Siga este link para ver outros tipos de publicações sobre o tema: Differential equations.

Artigos de revistas sobre o tema "Differential equations"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Differential equations".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

Tabor, Jacek. "Differential equations in metric spaces". Mathematica Bohemica 127, n.º 2 (2002): 353–60. http://dx.doi.org/10.21136/mb.2002.134163.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Andres, Jan, e Pavel Ludvík. "Topological entropy and differential equations". Archivum Mathematicum, n.º 1 (2023): 3–10. http://dx.doi.org/10.5817/am2023-1-3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Laksmikantham, V. "Set differential equations versus fuzzy differential equations". Applied Mathematics and Computation 164, n.º 2 (maio de 2005): 277–94. http://dx.doi.org/10.1016/j.amc.2004.06.068.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Parasidis, I. N. "EXTENSION AND DECOMPOSITION METHOD FOR DIFFERENTIAL AND INTEGRO-DIFFERENTIAL EQUATIONS". Eurasian Mathematical Journal 10, n.º 3 (2019): 48–67. http://dx.doi.org/10.32523/2077-9879-2019-10-3-48-67.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Chrastinová, Veronika, e Václav Tryhuk. "Parallelisms between differential and difference equations". Mathematica Bohemica 137, n.º 2 (2012): 175–85. http://dx.doi.org/10.21136/mb.2012.142863.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Tumajer, František. "Controllable systems of partial differential equations". Applications of Mathematics 31, n.º 1 (1986): 41–53. http://dx.doi.org/10.21136/am.1986.104183.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Kurzweil, Jaroslav, e Alena Vencovská. "Linear differential equations with quasiperiodic coefficients". Czechoslovak Mathematical Journal 37, n.º 3 (1987): 424–70. http://dx.doi.org/10.21136/cmj.1987.102170.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Sergey, Piskarev, e Siegmund Stefan. "UNSTABLE MANIFOLDS FOR FRACTIONAL DIFFERENTIAL EQUATIONS". Eurasian Journal of Mathematical and Computer Applications 10, n.º 3 (27 de setembro de 2022): 58–72. http://dx.doi.org/10.32523/2306-6172-2022-10-3-58-72.

Texto completo da fonte
Resumo:
We prove the existence of unstable manifolds for an abstract semilinear fractional differential equation Dαu(t) = Au(t) + f(u(t)), u(0) = u 0 , on a Banach space. We then develop a general approach to establish a semidiscrete approximation of unstable manifolds. The main assumption of our results are naturally satisfied. In particular, this is true for operators with compact resolvents and can be verified for finite elements as well as finite differences methods.
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Džurina, Jozef. "Comparison theorems for functional differential equations". Mathematica Bohemica 119, n.º 2 (1994): 203–11. http://dx.doi.org/10.21136/mb.1994.126077.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Saltas, Vassilios, Vassilios Tsiantos e Dimitrios Varveris. "Solving Differential Equations and Systems of Differential Equations with Inverse Laplace Transform". European Journal of Mathematics and Statistics 4, n.º 3 (14 de junho de 2023): 1–8. http://dx.doi.org/10.24018/ejmath.2023.4.3.192.

Texto completo da fonte
Resumo:
The inverse Laplace transform enables the solution of ordinary linear differential equations as well as systems of ordinary linear differentials with applications in the physical and engineering sciences. The Laplace transform is essentially an integral transform which is introduced with the help of a suitable generalized integral. The ultimate goal of this work is to introduce the reader to some of the basic ideas and applications for solving initially ordinary differential equations and then systems of ordinary linear differential equations.
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

N O, Onuoha. "Transformation of Parabolic Partial Differential Equations into Heat Equation Using Hopf Cole Transform". International Journal of Science and Research (IJSR) 12, n.º 6 (5 de junho de 2023): 1741–43. http://dx.doi.org/10.21275/sr23612082710.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Loud, Warren S., A. N. Tikhonov, A. B. Vasil'eva e A. G. Sveshnikov. "Differential Equations." American Mathematical Monthly 94, n.º 3 (março de 1987): 308. http://dx.doi.org/10.2307/2323408.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

Croft, Tony, D. A. Sanchez, R. C. Allen Jr. e W. T. Kyner. "Differential Equations". Mathematical Gazette 73, n.º 465 (outubro de 1989): 249. http://dx.doi.org/10.2307/3618470.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Brindley, Graham, D. Lomen e J. Mark. "Differential Equations". Mathematical Gazette 73, n.º 466 (dezembro de 1989): 353. http://dx.doi.org/10.2307/3619335.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

Abbott, Steve, e SMP. "Differential Equations". Mathematical Gazette 79, n.º 484 (março de 1995): 186. http://dx.doi.org/10.2307/3620064.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Berkshire, Frank, A. N. Tikhonov, A. B. Vasil'eva e A. G. Sveshnikov. "Differential Equations". Mathematical Gazette 70, n.º 452 (junho de 1986): 168. http://dx.doi.org/10.2307/3615804.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Lee, Tzong-Yow. "Differential Equations". Annals of Probability 29, n.º 3 (julho de 2001): 1047–60. http://dx.doi.org/10.1214/aop/1015345595.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Barrett, K. E. "Differential equations". Applied Mathematical Modelling 11, n.º 3 (junho de 1987): 233–34. http://dx.doi.org/10.1016/0307-904x(87)90010-2.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

He, Ji-Huan, e Zheng-Biao Li. "Converting fractional differential equations into partial differential equations". Thermal Science 16, n.º 2 (2012): 331–34. http://dx.doi.org/10.2298/tsci110503068h.

Texto completo da fonte
Resumo:
A transform is suggested in this paper to convert fractional differential equations with the modified Riemann-Liouville derivative into partial differential equations, and it is concluded that the fractional order in fractional differential equations is equivalent to the fractal dimension.
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

Knorrenschild, Michael. "Differential/Algebraic Equations As Stiff Ordinary Differential Equations". SIAM Journal on Numerical Analysis 29, n.º 6 (dezembro de 1992): 1694–715. http://dx.doi.org/10.1137/0729096.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

MANOFF, S. "GEODESIC AND AUTOPARALLEL EQUATIONS OVER DIFFERENTIABLE MANIFOLDS". International Journal of Modern Physics A 11, n.º 21 (20 de agosto de 1996): 3849–74. http://dx.doi.org/10.1142/s0217751x96001814.

Texto completo da fonte
Resumo:
The notions of ordinary, covariant and Lie differentials are considered as operators over differentiable manifolds with different (not only by sign) contravariant and covariant affine connections and metric. The difference between the interpretations of the ordinary differential as a covariant basic vector field and as a component of a contravariant vector field is discussed. By means of the covariant metric and the ordinary differential the notion of the line element is introduced and the geodesic equation is obtained and compared with the autoparallel equation.
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

Lazopoulos, Konstantinos A. "On Λ-Fractional Differential Equations". Foundations 2, n.º 3 (5 de setembro de 2022): 726–45. http://dx.doi.org/10.3390/foundations2030050.

Texto completo da fonte
Resumo:
Λ-fractional differential equations are discussed since they exhibit non-locality and accuracy. Fractional derivatives form fractional differential equations, considered as describing better various physical phenomena. Nevertheless, fractional derivatives fail to satisfy the prerequisites of differential topology for generating differentials. Hence, all the sources of generating fractional differential equations, such as fractional differential geometry, the fractional calculus of variations, and the fractional field theory, are not mathematically accurate. Nevertheless, the Λ-fractional derivative conforms to all prerequisites demanded by differential topology. Hence, the various mathematical forms, including those derivatives, do not lack the mathematical accuracy or defects of the well-known fractional derivatives. A summary of the Λ-fractional analysis is presented with its influence on the sources of differential equations, such as fractional differential geometry, field theorems, and calculus of variations. Λ-fractional ordinary and partial differential equations will be discussed.
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

Elishakoff, Isaac. "Differential Equations of Love and Love of Differential Equations". Journal of Humanistic Mathematics 9, n.º 2 (julho de 2019): 226–46. http://dx.doi.org/10.5642/jhummath.201902.15.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

Barles, Guy, Rainer Buckdahn e Etienne Pardoux. "Backward stochastic differential equations and integral-partial differential equations". Stochastics and Stochastic Reports 60, n.º 1-2 (fevereiro de 1997): 57–83. http://dx.doi.org/10.1080/17442509708834099.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

Hino, Yoshiyuki, e Taro Yoshizawa. "Total stability property in limiting equations for a functional-differential equation with infinite delay". Časopis pro pěstování matematiky 111, n.º 1 (1986): 62–69. http://dx.doi.org/10.21136/cpm.1986.118265.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

Frittelli, Simonetta, Carlos Kozameh e Ezra T. Newman. "Differential Geometry from Differential Equations". Communications in Mathematical Physics 223, n.º 2 (1 de outubro de 2001): 383–408. http://dx.doi.org/10.1007/s002200100548.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

Marjona, Kosimova. "APPLICATION OF DIFFERENTIAL EQUATIONS IN VARIOUS FIELDS OF SCIENCE". American Journal of Applied Science and Technology 4, n.º 6 (1 de junho de 2024): 76–81. http://dx.doi.org/10.37547/ajast/volume04issue06-15.

Texto completo da fonte
Resumo:
The article, "Application of Differential Equations in Various Fields of Science," explores the use of differential equations for modeling economic and natural phenomena. It examines two main models of economic dynamics: the Evans model for the market of a single product, and the Solow model for economic growth.The author emphasizes the importance of proving the existence of solutions to differential equations in order to verify the accuracy of mathematical models. They also discuss the role of electronic computers in developing the theory of differential equations and its connection with other branches of mathematics such as functional analysis, algebra, and probability theory.Furthermore, the article highlights the significance of various solution methods for differential equations, including the Fourier method, Ritz method, Galerkin method, and perturbation theory.Special attention is paid to the theory of partial differential equations, the theory of differential operators, and problems arising in physics, mechanics, and technology. Differential equations are the theoretical foundation of almost all scientific and technological models and a key tool for understanding various processes in science, such as in physics, chemistry, and biology.Examples of processes described by differential equations include normalreproduction, explosive growth, and the logistic curve. Cases of using differential equations to model deterministic, finite-dimensional, and differentiable phenomena, as well as the impact of catch quotas on population dynamics, are discussed.In conclusion, the significance of differential equations for research and their role in stimulating the development of new mathematical areas is emphasized.
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

Chrastina, Jan. "On formal theory of differential equations. I." Časopis pro pěstování matematiky 111, n.º 4 (1986): 353–83. http://dx.doi.org/10.21136/cpm.1986.118285.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

Chrastina, Jan. "On formal theory of differential equations. II." Časopis pro pěstování matematiky 114, n.º 1 (1989): 60–105. http://dx.doi.org/10.21136/cpm.1989.118369.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

Li, Tongxing, Yuriy V. Rogovchenko e Chenghui Zhang. "Oscillation of fourth-order quasilinear differential equations". Mathematica Bohemica 140, n.º 4 (2015): 405–18. http://dx.doi.org/10.21136/mb.2015.144459.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

Kwapisz, Marian. "On solving systems of differential algebraic equations". Applications of Mathematics 37, n.º 4 (1992): 257–64. http://dx.doi.org/10.21136/am.1992.104508.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

Franců, Jan. "Weakly continuous operators. Applications to differential equations". Applications of Mathematics 39, n.º 1 (1994): 45–56. http://dx.doi.org/10.21136/am.1994.134242.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

Grace, S. R., e Bikkar S. Lalli. "Oscillation theorems for certain neutral differential equations". Czechoslovak Mathematical Journal 38, n.º 4 (1988): 745–53. http://dx.doi.org/10.21136/cmj.1988.102270.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

Ohriska, Ján. "Oscillation of differential equations and $v$-derivatives". Czechoslovak Mathematical Journal 39, n.º 1 (1989): 24–44. http://dx.doi.org/10.21136/cmj.1989.102276.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

Gopalsamy, K., B. S. Lalli e B. G. Zhang. "Oscillation of odd order neutral differential equations". Czechoslovak Mathematical Journal 42, n.º 2 (1992): 313–23. http://dx.doi.org/10.21136/cmj.1992.128330.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

Džurina, Jozef. "Comparison theorem for third-order differential equations". Czechoslovak Mathematical Journal 44, n.º 2 (1994): 357–66. http://dx.doi.org/10.21136/cmj.1994.128464.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

Grace, S. R., e B. S. Lalli. "Oscillation criteria for forced neutral differential equations". Czechoslovak Mathematical Journal 44, n.º 4 (1994): 713–24. http://dx.doi.org/10.21136/cmj.1994.128489.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

Fraňková, Dana. "Substitution method for generalized linear differential equations". Mathematica Bohemica 116, n.º 4 (1991): 337–59. http://dx.doi.org/10.21136/mb.1991.126028.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

Chrastina, Jan. "On formal theory of differential equations. III." Mathematica Bohemica 116, n.º 1 (1991): 60–90. http://dx.doi.org/10.21136/mb.1991.126196.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

Tiwari, Chinta Mani, e Richa Yadav. "Distributional Solutions to Nonlinear Partial Differential Equations". International Journal of Research Publication and Reviews 5, n.º 4 (11 de abril de 2024): 6441–47. http://dx.doi.org/10.55248/gengpi.5.0424.1085.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

Freeman, J. S., e S. A. Velinsky. "Comparison of the Dynamics of Conventional and Worm-Gear Differentials". Journal of Mechanisms, Transmissions, and Automation in Design 111, n.º 4 (1 de dezembro de 1989): 605–10. http://dx.doi.org/10.1115/1.3259043.

Texto completo da fonte
Resumo:
The differential mechanism has been used for many years and a variety of unique designs have been developed for particular applications. This paper investigates the performance of both the conventional bevel-gear differential and the worm-gear differential as used in vehicles. The worm-gear differential is a design in which the bevel gears of the conventional differential are replaced by worm gear/worm wheel pairs. The resultant differential exhibits some interesting behavior which has made this differential desirable for use in high performance and off-road vehicles. In this work, an Euler-Lagrange formulation of the equations of motion of the conventional and worm-gear differentials allows comparison of their respective behavior. Additionally, each differential is incorporated into a full vehicle model to observe their effects on gross vehicle response. The worm-gear differential is shown to exhibit the desirable characteristics of a limited-slip differential while maintaining the conventional differential’s ability to differentiate output shaft speeds at all power levels.
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

Balamuralitharan, S., e . "MATLAB Programming of Nonlinear Equations of Ordinary Differential Equations and Partial Differential Equations". International Journal of Engineering & Technology 7, n.º 4.10 (2 de outubro de 2018): 773. http://dx.doi.org/10.14419/ijet.v7i4.10.26114.

Texto completo da fonte
Resumo:
My idea of this paper is to discuss the MATLAB program for various mathematical modeling in ordinary differential equations (ODEs) and partial differential equations (PDEs). Idea of this paper is very useful to research scholars, faculty members and all other fields like engineering and biology. Also we get easily to find the numerical solutions from this program.
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

Harir, Atimad, Said Melliani e Lalla Saadia Chadli. "Fuzzy Conformable Fractional Differential Equations". International Journal of Differential Equations 2021 (4 de fevereiro de 2021): 1–6. http://dx.doi.org/10.1155/2021/6655450.

Texto completo da fonte
Resumo:
In this study, fuzzy conformable fractional differential equations are investigated. We study conformable fractional differentiability, and we define fractional integrability properties of such functions and give an existence and uniqueness theorem for a solution to a fuzzy fractional differential equation by using the concept of conformable differentiability. This concept is based on the enlargement of the class of differentiable fuzzy mappings; for this, we consider the lateral Hukuhara derivatives of order q ∈ 0,1 .
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

Devaney, Robert L., Beverly West, Steven Strogatz, Jean Marie McDill e John Cantwell. "Interactive Differential Equations." American Mathematical Monthly 105, n.º 7 (agosto de 1998): 687. http://dx.doi.org/10.2307/2589275.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
45

Brauer, Fred, Vladimir I. Arnol'd e Roger Cook. "Ordinary Differential Equations." American Mathematical Monthly 100, n.º 8 (outubro de 1993): 810. http://dx.doi.org/10.2307/2324802.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
46

Hibberd, S., Richard Bellman e George Adomian. "Partial Differential Equations". Mathematical Gazette 71, n.º 458 (dezembro de 1987): 341. http://dx.doi.org/10.2307/3617100.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
47

Abbott, Steve, e Lawrence C. Evans. "Partial Differential Equations". Mathematical Gazette 83, n.º 496 (março de 1999): 185. http://dx.doi.org/10.2307/3618751.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
48

Abram, J., W. E. Boyce e R. C. DiPrima. "Elementary Differential Equations". Mathematical Gazette 78, n.º 481 (março de 1994): 83. http://dx.doi.org/10.2307/3619457.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
49

Norris, J. R., e B. Oksendal. "Stochastic Differential Equations". Mathematical Gazette 77, n.º 480 (novembro de 1993): 393. http://dx.doi.org/10.2307/3619809.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
50

Rawlins, A. D., e M. Sever. "Ordinary Differential Equations". Mathematical Gazette 72, n.º 462 (dezembro de 1988): 334. http://dx.doi.org/10.2307/3619967.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia