Artigos de revistas sobre o tema "Defect textures"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Defect textures".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Zhou, Lei, Bingya Ma, Yanyan Dong, Zhewen Yin e Fan Lu. "DCFE-YOLO: A novel fabric defect detection method". PLOS ONE 20, n.º 1 (14 de janeiro de 2025): e0314525. https://doi.org/10.1371/journal.pone.0314525.
Texto completo da fonteCarrilho, Rui, Kailash A. Hambarde e Hugo Proença. "A Novel Dataset for Fabric Defect Detection: Bridging Gaps in Anomaly Detection". Applied Sciences 14, n.º 12 (19 de junho de 2024): 5298. http://dx.doi.org/10.3390/app14125298.
Texto completo da fonteZhang, Yuming, Zhongyuan Gao, Chao Zhi, Mengqi Chen, Youyong Zhou, Shuai Wang, Sida Fu e Lingjie Yu. "A novel defect generation model based on two-stage GAN". e-Polymers 22, n.º 1 (1 de janeiro de 2022): 793–802. http://dx.doi.org/10.1515/epoly-2022-0071.
Texto completo da fonteShi, Hui, Gangyan Li e Hanwei Bao. "Lightweight Reconstruction Network for Surface Defect Detection Based on Texture Complexity Analysis". Electronics 12, n.º 17 (27 de agosto de 2023): 3617. http://dx.doi.org/10.3390/electronics12173617.
Texto completo da fonteLi, Feng, Lina Yuan, Kun Zhang e Wenqing Li. "A defect detection method for unpatterned fabric based on multidirectional binary patterns and the gray-level co-occurrence matrix". Textile Research Journal 90, n.º 7-8 (1 de outubro de 2019): 776–96. http://dx.doi.org/10.1177/0040517519879904.
Texto completo da fonteMo, Dongmei, e Wai Keung Wong. "Fabric Defect Classification based on Deep Hashing Learning". AATCC Journal of Research 8, n.º 1_suppl (setembro de 2021): 191–201. http://dx.doi.org/10.14504/ajr.8.s1.23.
Texto completo da fonteLi, Jianqi, Binfang Cao, Fangyan Nie e Minhan Zhu. "Feature Extraction of Foam Nickel Surface Based on Multi-Scale Texture Analysis". Journal of Advanced Computational Intelligence and Intelligent Informatics 23, n.º 2 (20 de março de 2019): 175–82. http://dx.doi.org/10.20965/jaciii.2019.p0175.
Texto completo da fonteLiu, Yang, e Weiqi Yuan. "A Distributed System-Based Multiplex Networks to Extract Texture Feature". International Journal of Distributed Systems and Technologies 13, n.º 3 (1 de julho de 2022): 1–11. http://dx.doi.org/10.4018/ijdst.307991.
Texto completo da fonteZhang, Huanhuan, Jinxiu Ma, Junfeng Jing e Pengfei Li. "Fabric Defect Detection Using L0 Gradient Minimization and Fuzzy C-Means". Applied Sciences 9, n.º 17 (26 de agosto de 2019): 3506. http://dx.doi.org/10.3390/app9173506.
Texto completo da fonteSong, K. Y., J. Kittler e M. Petrou. "Defect detection in random colour textures". Image and Vision Computing 14, n.º 9 (outubro de 1996): 667–83. http://dx.doi.org/10.1016/0262-8856(96)84491-x.
Texto completo da fonteHu, Guanghua, Junfeng Huang, Qinghui Wang, Jingrong Li, Zhijia Xu e Xingbiao Huang. "Unsupervised fabric defect detection based on a deep convolutional generative adversarial network". Textile Research Journal 90, n.º 3-4 (17 de julho de 2019): 247–70. http://dx.doi.org/10.1177/0040517519862880.
Texto completo da fonteDeepali Ujalambkar. "Industrial Product Surface Defect Detection Using CNN: A Deep Learning Approach". Panamerican Mathematical Journal 34, n.º 3 (1 de outubro de 2024): 84–95. http://dx.doi.org/10.52783/pmj.v34.i3.1775.
Texto completo da fonteSi, Xiao Shu, Hong Zheng e Xue Min Hu. "Fabric Defect Detection Based on SRG-PCNN". Advanced Materials Research 148-149 (outubro de 2010): 1319–26. http://dx.doi.org/10.4028/www.scientific.net/amr.148-149.1319.
Texto completo da fonteZhang, Bo, e Chunming Tang. "A Method for Defect Detection of Yarn-Dyed Fabric Based on Frequency Domain Filtering and Similarity Measurement". Autex Research Journal 19, n.º 3 (1 de setembro de 2019): 257–62. http://dx.doi.org/10.1515/aut-2018-0040.
Texto completo da fonteMachon, Thomas, e Gareth P. Alexander. "Global defect topology in nematic liquid crystals". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 472, n.º 2191 (julho de 2016): 20160265. http://dx.doi.org/10.1098/rspa.2016.0265.
Texto completo da fonteCowling, Stephen James, Edward James Davis, Richard John Mandle e John William Goodby. "ChemInform Abstract: Defect Textures of Liquid Crystals". ChemInform 45, n.º 32 (24 de julho de 2014): no. http://dx.doi.org/10.1002/chin.201432267.
Texto completo da fonteOUYANG, Zhou, Huailiang ZHANG, Ziyang TANG, Ling PENG e Sheng YU. "Research on defect detection algorithm of complex texture ceramic tiles based on visual attention mechanism". Xibei Gongye Daxue Xuebao/Journal of Northwestern Polytechnical University 40, n.º 2 (abril de 2022): 414–21. http://dx.doi.org/10.1051/jnwpu/20224020414.
Texto completo da fonteZhou, Jian, e Jianli Liu. "Segmentation of defects in textile fabric with robust texture representation and total variation". International Journal of Clothing Science and Technology 32, n.º 6 (28 de abril de 2020): 813–23. http://dx.doi.org/10.1108/ijcst-10-2019-0157.
Texto completo da fonteMARIN, Florin Bogdan, e Mihaela MARIN. "Supervised Learning Plastic Defect Algorithm Detection". Annals of “Dunarea de Jos” University of Galati. Fascicle IX, Metallurgy and Materials Science 46, n.º 4 (15 de dezembro de 2023): 89–92. http://dx.doi.org/10.35219/mms.2023.4.15.
Texto completo da fonteYu, Ronghao, Yun Liu, Rui Yang e Yingna Wu. "VQGNet: An Unsupervised Defect Detection Approach for Complex Textured Steel Surfaces". Sensors 24, n.º 19 (27 de setembro de 2024): 6252. http://dx.doi.org/10.3390/s24196252.
Texto completo da fonteLiu, Zhoufeng, Baorui Wang, Chunlei Li, Miao Yu e Shumin Ding. "Fabric defect detection based on deep-feature and low-rank decomposition". Journal of Engineered Fibers and Fabrics 15 (janeiro de 2020): 155892502090302. http://dx.doi.org/10.1177/1558925020903026.
Texto completo da fonteZhong, Zhiyan, Hongxin Wang e Dan Xiang. "Small Defect Detection Based on Local Structure Similarity for Magnetic Tile Surface". Electronics 12, n.º 1 (30 de dezembro de 2022): 185. http://dx.doi.org/10.3390/electronics12010185.
Texto completo da fonteMehta, Devang, e Noah Klarmann. "Autoencoder-Based Visual Anomaly Localization for Manufacturing Quality Control". Machine Learning and Knowledge Extraction 6, n.º 1 (21 de dezembro de 2023): 1–17. http://dx.doi.org/10.3390/make6010001.
Texto completo da fonteTHATCHER, M. J., e M. J. MORGAN. "BIREFRINGENT ELECTROWEAK DEFECTS". International Journal of Modern Physics A 17, n.º 14 (10 de junho de 2002): 1953–64. http://dx.doi.org/10.1142/s0217751x02010583.
Texto completo da fonteKim, Minsu, Hoon Jo, Moonsoo Ra e Whoi-Yul Kim. "Weakly-Supervised Defect Segmentation on Periodic Textures Using CycleGAN". IEEE Access 8 (2020): 176202–16. http://dx.doi.org/10.1109/access.2020.3024554.
Texto completo da fonteAsha, V., N. U. Bhajantri e P. Nagabhushan. "Similarity measures for automatic defect detection on patterned textures". International Journal of Information and Communication Technology 4, n.º 2/3/4 (2012): 118. http://dx.doi.org/10.1504/ijict.2012.048758.
Texto completo da fonteStanosz, Glen R., e Gary Laudermilch. "Variation in Frequency of Sugar Maple Bole Damage From Tree-Marking Materials". Northern Journal of Applied Forestry 9, n.º 4 (1 de dezembro de 1992): 136–37. http://dx.doi.org/10.1093/njaf/9.4.136.
Texto completo da fonteZHU, Runhu, Binjie XIN, Na DENG e Mingzhu FAN. "Semantic Segmentation Using DeepLabv3+ Model for Fabric Defect Detection". Wuhan University Journal of Natural Sciences 27, n.º 6 (dezembro de 2022): 539–49. http://dx.doi.org/10.1051/wujns/2022276539.
Texto completo da fonteCao, Luwen, Qixin Han, Rong Luo, Li Xu e Weikuan Jia. "Optimized YOLOv8 Model for Precise Defects Detection on Wet-Blue Hide Surface". Journal of the American Leather Chemists Association 119, n.º 11 (1 de novembro de 2024): 467–80. http://dx.doi.org/10.34314/h35hpe67.
Texto completo da fonteGardymova, Anna P., Mikhail N. Krakhalev e Victor Ya Zyryanov. "Optical Textures and Orientational Structures in Cholesteric Droplets with Conical Boundary Conditions". Molecules 25, n.º 7 (10 de abril de 2020): 1740. http://dx.doi.org/10.3390/molecules25071740.
Texto completo da fonteNovotná, Vladimíra, Lubor Lejček, Věra Hamplová e Jana Vejpravová. "Defect Structures of Magnetic Nanoparticles in Smectic A Liquid Crystals". Molecules 26, n.º 18 (21 de setembro de 2021): 5717. http://dx.doi.org/10.3390/molecules26185717.
Texto completo da fonteXu, Haitao, Chengming Liu, Shuya Duan, Liangpin Ren, Guozhen Cheng e Bing Hao. "A Fabric Defect Segmentation Model Based on Improved Swin-Unet with Gabor Filter". Applied Sciences 13, n.º 20 (17 de outubro de 2023): 11386. http://dx.doi.org/10.3390/app132011386.
Texto completo da fonteR, Subashini, Hemalatha R e Muthumeenakshi K. "Dictionary Learning Based Adaptive Defect Detection In Complex Fabric Textures". International Journal of Computing and Digital Systems 14, n.º 1 (1 de setembro de 2023): 769–78. http://dx.doi.org/10.12785/ijcds/140159.
Texto completo da fonteShen, Yanchun, Jinbing Wu, Jingge Wang, Saibo Wu e Wei Hu. "Topological Defect Evolutions Guided by Varying the Initial Azimuthal Orientation". Applied Sciences 14, n.º 21 (29 de outubro de 2024): 9869. http://dx.doi.org/10.3390/app14219869.
Texto completo da fonteSaberironaghi, Alireza, Jing Ren e Moustafa El-Gindy. "Defect Detection Methods for Industrial Products Using Deep Learning Techniques: A Review". Algorithms 16, n.º 2 (8 de fevereiro de 2023): 95. http://dx.doi.org/10.3390/a16020095.
Texto completo da fonteRalló, Miquel, María S. Millán e Jaume Escofet. "Unsupervised novelty detection using Gabor filters for defect segmentation in textures". Journal of the Optical Society of America A 26, n.º 9 (18 de agosto de 2009): 1967. http://dx.doi.org/10.1364/josaa.26.001967.
Texto completo da fonteBrzakovic, D., H. Beck e N. Sufi. "An approach to defect detection in materials characterized by complex textures". Pattern Recognition 23, n.º 1-2 (janeiro de 1990): 99–107. http://dx.doi.org/10.1016/0031-3203(90)90052-m.
Texto completo da fonteViney, Christopher, e Wendy S. Putnam. "Characterization of sheared liquid crystalline polymers by light microscopy". Proceedings, annual meeting, Electron Microscopy Society of America 51 (1 de agosto de 1993): 864–65. http://dx.doi.org/10.1017/s0424820100150150.
Texto completo da fonteShanthalakshmi, M., Susmita mishra, V. Jananee, P. Narayana Perumal e S. Manoj Jayakar. "Identification of Casting Product Surface Quality Using Alex net and Le-net CNN Models". Journal of Physics: Conference Series 2335, n.º 1 (1 de setembro de 2022): 012031. http://dx.doi.org/10.1088/1742-6596/2335/1/012031.
Texto completo da fontePatil, Deepika B., Akriti Nigam, Subrajeet Mohapatra e Sagar Nikam. "A Deep Learning Approach to Classify and Detect Defects in the Components Manufactured by Laser Directed Energy Deposition Process". Machines 11, n.º 9 (25 de agosto de 2023): 854. http://dx.doi.org/10.3390/machines11090854.
Texto completo da fonteMei, Shunqi, Yishan Shi, Heng Gao e Li Tang. "Research on Fabric Defect Detection Algorithm Based on Improved YOLOv8n Algorithm". Electronics 13, n.º 11 (21 de maio de 2024): 2009. http://dx.doi.org/10.3390/electronics13112009.
Texto completo da fonteLiu, Zhoufeng, Chi Zhang, Chunlei Li, Shumin Ding, Yan Dong e Yun Huang. "Fabric defect recognition using optimized neural networks". Journal of Engineered Fibers and Fabrics 14 (janeiro de 2019): 155892501989739. http://dx.doi.org/10.1177/1558925019897396.
Texto completo da fonteWu, Ying, Jian Zhou, Nicholus Tayari Akankwasa, Kai Wang e Jun Wang. "Fabric texture representation using the stable learned discrete cosine transform dictionary". Textile Research Journal 89, n.º 3 (28 de novembro de 2017): 294–310. http://dx.doi.org/10.1177/0040517517743688.
Texto completo da fonteBen-abraham, S. I. "Development of Defect Textures in Smectic A Liquid Crystals: A Nonlinear Model". Molecular Crystals and Liquid Crystals 123, n.º 1 (fevereiro de 1985): 77–100. http://dx.doi.org/10.1080/00268948508074768.
Texto completo da fonteTsai, Du-Ming, e Shin-Min Chao. "An anisotropic diffusion-based defect detection for sputtered surfaces with inhomogeneous textures". Image and Vision Computing 23, n.º 3 (março de 2005): 325–38. http://dx.doi.org/10.1016/j.imavis.2004.09.003.
Texto completo da fonteLi, Junfeng, e Hao Wang. "Surface defect detection of vehicle light guide plates based on an improved RetinaNet". Measurement Science and Technology 33, n.º 4 (7 de janeiro de 2022): 045401. http://dx.doi.org/10.1088/1361-6501/ac4597.
Texto completo da fonteZhou, Jian, Jian Zhou, Jun Wang e Honggang Bu. "Fabric Defect Detection Using a Hybrid and Complementary Fractal Feature Vector and FCM-based Novelty Detector". Fibres and Textiles in Eastern Europe 25 (31 de dezembro de 2017): 46–52. http://dx.doi.org/10.5604/01.3001.0010.5370.
Texto completo da fonteZhu, Jinsong, e Jinbo Song. "An Intelligent Classification Model for Surface Defects on Cement Concrete Bridges". Applied Sciences 10, n.º 3 (2 de fevereiro de 2020): 972. http://dx.doi.org/10.3390/app10030972.
Texto completo da fonteZhang, Yizhuo, Guanlei Wu, Shen Shi e Huiling Yu. "WTSM-SiameseNet: A Wood-Texture-Similarity-Matching Method Based on Siamese Networks". Information 15, n.º 12 (16 de dezembro de 2024): 808. https://doi.org/10.3390/info15120808.
Texto completo da fonteP. Banumathi, Et al. "DEFECTCNN: Improved Discriminative Convolution Neural Network Towards Instantaneous Automatic Detection and Classification of Complex Defect in Fabrics". International Journal on Recent and Innovation Trends in Computing and Communication 11, n.º 11 (30 de novembro de 2023): 326–35. http://dx.doi.org/10.17762/ijritcc.v11i11.9610.
Texto completo da fonte