometric lithium niobate". Universitätsbibliothek Leipzig, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-192902.
Texto completo da fonteMoore, Charles J. (Charles Jacob). "Ab initio screening of lithium diffusion rates in transition metal oxide cathodes for lithium ion batteries". Thesis, Massachusetts Institute of Technology, 2012. http://hdl.handle.net/1721.1/79562.
Texto completo da fonteCataloged from PDF version of thesis.
Includes bibliographical references (p. 57-62).
A screening metric for diffusion limitations in lithium ion battery cathodes is derived using transition state theory and common materials properties. The metric relies on net activation barrier for lithium diffusion. Several cathode materials are screened using this approach: [beta]'-LiFePO4, hexagonal LiMnBO3, monoclinic LiMnBO3, Li 3Mn(CO3)(PO4), and Li9V3 (P2O7)3(PO4) 2. The activation barriers for the materials are determined using a combined approach. First, an empirical potential model is used to identify the lithium diffusion topology. Second, density functional theory is used to determine migration barriers. The accuracy of the empirical potential diffusion topologies, the density functional theory migration barriers, and the overall screening metric are compared against experimental evidence to validate the methodology. The accuracy of the empirical potential model is also evaluated against the density functional theory migration barriers.
by Charles J. Moore.
S.M.
Livros sobre o assunto "Diffusion du lithium"
Attiah, Abdul-Redha Dinar. Diffusion of tritium in neutron irradiated lithium fluoride and lithium carbonate. Salford: University of Salford, 1992.
Encontre o texto completo da fonteLucuta, P. G. Diffusion of tritium in lithium-based fusion blanket ceramics: A review. Chalk River, Ont: Fuel Materials Branch Chalk River Laboratories, 1991.
Encontre o texto completo da fonteV, George Mathews Pharr. Diffusion, Deformation, and Damage in Lithium-Ion Batteries and Microelectronics. 2014.
Encontre o texto completo da fonteL'industrie lithique des populations blicquiennes: Organisation des productions et réseaux de diffusion. British Archaeological Reports Oxford Ltd, 2017.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Diffusion du lithium"
Julien, Christian, e Alain Mauger. "Diffusion". In Rechargeable Lithium Metal Batteries, 1–24. Cham: Springer Nature Switzerland, 2024. https://doi.org/10.1007/978-3-031-67470-9_1.
Texto completo da fonteWinkelmann, Jochen. "Diffusion coefficient of lithium(6) in lithium". In Diffusion in Gases, Liquids and Electrolytes, 1328. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-540-73735-3_1104.
Texto completo da fonteWinkelmann, Jochen. "Diffusion coefficient of lithium(7) in lithium". In Diffusion in Gases, Liquids and Electrolytes, 1879. Berlin, Heidelberg: Springer Berlin Heidelberg, 2018. http://dx.doi.org/10.1007/978-3-662-54089-3_1307.
Texto completo da fonteWinkelmann, Jochen. "Diffusion coefficient of lithium(6) in lithium". In Diffusion in Gases, Liquids and Electrolytes, 1880. Berlin, Heidelberg: Springer Berlin Heidelberg, 2018. http://dx.doi.org/10.1007/978-3-662-54089-3_1308.
Texto completo da fonteMichaud, G., e G. Beaudet. "Lithium Abundance, Diffusion and Turbulence". In Highlights of Astronomy, 459–60. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-010-9374-3_78.
Texto completo da fonteWinkelmann, Jochen. "Self-diffusion coefficient of lithium". In Diffusion in Gases, Liquids and Electrolytes, 534–35. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-540-73735-3_320.
Texto completo da fonteLuong, Huu Duc, Thien Lan Tran e Van An Dinh. "Small Polaron–Li-Ion Complex Diffusion in the Cathodes of Rechargeable Li-Ion Batteries". In Lithium-Related Batteries, 29–39. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003263807-2.
Texto completo da fonteSkullerud, H. R., T. Eide e Thorarinn Stefansson. "Transverse Diffusion of Lithium Ions in Helium". In Swarm Studies and Inelastic Electron-Molecule Collisions, 81. New York, NY: Springer New York, 1987. http://dx.doi.org/10.1007/978-1-4612-4662-6_9.
Texto completo da fonteShokuhfar, Ali, Arash Rezaei, S. M. M. Hadavi, Shahram Ahmadi e H. Azimi. "Effect of Homogenization Process on Hot Rolling of Aluminum-Lithium Alloys". In Defect and Diffusion Forum, 20–25. Stafa: Trans Tech Publications Ltd., 2006. http://dx.doi.org/10.4028/3-908451-36-1.20.
Texto completo da fonteWinkelmann, Jochen. "Diffusion coefficient of lithium dodecyl sulfate in water". In Diffusion in Gases, Liquids and Electrolytes, 1476. Berlin, Heidelberg: Springer Berlin Heidelberg, 2018. http://dx.doi.org/10.1007/978-3-662-54089-3_996.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Diffusion du lithium"
Di Fonso, Roberta, Francesco Simonetti, Remus Teodorescu e Pallavi Bharadwaj. "A Fast Technique for Lithium-Ion Diffusion Coefficient Determination in Batteries". In 2024 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM), 656–60. IEEE, 2024. http://dx.doi.org/10.1109/speedam61530.2024.10609072.
Texto completo da fonteRocca, Dario, Matthias Loipersberger, Jérôme F. Gonthier, Robert M. Parrish, Jisook Hong, Byeol Kang, Chanshin Park e Hong Woo Lee. "Towards Quantum Simulations of Lithium Diffusion in Solid State Electrolytes for Battery Applications". In 2024 IEEE International Conference on Quantum Computing and Engineering (QCE), 655–61. IEEE, 2024. https://doi.org/10.1109/qce60285.2024.00082.
Texto completo da fonteSuntsov, Sergiy, Sarah Kretschmann, Kore Hasse e Detlef Kip. "Diffusion-Doped Lithium Tantalate Waveguides for Watt-level Nonlinear Frequency Conversion in the Near UV". In CLEO: Science and Innovations, SM4N.2. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_si.2024.sm4n.2.
Texto completo da fonteSivan, V., L. Bui, D. Venkatachalam, S. Bhargava, T. Priest, A. Holland e A. Mitchell. "Etching lithium niobate during Ti diffusion process". In Microelectronics, MEMS, and Nanotechnology, editado por Hark Hoe Tan, Jung-Chih Chiao, Lorenzo Faraone, Chennupati Jagadish, Jim Williams e Alan R. Wilson. SPIE, 2007. http://dx.doi.org/10.1117/12.759612.
Texto completo da fonteHoff, Christiana, Sarah Penniston-Dorland, Philip Piccoli, Danny Stockli e Lisa Stockli. "Lithium diffusion in pyrope-almandine rich garnets". In Goldschmidt2022. France: European Association of Geochemistry, 2022. http://dx.doi.org/10.46427/gold2022.12298.
Texto completo da fonteGarvey, Brendan, Megan Holycross e Gabe Larouche. "Multi-pathway diffusion of lithium in feldspar". In Goldschmidt 2024. United States of America: Geochemical Society, 2024. https://doi.org/10.46427/gold2024.22282.
Texto completo da fonteRUZIN, ARIE, NIKOLAI ABROSIMOV e PIOTR LITOVCHENKO. "STUDY OF LITHIUM DIFFUSION INTO SILICON-GERMANIUM CRYSTALS". In Proceedings of the 10th Conference. WORLD SCIENTIFIC, 2008. http://dx.doi.org/10.1142/9789812819093_0102.
Texto completo da fonteWang, Airong, Guangming Wu, Hui-yu Yang, Ming-xia Zhang, Xingmei Fang, Xiao-yun Yang, Bin Zhou e Jun Shen. "Study of lithium diffusion through vanadium pentoxide aerogel". In Sixth International Conference on Thin Film Physics and Applications. SPIE, 2008. http://dx.doi.org/10.1117/12.792630.
Texto completo da fonteYost, Cheyenne R., Emily Cahoon, Adam Kent, Scott Toney e Kyle Nunely. "COPPER AND LITHIUM DIFFUSION IN EASTER OREGON SUNSTONES". In Cordilleran Section - 119th Annual Meeting - 2023. Geological Society of America, 2023. http://dx.doi.org/10.1130/abs/2023cd-387527.
Texto completo da fonteGan, X. F., F. Zhang, X. Y. He, Y. Z. Cao, J. Z. Yang e X. D. Huang. "Sio2by chemical vapor deposition as lithium diffusion barrier layer for integrated lithium-ion battery". In 2017 International Conference on Electron Devices and Solid-State Circuits (EDSSC). IEEE, 2017. http://dx.doi.org/10.1109/edssc.2017.8333232.
Texto completo da fonteRelatórios de organizações sobre o assunto "Diffusion du lithium"
Bhatia, Harsh, Attila Gyulassy, Mitchell Ong, Vincenzo Lordi, Erik Draeger, John Pask, Valerio Pascucci e Peer Timo Bremer. Understanding Lithium Solvation and Diffusion through Topological Analysis of First-Principles Molecular Dynamics. Office of Scientific and Technical Information (OSTI), setembro de 2016. http://dx.doi.org/10.2172/1331475.
Texto completo da fonteBalapanov, M. Kh, K. A. Kuterbekov, M. M. Kubenova, R. Kh Ishembetov, B. M. Akhmetgaliev e R. A. Yakshibaev. Effect of lithium doping on electrophysical and diffusion proper-ties of nonstoichiometric superionic copper selenide Cu1.75Se. Phycal-Technical Society of Kazakhstan, dezembro de 2017. http://dx.doi.org/10.29317/ejpfm.2017010203.
Texto completo da fonteFriend, James, An Huang, Ping Liu e Haodong Liu. Final project report for: Rapid charging made practical in graphite-based lithium batteries: surface-acoustic wave turbulent electrolyte mixing to overcome diffusion limited charging rates. Office of Scientific and Technical Information (OSTI), abril de 2021. http://dx.doi.org/10.2172/1778016.
Texto completo da fonteStotler, D. P., C. H. Skinner, W. R. Blanchard, P. S. Krstic, H. W. Kugel, H. Schneider e L. E. Zakharov. Simulation of Diffusive Lithium Evaporation Onto the NSTX Vessel Walls. Office of Scientific and Technical Information (OSTI), dezembro de 2010. http://dx.doi.org/10.2172/1001673.
Texto completo da fonteEnvironmental Assessment for the sale of excess lithium hydroxide stored at the Oak Ridge K-25 Site and the Portsmouth Gaseous Diffusion Plant. Office of Scientific and Technical Information (OSTI), abril de 1993. http://dx.doi.org/10.2172/10173192.
Texto completo da fonte