Artigos de revistas sobre o tema "Detection and recognition of activities of daily living"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Detection and recognition of activities of daily living".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Refonaa, J., Bandaru Suhas, B. V. S. Bhaskar, S. L. JanyShabu, S. Dhamodaran, Sardar Maran, Maria Anu e M. Lakshmi. "Fall Detection and Daily Living Activity Recognition Logic Regression". Journal of Computational and Theoretical Nanoscience 17, n.º 8 (1 de agosto de 2020): 3520–25. http://dx.doi.org/10.1166/jctn.2020.9223.
Texto completo da fonteBelmonte-Fernández, Óscar, Antonio Caballer-Miedes, Eris Chinellato, Raúl Montoliu, Emilio Sansano-Sansano e Rubén García-Vidal. "Anomaly Detection in Activities of Daily Living with Linear Drift". Cognitive Computation 12, n.º 6 (1 de julho de 2020): 1233–51. http://dx.doi.org/10.1007/s12559-020-09740-6.
Texto completo da fonteHowedi, Aadel, Ahmad Lotfi e Amir Pourabdollah. "Exploring Entropy Measurements to Identify Multi-Occupancy in Activities of Daily Living". Entropy 21, n.º 4 (19 de abril de 2019): 416. http://dx.doi.org/10.3390/e21040416.
Texto completo da fonteMaunder, David, Julien Epps, Eliathamby Ambikairajah e Branko Celler. "Robust Sounds of Activities of Daily Living Classification in Two-Channel Audio-Based Telemonitoring". International Journal of Telemedicine and Applications 2013 (2013): 1–12. http://dx.doi.org/10.1155/2013/696813.
Texto completo da fonteIseda, Hikoto, Keiichi Yasumoto, Akira Uchiyama e Teruo Higashino. "Daily Living Activity Recognition with Frequency-Shift WiFi Backscatter Tags". Sensors 24, n.º 11 (21 de maio de 2024): 3277. http://dx.doi.org/10.3390/s24113277.
Texto completo da fontePires, Ivan Miguel, Gonçalo Marques, Nuno M. Garcia, Nuno Pombo, Francisco Flórez-Revuelta, Susanna Spinsante, Maria Canavarro Teixeira e Eftim Zdravevski. "Recognition of Activities of Daily Living and Environments Using Acoustic Sensors Embedded on Mobile Devices". Electronics 8, n.º 12 (7 de dezembro de 2019): 1499. http://dx.doi.org/10.3390/electronics8121499.
Texto completo da fonteJaveed, Madiha, Naif Al Mudawi, Abdulwahab Alazeb, Sultan Almakdi, Saud S. Alotaibi, Samia Allaoua Chelloug e Ahmad Jalal. "Intelligent ADL Recognition via IoT-Based Multimodal Deep Learning Framework". Sensors 23, n.º 18 (16 de setembro de 2023): 7927. http://dx.doi.org/10.3390/s23187927.
Texto completo da fonteLee, Cheolhwan, Ah Hyun Yuh e Soon Ju Kang. "Real-Time Prediction of Resident ADL Using Edge-Based Time-Series Ambient Sound Recognition". Sensors 24, n.º 19 (4 de outubro de 2024): 6435. http://dx.doi.org/10.3390/s24196435.
Texto completo da fonteBhattacharya, Sarnab, Rebecca Adaimi e Edison Thomaz. "Leveraging Sound and Wrist Motion to Detect Activities of Daily Living with Commodity Smartwatches". Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 6, n.º 2 (4 de julho de 2022): 1–28. http://dx.doi.org/10.1145/3534582.
Texto completo da fonteHaghi, Mostafa, Arman Ershadi e Thomas M. Deserno. "Recognizing Human Activity of Daily Living Using a Flexible Wearable for 3D Spine Pose Tracking". Sensors 23, n.º 4 (12 de fevereiro de 2023): 2066. http://dx.doi.org/10.3390/s23042066.
Texto completo da fonteSiong Jun, Sai, Hafiz Rashidi Ramli, Azura Che Soh, Noor Ain Kamsani, Raja Kamil Raja Ahmad, Siti Anom Ahmad e Asnor Juraiza Ishak. "Development of fall detection and activity recognition using threshold based method and neural network". Indonesian Journal of Electrical Engineering and Computer Science 17, n.º 3 (1 de março de 2020): 1338. http://dx.doi.org/10.11591/ijeecs.v17.i3.pp1338-1347.
Texto completo da fonteQuero, Javier, Claire Orr, Shuai Zang, Chris Nugent, Alberto Salguero e Macarena Espinilla. "Real-time Recognition of Interleaved Activities Based on Ensemble Classifier of Long Short-Term Memory with Fuzzy Temporal Windows". Proceedings 2, n.º 19 (26 de outubro de 2018): 1225. http://dx.doi.org/10.3390/proceedings2191225.
Texto completo da fonteSenyurek, Volkan, Masudul Imtiaz, Prajakta Belsare, Stephen Tiffany e Edward Sazonov. "Electromyogram in Cigarette Smoking Activity Recognition". Signals 2, n.º 1 (9 de fevereiro de 2021): 87–97. http://dx.doi.org/10.3390/signals2010008.
Texto completo da fonteSyed, Abbas Shah, Daniel Sierra-Sosa, Anup Kumar e Adel Elmaghraby. "A Deep Convolutional Neural Network-XGB for Direction and Severity Aware Fall Detection and Activity Recognition". Sensors 22, n.º 7 (26 de março de 2022): 2547. http://dx.doi.org/10.3390/s22072547.
Texto completo da fonteSaeed, Umer, Syed Yaseen Shah, Syed Aziz Shah, Jawad Ahmad, Abdullah Alhumaidi Alotaibi, Turke Althobaiti, Naeem Ramzan, Akram Alomainy e Qammer H. Abbasi. "Discrete Human Activity Recognition and Fall Detection by Combining FMCW RADAR Data of Heterogeneous Environments for Independent Assistive Living". Electronics 10, n.º 18 (12 de setembro de 2021): 2237. http://dx.doi.org/10.3390/electronics10182237.
Texto completo da fonteZaoui, Chaimae, Faouzia Benabbou, Abdelaziz Ettaoufik e Khadija Sabiri. "Human Activity Recognition Using Convolutional Autoencoder and Advanced Preprocessing". International Journal of Online and Biomedical Engineering (iJOE) 20, n.º 04 (4 de março de 2024): 144–59. http://dx.doi.org/10.3991/ijoe.v20i04.43623.
Texto completo da fonteDedabrishvili, Mariam, Natia Mamaiashvili e Ioseb Matiashvili. "Fall Detection System based on iOS Smartphone Sensors". Journal of Technical Science and Technologies 8, n.º 1 (30 de abril de 2024): 35–44. http://dx.doi.org/10.31578/jtst.v8i1.153.
Texto completo da fonteGayathri, K. S., K. S. Easwarakumar e Susan Elias. "Fuzzy Ontology Based Activity Recognition for Assistive Health Care Using Smart Home". International Journal of Intelligent Information Technologies 16, n.º 1 (janeiro de 2020): 17–31. http://dx.doi.org/10.4018/ijiit.2020010102.
Texto completo da fonteNarkhede, Arsh, Hayden Gowing, Tod Vandenberg, Steven Phan, Jason Wong e Andrew Chan. "Automated Detection of In-Home Activities with Ultra-Wideband Sensors". Sensors 24, n.º 14 (20 de julho de 2024): 4706. http://dx.doi.org/10.3390/s24144706.
Texto completo da fonteGhayvat, Hemant, Muhammad Awais, Sharnil Pandya, Hao Ren, Saeed Akbarzadeh, Subhas Chandra Mukhopadhyay, Chen Chen, Prosanta Gope, Arpita Chouhan e Wei Chen. "Smart Aging System: Uncovering the Hidden Wellness Parameter for Well-Being Monitoring and Anomaly Detection". Sensors 19, n.º 4 (13 de fevereiro de 2019): 766. http://dx.doi.org/10.3390/s19040766.
Texto completo da fonteWu, Jiaxuan, Yunfei Feng e Carl K. Chang. "Sound of Daily Living Identification Based on Hierarchical Situation Audition". Sensors 23, n.º 7 (4 de abril de 2023): 3726. http://dx.doi.org/10.3390/s23073726.
Texto completo da fonteVavoulas, George, Matthew Pediaditis, Charikleia Chatzaki, Emmanouil G. Spanakis e Manolis Tsiknakis. "The MobiFall Dataset". International Journal of Monitoring and Surveillance Technologies Research 2, n.º 1 (janeiro de 2014): 44–56. http://dx.doi.org/10.4018/ijmstr.2014010103.
Texto completo da fonteDiete, Alexander, e Heiner Stuckenschmidt. "Fusing Object Information and Inertial Data for Activity Recognition". Sensors 19, n.º 19 (23 de setembro de 2019): 4119. http://dx.doi.org/10.3390/s19194119.
Texto completo da fonteXefteris, S., N. Doulamis, V. Andronikou, T. Varvarigou e G. Cambourakis. "Behavioral Biometrics in Assisted Living: A Methodology for Emotion Recognition". Engineering, Technology & Applied Science Research 6, n.º 4 (26 de agosto de 2016): 1035–44. http://dx.doi.org/10.48084/etasr.634.
Texto completo da fonteNegrete Ramírez, José Manuel, Philippe Roose, Marc Dalmau, Yudith Cardinale e Edgar Silva. "A DSL-Based Approach for Detecting Activities of Daily Living by Means of the AGGIR Variables". Sensors 21, n.º 16 (23 de agosto de 2021): 5674. http://dx.doi.org/10.3390/s21165674.
Texto completo da fonteLopez-Nava, Irvin Hussein, Matias Garcia-Constantino e Jesus Favela. "Recognition of Gait Activities Using Acceleration Data from A Smartphone and A Wearable Device". Proceedings 31, n.º 1 (21 de novembro de 2019): 60. http://dx.doi.org/10.3390/proceedings2019031060.
Texto completo da fonteSeyedkazemi Ardebili, E., S. Eken e K. Küçük. "ACTIVITY RECOGNITION FOR AMBIENT SENSING DATA AND RULE BASED ANOMALY DETECTION". ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLIV-4/W3-2020 (23 de novembro de 2020): 379–82. http://dx.doi.org/10.5194/isprs-archives-xliv-4-w3-2020-379-2020.
Texto completo da fonteKańtoch, Eliasz. "Recognition of Sedentary Behavior by Machine Learning Analysis of Wearable Sensors during Activities of Daily Living for Telemedical Assessment of Cardiovascular Risk". Sensors 18, n.º 10 (24 de setembro de 2018): 3219. http://dx.doi.org/10.3390/s18103219.
Texto completo da fonteZhang, Yiyuan, Ine D’Haeseleer, José Coelho, Vero Vanden Abeele e Bart Vanrumste. "Recognition of Bathroom Activities in Older Adults Using Wearable Sensors: A Systematic Review and Recommendations". Sensors 21, n.º 6 (20 de março de 2021): 2176. http://dx.doi.org/10.3390/s21062176.
Texto completo da fonteKarakostas, Anastasios, Alexandra König, Carlos Fernando Crispim-Junior, François Bremond, Alexandre Derreumaux, Ioulietta Lazarou, Ioannis Kompatsiaris, Magda Tsolaki e Philippe Robert. "A French–Greek Cross-Site Comparison Study of the Use of Automatic Video Analyses for the Assessment of Autonomy in Dementia Patients". Biosensors 10, n.º 9 (21 de agosto de 2020): 103. http://dx.doi.org/10.3390/bios10090103.
Texto completo da fonteYan, Jianjun, Xueqiang Wang, Jiangtao Shi e Shuai Hu. "Skeleton-Based Fall Detection with Multiple Inertial Sensors Using Spatial-Temporal Graph Convolutional Networks". Sensors 23, n.º 4 (14 de fevereiro de 2023): 2153. http://dx.doi.org/10.3390/s23042153.
Texto completo da fonteDavis, Jensen, Shannon Howard, Gregory King, Phanidar Boddu, Kiran Jyothi e Joan McDowd. "ALEXA, ASSESS MY MEMORY: THE FEASIBILITY OF EXTENDED HEALTH MONITORING IN AN OLDER-ADULT-LIVING COMMUNITY". Innovation in Aging 3, Supplement_1 (novembro de 2019): S337. http://dx.doi.org/10.1093/geroni/igz038.1224.
Texto completo da fonteArshad, Muhammad Haseeb, Muhammad Bilal e Abdullah Gani. "Human Activity Recognition: Review, Taxonomy and Open Challenges". Sensors 22, n.º 17 (27 de agosto de 2022): 6463. http://dx.doi.org/10.3390/s22176463.
Texto completo da fontePapadogiorgaki, Maria, Nikos Grammalidis, Athina Grammatikopoulou, Konstantinos Apostolidis, Ekaterini S. Bei, Kostas Grigoriadis, Stylianos Zafeiris, George Livanos, Vasileios Mezaris e Michalis E. Zervakis. "An Integrated Support System for People with Intellectual Disability". Electronics 12, n.º 18 (8 de setembro de 2023): 3803. http://dx.doi.org/10.3390/electronics12183803.
Texto completo da fonteQiu, Yuting, James Meng e Baihua Li*. "Automated Falls Detection Using Visual Anomaly Detection and Pose-based Approaches: Experimental Review and Evaluation". Journal of Biomedical Research & Environmental Sciences 5, n.º 1 (janeiro de 2024): 055–63. http://dx.doi.org/10.37871/jbres1872.
Texto completo da fonteCondado, Paulo A., e Fernando G. Lobo. "Security and privacy concerns in assisted living environments". Journal of Smart Cities and Society 2, n.º 2 (23 de agosto de 2023): 99–121. http://dx.doi.org/10.3233/scs-230015.
Texto completo da fonteSaeed, Aaqib, Tanir Ozcelebi e Johan Lukkien. "Synthesizing and Reconstructing Missing Sensory Modalities in Behavioral Context Recognition". Sensors 18, n.º 9 (6 de setembro de 2018): 2967. http://dx.doi.org/10.3390/s18092967.
Texto completo da fonteOrtíz-Barrios, Miguel Angel, Ian Cleland, Chris Nugent, Pablo Pancardo, Eric Järpe e Jonathan Synnott. "Simulated Data to Estimate Real Sensor Events—A Poisson-Regression-Based Modelling". Remote Sensing 12, n.º 5 (28 de fevereiro de 2020): 771. http://dx.doi.org/10.3390/rs12050771.
Texto completo da fonteAkbari, Ali, Jonathan Martinez e Roozbeh Jafari. "Facilitating Human Activity Data Annotation via Context-Aware Change Detection on Smartwatches". ACM Transactions on Embedded Computing Systems 20, n.º 2 (março de 2021): 1–20. http://dx.doi.org/10.1145/3431503.
Texto completo da fonteKarvonen, Niklas, e Denis Kleyko. "A Domain Knowledge-Based Solution for Human Activity Recognition: The UJA Dataset Analysis". Proceedings 2, n.º 19 (19 de outubro de 2018): 1261. http://dx.doi.org/10.3390/proceedings2191261.
Texto completo da fonteLeon, Beatriz, Angelo Basteris, Francesco Infarinato, Patrizio Sale, Sharon Nijenhuis, Gerdienke Prange e Farshid Amirabdollahian. "Grasps Recognition and Evaluation of Stroke Patients for Supporting Rehabilitation Therapy". BioMed Research International 2014 (2014): 1–14. http://dx.doi.org/10.1155/2014/318016.
Texto completo da fonteHan, Kun, Qiongqian Yang e Zefan Huang. "A Two-Stage Fall Recognition Algorithm Based on Human Posture Features". Sensors 20, n.º 23 (5 de dezembro de 2020): 6966. http://dx.doi.org/10.3390/s20236966.
Texto completo da fonteCasilari, Eduardo, Moisés Álvarez-Marco e Francisco García-Lagos. "A Study of the Use of Gyroscope Measurements in Wearable Fall Detection Systems". Symmetry 12, n.º 4 (20 de abril de 2020): 649. http://dx.doi.org/10.3390/sym12040649.
Texto completo da fontePrabhakar, Ashish John, Srikanth Prabhu, Aayush Agrawal, Siddhisa Banerjee, Abraham M. Joshua, Yogeesh Dattakumar Kamat, Gopal Nath e Saptarshi Sengupta. "Use of Machine Learning for Early Detection of Knee Osteoarthritis and Quantifying Effectiveness of Treatment Using Force Platform". Journal of Sensor and Actuator Networks 11, n.º 3 (23 de agosto de 2022): 48. http://dx.doi.org/10.3390/jsan11030048.
Texto completo da fonteMihoub, Alaeddine. "A Deep Learning-Based Framework for Human Activity Recognition in Smart Homes". Mobile Information Systems 2021 (11 de setembro de 2021): 1–11. http://dx.doi.org/10.1155/2021/6961343.
Texto completo da fonteShahid, Zahraa Khais, Saguna Saguna e Christer Åhlund. "Detecting Anomalies in Daily Activity Routines of Older Persons in Single Resident Smart Homes: Proof-of-Concept Study". JMIR Aging 5, n.º 2 (11 de abril de 2022): e28260. http://dx.doi.org/10.2196/28260.
Texto completo da fonteMadokoro, Hirokazu, Stephanie Nix, Hanwool Woo e Kazuhito Sato. "A Mini-Survey and Feasibility Study of Deep-Learning-Based Human Activity Recognition from Slight Feature Signals Obtained Using Privacy-Aware Environmental Sensors". Applied Sciences 11, n.º 24 (12 de dezembro de 2021): 11807. http://dx.doi.org/10.3390/app112411807.
Texto completo da fonteQadir, Muhammad Usman, Izhar Ul Haq, Muhammad Awais Khan, Kamran Shah, Houssam Chouikhi e Mohamed A. Ismail. "Design, Analysis, and Development of Low-Cost State-of-the-Art Magnetorheological-Based Microprocessor Prosthetic Knee". Sensors 24, n.º 1 (1 de janeiro de 2024): 255. http://dx.doi.org/10.3390/s24010255.
Texto completo da fonteWu, Jiaxuan, Yunfei Feng e Peng Sun. "Sensor Fusion for Recognition of Activities of Daily Living". Sensors 18, n.º 11 (19 de novembro de 2018): 4029. http://dx.doi.org/10.3390/s18114029.
Texto completo da fonteIhianle, Isibor Kennedy, Usman Naeem e Abdel-Rahman Tawil. "Recognition of Activities of Daily Living from Topic Model". Procedia Computer Science 98 (2016): 24–31. http://dx.doi.org/10.1016/j.procs.2016.09.007.
Texto completo da fonte