Literatura científica selecionada sobre o tema "Differential equations"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Differential equations".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Artigos de revistas sobre o assunto "Differential equations"

1

Tabor, Jacek. "Differential equations in metric spaces". Mathematica Bohemica 127, n.º 2 (2002): 353–60. http://dx.doi.org/10.21136/mb.2002.134163.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Andres, Jan, e Pavel Ludvík. "Topological entropy and differential equations". Archivum Mathematicum, n.º 1 (2023): 3–10. http://dx.doi.org/10.5817/am2023-1-3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Laksmikantham, V. "Set differential equations versus fuzzy differential equations". Applied Mathematics and Computation 164, n.º 2 (maio de 2005): 277–94. http://dx.doi.org/10.1016/j.amc.2004.06.068.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Parasidis, I. N. "EXTENSION AND DECOMPOSITION METHOD FOR DIFFERENTIAL AND INTEGRO-DIFFERENTIAL EQUATIONS". Eurasian Mathematical Journal 10, n.º 3 (2019): 48–67. http://dx.doi.org/10.32523/2077-9879-2019-10-3-48-67.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Chrastinová, Veronika, e Václav Tryhuk. "Parallelisms between differential and difference equations". Mathematica Bohemica 137, n.º 2 (2012): 175–85. http://dx.doi.org/10.21136/mb.2012.142863.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Tumajer, František. "Controllable systems of partial differential equations". Applications of Mathematics 31, n.º 1 (1986): 41–53. http://dx.doi.org/10.21136/am.1986.104183.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Kurzweil, Jaroslav, e Alena Vencovská. "Linear differential equations with quasiperiodic coefficients". Czechoslovak Mathematical Journal 37, n.º 3 (1987): 424–70. http://dx.doi.org/10.21136/cmj.1987.102170.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Sergey, Piskarev, e Siegmund Stefan. "UNSTABLE MANIFOLDS FOR FRACTIONAL DIFFERENTIAL EQUATIONS". Eurasian Journal of Mathematical and Computer Applications 10, n.º 3 (27 de setembro de 2022): 58–72. http://dx.doi.org/10.32523/2306-6172-2022-10-3-58-72.

Texto completo da fonte
Resumo:
We prove the existence of unstable manifolds for an abstract semilinear fractional differential equation Dαu(t) = Au(t) + f(u(t)), u(0) = u 0 , on a Banach space. We then develop a general approach to establish a semidiscrete approximation of unstable manifolds. The main assumption of our results are naturally satisfied. In particular, this is true for operators with compact resolvents and can be verified for finite elements as well as finite differences methods.
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Džurina, Jozef. "Comparison theorems for functional differential equations". Mathematica Bohemica 119, n.º 2 (1994): 203–11. http://dx.doi.org/10.21136/mb.1994.126077.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Saltas, Vassilios, Vassilios Tsiantos e Dimitrios Varveris. "Solving Differential Equations and Systems of Differential Equations with Inverse Laplace Transform". European Journal of Mathematics and Statistics 4, n.º 3 (14 de junho de 2023): 1–8. http://dx.doi.org/10.24018/ejmath.2023.4.3.192.

Texto completo da fonte
Resumo:
The inverse Laplace transform enables the solution of ordinary linear differential equations as well as systems of ordinary linear differentials with applications in the physical and engineering sciences. The Laplace transform is essentially an integral transform which is introduced with the help of a suitable generalized integral. The ultimate goal of this work is to introduce the reader to some of the basic ideas and applications for solving initially ordinary differential equations and then systems of ordinary linear differential equations.
Estilos ABNT, Harvard, Vancouver, APA, etc.

Teses / dissertações sobre o assunto "Differential equations"

1

Yantır, Ahmet Ufuktepe Ünal. "Oscillation theory for second order differential equations and dynamic equations on time scales/". [s.l.]: [s.n.], 2004. http://library.iyte.edu.tr/tezler/master/matematik/T000418.pdf.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Dareiotis, Anastasios Constantinos. "Stochastic partial differential and integro-differential equations". Thesis, University of Edinburgh, 2015. http://hdl.handle.net/1842/14186.

Texto completo da fonte
Resumo:
In this work we present some new results concerning stochastic partial differential and integro-differential equations (SPDEs and SPIDEs) that appear in non-linear filtering. We prove existence and uniqueness of solutions of SPIDEs, we give a comparison principle and we suggest an approximation scheme for the non-local integral operators. Regarding SPDEs, we use techniques motivated by the work of De Giorgi, Nash, and Moser, in order to derive global and local supremum estimates, and a weak Harnack inequality.
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Zheng, Ligang. "Almost periodic differential equations". Thesis, University of Ottawa (Canada), 1990. http://hdl.handle.net/10393/5766.

Texto completo da fonte
Resumo:
In this thesis, we will study almost periodic differential equations. The motivation to study such a subject is mainly due to its wide applications. We will focus our attention on the topics of boundedness, almost periodicity, disconjugacy and the non-existence of periodic solutions for the n-body problem. Our main investigation in chapter 1 deals with Bohr almost periodic differential equations. In chapter 2, we will study Stepanov almost periodic differential equations, which is a wider class than Bohr's class and we will give a general Floquet theorem in some special cases. We devote our effort in the last chapter to the special n-body problem-if the configuration remains similar throughout the motion and show some applications of oscillation theory of differential equations to the n-body problem.
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Kopfová, Jana. "Differential equations involving hysteresis". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/tape15/PQDD_0007/NQ29055.pdf.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

MARINO, GISELA DORNELLES. "COMPLEX ORDINARY DIFFERENTIAL EQUATIONS". PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2007. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=10175@1.

Texto completo da fonte
Resumo:
COORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR
Neste texto estudamos diversos aspectos de singularidades de campos vetoriais holomorfos em dimensão 2. Discutimos detalhadamente o caso particular de uma singularidade sela-nó e o papel desempenhado pelas normalizações setoriais. Isto nos conduz à classificação analítica de difeomorfismos tangentes à identidade. seguir abordamos o Teorema de Seidenberg, tratando da redução de singularidades degeneradas em singularidades simples, através do procedimento de blow-up. Por fim, estudamos a demonstração do Teorema de Mattei-Moussu, acerca da existência de integrais primeiras para folheações holomorfas.
In the present text, we study the different aspects of singularities of holomorphic vector fields in dimension 2. We discuss in detail the particular case of a saddle-node singularity and the role of the sectorial normalizations. This leads us to the analytic classiffication of diffeomorphisms which are tangent to the identity. Next, we approach the Seidenberg Theorem, dealing with the reduction of degenerated singularities into simple ones, by means of the blow-up procedure. Finally, we study the proof of the well-known Mattei-Moussu Theorem concerning the existence of first integrals to holomorphic foliations.
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Berntson, B. K. "Integrable delay-differential equations". Thesis, University College London (University of London), 2017. http://discovery.ucl.ac.uk/1566618/.

Texto completo da fonte
Resumo:
Delay-differential equations are differential-difference equations in which the derivatives and shifts are taken with respect to the same variable. This thesis is concerned with these equations from the perspective of the theory of integrable systems, and more specifically, Painlevé equations. Both the classical Painlevé equations and their discrete analogues can be obtained as deautonomizations of equations solved by two-parameter families of elliptic functions. In analogy with this paradigm, we consider autonomous delay-differential equations solved by elliptic functions, delay-differential extensions of the Painlevé equations, and the interrelations between these classes of equations. We develop a method to identify delay-differential equations that admit families of elliptic solutions with at least two degrees of parametric freedom and apply it to two natural 16-parameter families of delay-differential equations. Some of the resulting equations are related to known models including the differential-difference sine-Gordon equation and the Volterra lattice; the corresponding new solutions to these and other equations are constructed in a number of examples. Other equations we have identified appear to be new. Bäcklund transformations for the classical Painlevé equations provide a source of delay-differential Painlevé equations. These transformations were previously used to derive discrete Painlevé equations. We use similar methods to identify delay-differential equations with continuum limits to the first classical Painlevé equation. The equations we identify are solved by elliptic functions in particular limits corresponding to the autonomous limit of the classical first Painlevé equation.
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Dodds, Niall. "Non-local differential equations". Thesis, University of Dundee, 2005. https://discovery.dundee.ac.uk/en/studentTheses/9eda08aa-ba49-455f-94b1-36870a1ad956.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Trenn, Stephan. "Distributional differential algebraic equations". Ilmenau Univ.-Verl, 2009. http://d-nb.info/99693197X/04.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Bahar, Arifah. "Applications of stochastic differential equations and stochastic delay differential equations in population dynamics". Thesis, University of Strathclyde, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.415294.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Thompson, Jeremy R. (Jeremy Ray). "Physical Motivation and Methods of Solution of Classical Partial Differential Equations". Thesis, University of North Texas, 1995. https://digital.library.unt.edu/ark:/67531/metadc277898/.

Texto completo da fonte
Resumo:
We consider three classical equations that are important examples of parabolic, elliptic, and hyperbolic partial differential equations, namely, the heat equation, the Laplace's equation, and the wave equation. We derive them from physical principles, explore methods of finding solutions, and make observations about their applications.
Estilos ABNT, Harvard, Vancouver, APA, etc.

Livros sobre o assunto "Differential equations"

1

Zhukova, Galina. Differential equations. ru: INFRA-M Academic Publishing LLC., 2020. http://dx.doi.org/10.12737/1072180.

Texto completo da fonte
Resumo:
The textbook presents the theory of ordinary differential equations constituting the subject of the discipline "Differential equations". Studied topics: differential equations of first, second, arbitrary order; differential equations; integration of initial and boundary value problems; stability theory of solutions of differential equations and systems. Introduced the basic concepts, proven properties of differential equations and systems. The article presents methods of analysis and solutions. We consider the applications of the obtained results, which are illustrated on a large number of specific tasks. For independent quality control mastering the course material suggested test questions on the theory, exercises and tasks. It is recommended that teachers, postgraduates and students of higher educational institutions, studying differential equations and their applications.
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Rahmani-Andebili, Mehdi. Differential Equations. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-07984-9.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Barbu, Viorel. Differential Equations. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-45261-6.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Constanda, Christian. Differential Equations. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-50224-3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Ross, Clay C. Differential Equations. New York, NY: Springer New York, 2004. http://dx.doi.org/10.1007/978-1-4757-3949-7.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Tikhonov, Andrei N., Adelaida B. Vasil’eva e Alexei G. Sveshnikov. Differential Equations. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-642-82175-2.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Constanda, Christian. Differential Equations. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-7297-1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Struthers, Allan, e Merle Potter. Differential Equations. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-20506-5.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Sánchez, David A., e David A. Sánchez. Differential equations. 2a ed. Reading, Mass: Addison-Wesley Pub. Co., 1988.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Brown, Courtney. Differential Equations. 2455 Teller Road, Thousand Oaks California 91320 United States of America: SAGE Publications, Inc., 2007. http://dx.doi.org/10.4135/9781412983914.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.

Capítulos de livros sobre o assunto "Differential equations"

1

Weltner, Klaus, Sebastian John, Wolfgang J. Weber, Peter Schuster e Jean Grosjean. "Differential Equations". In Mathematics for Physicists and Engineers, 275–322. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-54124-7_10.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Kinzel, Wolfgang, e Georg Reents. "Differential Equations". In Physics by Computer, 115–56. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-642-46839-1_5.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Berck, Peter, e Knut Sydsæter. "Differential equations". In Economists’ Mathematical Manual, 47–54. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-662-02678-6_10.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Bronshtein, Ilja N., Konstantin A. Semendyayev, Gerhard Musiol e Heiner Muehlig. "Differential Equations". In Handbook of Mathematics, 485–549. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-05382-9_9.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Hu, Pei-Chu, e Chung-Chun Yang. "Differential equations". In Meromorphic Functions over Non-Archimedean Fields, 115–38. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-015-9415-8_4.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Martínez-Guerra, Rafael, Oscar Martínez-Fuentes e Juan Javier Montesinos-García. "Differential Equations". In Algebraic and Differential Methods for Nonlinear Control Theory, 125–61. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-12025-2_9.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Holden, K., e A. W. Pearson. "Differential Equations". In Introductory Mathematics for Economics and Business, 319–63. London: Macmillan Education UK, 1992. http://dx.doi.org/10.1007/978-1-349-22357-2_9.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Oberguggenberger, Michael, e Alexander Ostermann. "Differential Equations". In Analysis for Computer Scientists, 251–66. London: Springer London, 2011. http://dx.doi.org/10.1007/978-0-85729-446-3_19.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Tiller, Michael. "Differential Equations". In Introduction to Physical Modeling with Modelica, 17–37. Boston, MA: Springer US, 2001. http://dx.doi.org/10.1007/978-1-4615-1561-6_2.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Lynch, Stephen. "Differential Equations". In Dynamical Systems with Applications using MAPLE, 13–34. Boston, MA: Birkhäuser Boston, 2001. http://dx.doi.org/10.1007/978-1-4899-2849-8_2.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.

Trabalhos de conferências sobre o assunto "Differential equations"

1

Yoshizawa, T., e J. Kato. "Functional Differential Equations". In International Symposium on Functional Differential Equations. WORLD SCIENTIFIC, 1991. http://dx.doi.org/10.1142/9789814539647.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

MALGRANGE, B. "DIFFERENTIAL ALGEBRAIC GROUPS". In Algebraic Approach to Differential Equations. WORLD SCIENTIFIC, 2010. http://dx.doi.org/10.1142/9789814273244_0007.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

GRANGER, MICHEL. "BERNSTEIN-SATO POLYNOMIALS AND FUNCTIONAL EQUATIONS". In Algebraic Approach to Differential Equations. WORLD SCIENTIFIC, 2010. http://dx.doi.org/10.1142/9789814273244_0006.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Magalhães, L., C. Rocha e L. Sanchez. "Equadiff 95". In International Conference on Differential Equations. WORLD SCIENTIFIC, 1998. http://dx.doi.org/10.1142/9789814528757.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Perelló, C., C. Simó e J. Solà-Morales. "Equadiff 91". In International Conference on Differential Equations. WORLD SCIENTIFIC, 1993. http://dx.doi.org/10.1142/9789814537438.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

NARVÁEZ MACARRO, L. "D-MODULES IN DIMENSION 1". In Algebraic Approach to Differential Equations. WORLD SCIENTIFIC, 2010. http://dx.doi.org/10.1142/9789814273244_0001.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

CASTRO JIMÉNEZ, FRANCISCO J. "MODULES OVER THE WEYL ALGEBRA". In Algebraic Approach to Differential Equations. WORLD SCIENTIFIC, 2010. http://dx.doi.org/10.1142/9789814273244_0002.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

LÊ, DŨNG TRÁNG, e BERNARD TEISSIER. "GEOMETRY OF CHARACTERISTIC VARIETIES". In Algebraic Approach to Differential Equations. WORLD SCIENTIFIC, 2010. http://dx.doi.org/10.1142/9789814273244_0003.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

DELABAERE, E. "SINGULAR INTEGRALS AND THE STATIONARY PHASE METHODS". In Algebraic Approach to Differential Equations. WORLD SCIENTIFIC, 2010. http://dx.doi.org/10.1142/9789814273244_0004.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

JAMBU, MICHEL. "HYPERGEOMETRIC FUNCTIONS AND HYPERPLANE ARRANGEMENTS". In Algebraic Approach to Differential Equations. WORLD SCIENTIFIC, 2010. http://dx.doi.org/10.1142/9789814273244_0005.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.

Relatórios de organizações sobre o assunto "Differential equations"

1

Knorrenschild, M. Differential-algebraic equations as stiff ordinary differential equations. Office of Scientific and Technical Information (OSTI), maio de 1989. http://dx.doi.org/10.2172/6980335.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Dresner, L. Nonlinear differential equations. Office of Scientific and Technical Information (OSTI), janeiro de 1988. http://dx.doi.org/10.2172/5495671.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Gear, C. W. Differential algebraic equations, indices, and integral algebraic equations. Office of Scientific and Technical Information (OSTI), abril de 1989. http://dx.doi.org/10.2172/6307619.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Shearer, Michael. Nonlinear Differential Equations and Mechanics. Fort Belvoir, VA: Defense Technical Information Center, dezembro de 2001. http://dx.doi.org/10.21236/ada398262.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Cohen, Donald S. Differential Equations and Continuum Mechanics. Fort Belvoir, VA: Defense Technical Information Center, maio de 1989. http://dx.doi.org/10.21236/ada208637.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Tewarson, Reginald P. Numerical Methods for Differential Equations. Fort Belvoir, VA: Defense Technical Information Center, setembro de 1986. http://dx.doi.org/10.21236/ada177283.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Yan, Xiaopu. Singularly Perturbed Differential/Algebraic Equations. Fort Belvoir, VA: Defense Technical Information Center, outubro de 1994. http://dx.doi.org/10.21236/ada288365.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Tewarson, Reginald P. Numerical Methods for Differential Equations. Fort Belvoir, VA: Defense Technical Information Center, setembro de 1985. http://dx.doi.org/10.21236/ada162722.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Cohen, Donald S. Differential Equations and Continuum Mechanics. Fort Belvoir, VA: Defense Technical Information Center, maio de 1991. http://dx.doi.org/10.21236/ada237722.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Wiener, Joseph. Boundary Value Problems for Differential and Functional Differential Equations. Fort Belvoir, VA: Defense Technical Information Center, agosto de 1987. http://dx.doi.org/10.21236/ada187378.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia