Literatura científica selecionada sobre o tema "Detection and recognition of activities of daily living"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Detection and recognition of activities of daily living".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Detection and recognition of activities of daily living"
Refonaa, J., Bandaru Suhas, B. V. S. Bhaskar, S. L. JanyShabu, S. Dhamodaran, Sardar Maran, Maria Anu e M. Lakshmi. "Fall Detection and Daily Living Activity Recognition Logic Regression". Journal of Computational and Theoretical Nanoscience 17, n.º 8 (1 de agosto de 2020): 3520–25. http://dx.doi.org/10.1166/jctn.2020.9223.
Texto completo da fonteBelmonte-Fernández, Óscar, Antonio Caballer-Miedes, Eris Chinellato, Raúl Montoliu, Emilio Sansano-Sansano e Rubén García-Vidal. "Anomaly Detection in Activities of Daily Living with Linear Drift". Cognitive Computation 12, n.º 6 (1 de julho de 2020): 1233–51. http://dx.doi.org/10.1007/s12559-020-09740-6.
Texto completo da fonteHowedi, Aadel, Ahmad Lotfi e Amir Pourabdollah. "Exploring Entropy Measurements to Identify Multi-Occupancy in Activities of Daily Living". Entropy 21, n.º 4 (19 de abril de 2019): 416. http://dx.doi.org/10.3390/e21040416.
Texto completo da fonteMaunder, David, Julien Epps, Eliathamby Ambikairajah e Branko Celler. "Robust Sounds of Activities of Daily Living Classification in Two-Channel Audio-Based Telemonitoring". International Journal of Telemedicine and Applications 2013 (2013): 1–12. http://dx.doi.org/10.1155/2013/696813.
Texto completo da fonteIseda, Hikoto, Keiichi Yasumoto, Akira Uchiyama e Teruo Higashino. "Daily Living Activity Recognition with Frequency-Shift WiFi Backscatter Tags". Sensors 24, n.º 11 (21 de maio de 2024): 3277. http://dx.doi.org/10.3390/s24113277.
Texto completo da fontePires, Ivan Miguel, Gonçalo Marques, Nuno M. Garcia, Nuno Pombo, Francisco Flórez-Revuelta, Susanna Spinsante, Maria Canavarro Teixeira e Eftim Zdravevski. "Recognition of Activities of Daily Living and Environments Using Acoustic Sensors Embedded on Mobile Devices". Electronics 8, n.º 12 (7 de dezembro de 2019): 1499. http://dx.doi.org/10.3390/electronics8121499.
Texto completo da fonteJaveed, Madiha, Naif Al Mudawi, Abdulwahab Alazeb, Sultan Almakdi, Saud S. Alotaibi, Samia Allaoua Chelloug e Ahmad Jalal. "Intelligent ADL Recognition via IoT-Based Multimodal Deep Learning Framework". Sensors 23, n.º 18 (16 de setembro de 2023): 7927. http://dx.doi.org/10.3390/s23187927.
Texto completo da fonteLee, Cheolhwan, Ah Hyun Yuh e Soon Ju Kang. "Real-Time Prediction of Resident ADL Using Edge-Based Time-Series Ambient Sound Recognition". Sensors 24, n.º 19 (4 de outubro de 2024): 6435. http://dx.doi.org/10.3390/s24196435.
Texto completo da fonteBhattacharya, Sarnab, Rebecca Adaimi e Edison Thomaz. "Leveraging Sound and Wrist Motion to Detect Activities of Daily Living with Commodity Smartwatches". Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 6, n.º 2 (4 de julho de 2022): 1–28. http://dx.doi.org/10.1145/3534582.
Texto completo da fonteHaghi, Mostafa, Arman Ershadi e Thomas M. Deserno. "Recognizing Human Activity of Daily Living Using a Flexible Wearable for 3D Spine Pose Tracking". Sensors 23, n.º 4 (12 de fevereiro de 2023): 2066. http://dx.doi.org/10.3390/s23042066.
Texto completo da fonteTeses / dissertações sobre o assunto "Detection and recognition of activities of daily living"
Peng, Yingli. "Improvement of Data Mining Methods on Falling Detection and Daily Activities Recognition". Thesis, Mittuniversitetet, Avdelningen för informations- och kommunikationssystem, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-25521.
Texto completo da fonteViard, Kévin. "Modelling and Recognition of Human Activities of Daily Living in a Smart Home". Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLN022/document.
Texto completo da fonteMost of the work done in the field of ambient assisted living (AAL) is based on the use of visual and audio sensors such as cameras. However, these sensors are often rejected by the patient because of their invasiveness. Alternative approaches require the use of sensors embedded on the person (GPS, electronic wristbands or RFID chips in clothing ...), and their relevance is therefore reduced to the assumption that people actually wear them, without rejecting nor forgetting them. For these reasons, in this thesis, we find more relevant the approaches based on the use of binary sensors integrated into the habitat only, such as motion detectors, sensory mats or optical barriers. In such a technological context, it becomes interesting to use paradigms, models and tools of Discrete Event Systems (DES), initially developed for modeling, analysis and control of complex industrial systems. In this thesis work, the goal is to build an activity of daily living modeling and monitoring approach, based on the models and the paradigm of the DES and answering a problem that is expressed as follows:The objective is to develop a global framework to discover and recognise activities of daily living of an inhabitant living alone in a smart home. This smart home have to be equipped with binary sensors only, expert labeling of activities should not be needed and activities can be represented by probabilistic models. The first method presented in this thesis allows to build a probabilistic finite-state automata (PFA) from a learning database and an expert description of the activities to be modeled given by the medical staff. The second method developed during this thesis estimates, according to the observations, the activity performed by the monitored inhabitant. The methods described in this thesis are applied on data generated using an apartment lent by ENS Paris-Saclay and equipped according the experimental needs of this thesis
La maggior parte dei lavori nel settore dell’Ambient Assisted Living (AAL) si basasull’uso di sensori visivi e audio come le telecamere. Tuttavia, questi sensori sonospesso rifiutati dal paziente a causa della loro natura invasiva. Gli approcci alternativi richiedono l’uso di sensori integrati nella persona (GPS, bracciali elettronici o chipRFID...), e la loro rilevanza è quindi ridotta all’ipotesi che le persone li indossino effettivamente, senza mai rifiutarli o dimenticarli.Per questi motivi, in questa tesi, troviamo approcci più rilevanti basati esclusivamente sull’uso di sensori binari integrati nell’habitat, come rilevatori di movimento,tappeti sensoriali o barriere fotoelettriche.In tale contesto tecnologico, diventa interessante utilizzare i paradigmi, i modelli egli strumenti dei sistemi ad eventi discreti (SED), inizialmente sviluppati per la modellazione, l’analisi e il controllo di sistemi industriali complessi.In questo lavoro di tesi, l’obiettivo è quello di presentare un metodo per la modellazione e il monitoraggio delle abitudini di vita, basato sui modelli e paradigmi di SEDe rispondendo ad un problema che si esprime come segue : L’obiettivo è quello di sviluppare un quadro globale per rivelare e riconoscere le attività della vita quotidiana di una persona che abita da sola in una smart home chedovrebbe essere dotata solo di sensori binari. Inoltre si suppone che non sia necessarial’etichettatura delle attività osservate da parte di un esperto e tali attività sono rappresentate da modelli probabilistici.Il primo metodo presentato in questa tesi permette di costruire un modello probabilistico di automa a stati finiti (PFA) ottenuto da un database di apprendimento e unadescrizione delle attività da parte di medici. Il secondo metodo sviluppato in questa tesi stima, alla luce delle osservazioni, qualeattività svolge la persona osservata. I metodi descritti sono illustrati utilizzando dati generati localmente attraverso l’usodi un appartamento messo a disposizione da ENS Paris-Saclay e attrezzato per soddisfarele esigenze sperimentali di questa tesi
Ball, Stephen. "Investigating telemonitoring technologies for the detection of activities and the application of BLE in smart homes for elderly independent living". Thesis, Queensland University of Technology, 2017. https://eprints.qut.edu.au/123510/1/Stephen%20Ball%20Thesis.pdf.
Texto completo da fonteTayyub, Jawad. "Hierarchical modelling and recognition of activities of daily living". Thesis, University of Leeds, 2018. http://etheses.whiterose.ac.uk/22186/.
Texto completo da fonteBalasubramanian, Koushik. "Perception Framework for Activities of Daily Living Manipulation Tasks". Digital WPI, 2016. https://digitalcommons.wpi.edu/etd-theses/450.
Texto completo da fonteUitto, T. (Teemu). "Detection and recognition of daily activities by utilizing novel technologies". Master's thesis, University of Oulu, 2017. http://urn.fi/URN:NBN:fi:oulu-201711093088.
Texto completo da fonteOpinnäytetyössä tutkittiin ulko- ja sisäpaikannusteknologioita, sekä yhdessä niiden kanssa käytettäviä kannettavia ja/tai puettavia liikesensoreita, joilla voidaan havaita ja tunnistaa päivittäisiä aktiviteettejä. Ikääntyvien ihmisten hoidossa on erinomaisen tärkeää pystyä havaitsemaan muutoksia fyysisessä, psykososiaalisessa sekä kognitiivisessa toimintakyvyssä. Tässä työssä käsiteltiin älykkäitä järjestelmiä ikääntymisestä aiheutuneiden muutosten arvioimiseksi. Uusia teknologioita ja menetelmiä hyödyntämällä voidaan parantaa kotihoitopalvelujen tehokkuutta. Työssä tutkittu konsepti mahdollistaa toimintakyvyn muutosten, sekä päivittäisen suorituskyvyn muutosten varhaisen tunnistamisen. Tutkimusmenetelminä käytettiin sekä haastatteluja että kirjallisuustutkimuksia. Teknologiatutkimus suoritettiin kirjallisuustutkimuksena eri lähteistä, kun taas konseptointi ja teknologioiden valinta suoritettiin haastattelemalla 5GTN allianssiin kuuluvia moniammatillisia asiantuntijoita. Tutkimuksen tuloksena valittiin käytettävät teknologiat ulko- ja sisäpaikannusmenetelmiin, sekä valittiin sensorityypit päivittäisten toimintojen ja rutiinien reaaliaikaiseen seurantaan. Syksyllä 2017 on käynnistymässä pilottiprojekti, jossa sisätila-antureiden avulla seurataan ikäihmisten toimintaa omassa kodissaan. Tuloksia tuosta projektista ei käsitellä tässä opinnäytetyössä, vaan ne käsitellään tulevissa opinnäytteissä
Bouaziz, Ghazi. "Développement et mise en œuvre d'un système de détection de l'isolement social basé sur la reconnaissance des activités en matière de repas et de mobilité chez les personnes âgées à domicile". Electronic Thesis or Diss., Université de Toulouse (2023-....), 2024. http://www.theses.fr/2024TLSES137.
Texto completo da fonteThe recognition of daily life activities has been the subject of research for years to provide effective solutions. It is based on the spatio-temporal analysis of situations and behaviors whose input data is information provided by ambient sensors or by sensors worn by the person. This thesis focuses on the instrumentation of the living space by ambient sensors and on the detection of a state of social isolation in elderly people. Two approaches are used to assess social isolation. The first one is based on questionnaires. The second approach is based on the use of technologies for the objective acquisition of data representative of a state, behavior, etc. In particular, the activity "eating" is linked to a sequence of actions such as shopping, cooking, eating and washing dishes. The activity "moving" is linked to mobility within the home and leaving the home. The literature shows that these two activities seem to be relevant for assessing a potential risk of social isolation among older people. The thesis work focuses on four main contributions: A bibliographic review of ADLs detection research to identify its contributions and limitations, and to outline relevant research directions. Specific criteria were chosen to include articles presenting activity detection systems. A system design approach applied to the detection of ADLs. This approach is part of a system engineering process. It describes the analysis of requirements, their modeling through SysML diagrams and the implementation of a hardware and software architecture based on an IoT network. The analysis of ADLs, in our study, uses data from motion detectors and contact sensors. A display on a web application allows you to visualize the results obtained for the caregiver or the family. The original use of four methods to classify ADLs, namely "preparing the meal", "eating the meal", "washing the dishes", "sleeping/relaxing", "hygiene", "the person outside the home", "a visitor inside the home" and "other activities". The first three methods used are K-means, the Gaussian mixture model and BIRCH, which applies weights to the data. Meal-related activities therefore do not have the same weight as the rest of the data, which made it possible to improve the detection of ADLs. The fourth algorithm is based on a logical method following the determination of a correlation matrix using all the available sensors as input. Using the data from the correlation matrix, the algorithm personalizes the detection of meal-related activities by distinguishing a person preparing their meal from a person using a meal delivery service. We validate our methods by referring to the forms filled in by the participants at the beginning and end of the experiment, in which they describe the course of their typical day. These algorithms were applied to an open annotated database to confirm the accuracy of our approaches. The proposal of a score for the level of social isolation of the person being monitored. This score is based on the identification of activities to extract daily habits through behavioral indicators (time spent outside the house and in the kitchen, etc.). Six elderly people were followed for more than 3 months. The logistic regression algorithm was used to extract the level of social isolation, which was compared with the level of social isolation identified using the "Lubben Social Network Scale" questionnaire, which was completed by each participant at the beginning and end of the study
Li, Yunjie. "Applying Data Mining Techniques on Continuous Sensed Data : For daily living activity recognition". Thesis, Mittuniversitetet, Avdelningen för informations- och kommunikationssystem, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-23424.
Texto completo da fontePazhoumand-Dar, Hossein. "Unsupervised monitoring of an elderly person's activities of daily living using Kinect sensors and a power meter". Thesis, Edith Cowan University, Research Online, Perth, Western Australia, 2017. https://ro.ecu.edu.au/theses/1971.
Texto completo da fonteZaineb, Liouane. "Services e-santé basés sur la reconnaissance et la prédiction des activités quotidiennes dans les espaces intelligents". Thesis, Rennes 1, 2018. http://www.theses.fr/2018REN1S109.
Texto completo da fonteAdvances in sensor technology and their availability have measured various properties and activities of residents in a smart home. However, obtaining significant knowledge from a large amount of information collected from a sensor network is not a simple task. Due to the complexity of the behavior of the inhabitants, the extraction of meaningful information and the accurate prediction of values representing the future activities of an occupant are research challenges. The main objective of our thesis work is to ensure an efficient analysis of data collected from occupancy sensors in a smart home. In this regard, this work is based on the recognition and evaluation of the daily activities of an elderly person in order to observe, predict and monitor the evolution of his state of dependence, health and to detect by the same occasion, the presence of a loss or a disruption of autonomy in real time
Capítulos de livros sobre o assunto "Detection and recognition of activities of daily living"
Cartas, Alejandro, Juan Marín, Petia Radeva e Mariella Dimiccoli. "Recognizing Activities of Daily Living from Egocentric Images". In Pattern Recognition and Image Analysis, 87–95. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-58838-4_10.
Texto completo da fonteAlam, Md Jahangir, Yazid Attabi, Patrick Kenny, Pierre Dumouchel e Douglas O’Shaughnessy. "Automatic Emotion Recognition from Cochlear Implant-Like Spectrally Reduced Speech". In Ambient Assisted Living and Daily Activities, 332–40. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-13105-4_48.
Texto completo da fonteArias Tapia, Susana A., Sylvie Ratté, Héctor F. Gómez A., Alexandra González Eras, José Barbosa, Juan Carlos Torres, Ruth Reátegui Rojas et al. "First Contribution to Complex Emotion Recognition in Patients with Alzheimer’s Disease". In Ambient Assisted Living and Daily Activities, 341–47. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-13105-4_49.
Texto completo da fonteMärker, Marcus, Sebastian Wolf, Oliver Scharf, Daniel Plorin e Tobias Teich. "KNX-Based Sensor Monitoring for User Activity Detection in AAL-environments". In Ambient Assisted Living and Daily Activities, 18–25. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-13105-4_4.
Texto completo da fonteSynnott, Jonathan, Chris Nugent e Paul Jeffers. "A Thermal Data Simulation Tool for the Testing of Novel Approaches to Activity Recognition". In Ambient Assisted Living and Daily Activities, 10–13. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-13105-4_2.
Texto completo da fonteSiddiqi, Muhammad Hameed, Rahman Ali, Byeong Ho Kang e Sungyoung Lee. "A New Feature Extraction Technique for Human Facial Expression Recognition Systems Using Depth Camera". In Ambient Assisted Living and Daily Activities, 131–38. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-13105-4_21.
Texto completo da fonteLozano-Monasor, Elena, María T. López, Antonio Fernández-Caballero e Francisco Vigo-Bustos. "Facial Expression Recognition from Webcam Based on Active Shape Models and Support Vector Machines". In Ambient Assisted Living and Daily Activities, 147–54. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-13105-4_23.
Texto completo da fonteGu, Feng, Francisco Flórez-Revuelta, Dorothy Monekosso e Paolo Remagnino. "A Multiple Kernel Learning Based Fusion Framework for Real-Time Multi-View Action Recognition". In Ambient Assisted Living and Daily Activities, 26–33. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-13105-4_5.
Texto completo da fonteAvgerinakis, Konstantinos, Alexia Briassouli e Ioannis Kompatsiaris. "Activity Detection and Recognition of Daily Living Events". In Health Monitoring and Personalized Feedback using Multimedia Data, 139–60. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-17963-6_8.
Texto completo da fonteLiouane, Zaineb, Tayeb Lemlouma, Philippe Roose, Fréderic Weis e Hassani Messaoud. "An Improved Elman Neural Network for Daily Living Activities Recognition". In Advances in Intelligent Systems and Computing, 697–707. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-53480-0_69.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Detection and recognition of activities of daily living"
Negrete Ramírez, José Manuel, e Yudith Cardinale. "Activities of Daily Living Detection on Healthcare: A Categorization". In iWOAR '22: 7th international Workshop on Sensor-based Activity Recognition and Artificial Intelligence. New York, NY, USA: ACM, 2022. http://dx.doi.org/10.1145/3558884.3558887.
Texto completo da fonteNegin, Farhood, Abhishek Goel, Abdelrahman G. Abubakr, Francois Bremond e Gianpiero Francesca. "Online Detection of Long-Term Daily Living Activities by Weakly Supervised Recognition of Sub-Activities". In 2018 15th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS). IEEE, 2018. http://dx.doi.org/10.1109/avss.2018.8639471.
Texto completo da fontePirsiavash, H., e D. Ramanan. "Detecting activities of daily living in first-person camera views". In 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2012. http://dx.doi.org/10.1109/cvpr.2012.6248010.
Texto completo da fonteAmano, Rina, e Jianhua Ma. "Recognition and Change Point Detection of Dogs' Activities of Daily Living Using Wearable Devices". In 2021 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech). IEEE, 2021. http://dx.doi.org/10.1109/dasc-picom-cbdcom-cyberscitech52372.2021.00116.
Texto completo da fonteJohnson, Brian Bradley. "Noninvasive Patient Monitoring with Ambient Sensors to Monitor Physical and Cognitive Health for Individuals Living with Alzheimer’s Disease". In 2024 Design of Medical Devices Conference. American Society of Mechanical Engineers, 2024. http://dx.doi.org/10.1115/dmd2024-1030.
Texto completo da fonteAvgerinakis, K., A. Briassouli e I. Kompatsiaris. "Recognition of Activities of Daily Living". In 2012 IEEE 24th International Conference on Tools with Artificial Intelligence (ICTAI 2012). IEEE, 2012. http://dx.doi.org/10.1109/ictai.2012.181.
Texto completo da fonteBergeron, Frederic, Sylvain Giroux, Kevin Bouchard e Sebastien Gaboury. "RFID based activities of daily living recognition". In 2017 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computed, Scalable Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI). IEEE, 2017. http://dx.doi.org/10.1109/uic-atc.2017.8397548.
Texto completo da fontePoularakis, Stergios, Konstantinos Avgerinakis, Alexia Briassouli e Ioannis Kompatsiaris. "Computationally efficient recognition of activities of daily living". In 2015 IEEE International Conference on Image Processing (ICIP). IEEE, 2015. http://dx.doi.org/10.1109/icip.2015.7350797.
Texto completo da fonteBergeron, Frédéric, Kevin Bouchard, Sylvain Giroux, Sébastien Gaboury e Bruno Bouchard. "Real-Time Constraints for Activities of Daily Living Recognition". In PETRA '16: 9th ACM International Conference on PErvasive Technologies Related to Assistive Environments. New York, NY, USA: ACM, 2016. http://dx.doi.org/10.1145/2910674.2935840.
Texto completo da fonteLiouane, Zaineb, Tayeb Lemlouma, Philippe Roose, Fréderic Weis e Hassani Messaoud. "A Markovian-based Approach for Daily Living Activities Recognition". In 5th International Conference on Sensor Networks. SCITEPRESS - Science and and Technology Publications, 2016. http://dx.doi.org/10.5220/0005809502140219.
Texto completo da fonte