Literatura científica selecionada sobre o tema "Defect textures"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Defect textures".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Defect textures"
Zhou, Lei, Bingya Ma, Yanyan Dong, Zhewen Yin e Fan Lu. "DCFE-YOLO: A novel fabric defect detection method". PLOS ONE 20, n.º 1 (14 de janeiro de 2025): e0314525. https://doi.org/10.1371/journal.pone.0314525.
Texto completo da fonteCarrilho, Rui, Kailash A. Hambarde e Hugo Proença. "A Novel Dataset for Fabric Defect Detection: Bridging Gaps in Anomaly Detection". Applied Sciences 14, n.º 12 (19 de junho de 2024): 5298. http://dx.doi.org/10.3390/app14125298.
Texto completo da fonteZhang, Yuming, Zhongyuan Gao, Chao Zhi, Mengqi Chen, Youyong Zhou, Shuai Wang, Sida Fu e Lingjie Yu. "A novel defect generation model based on two-stage GAN". e-Polymers 22, n.º 1 (1 de janeiro de 2022): 793–802. http://dx.doi.org/10.1515/epoly-2022-0071.
Texto completo da fonteShi, Hui, Gangyan Li e Hanwei Bao. "Lightweight Reconstruction Network for Surface Defect Detection Based on Texture Complexity Analysis". Electronics 12, n.º 17 (27 de agosto de 2023): 3617. http://dx.doi.org/10.3390/electronics12173617.
Texto completo da fonteLi, Feng, Lina Yuan, Kun Zhang e Wenqing Li. "A defect detection method for unpatterned fabric based on multidirectional binary patterns and the gray-level co-occurrence matrix". Textile Research Journal 90, n.º 7-8 (1 de outubro de 2019): 776–96. http://dx.doi.org/10.1177/0040517519879904.
Texto completo da fonteMo, Dongmei, e Wai Keung Wong. "Fabric Defect Classification based on Deep Hashing Learning". AATCC Journal of Research 8, n.º 1_suppl (setembro de 2021): 191–201. http://dx.doi.org/10.14504/ajr.8.s1.23.
Texto completo da fonteLi, Jianqi, Binfang Cao, Fangyan Nie e Minhan Zhu. "Feature Extraction of Foam Nickel Surface Based on Multi-Scale Texture Analysis". Journal of Advanced Computational Intelligence and Intelligent Informatics 23, n.º 2 (20 de março de 2019): 175–82. http://dx.doi.org/10.20965/jaciii.2019.p0175.
Texto completo da fonteLiu, Yang, e Weiqi Yuan. "A Distributed System-Based Multiplex Networks to Extract Texture Feature". International Journal of Distributed Systems and Technologies 13, n.º 3 (1 de julho de 2022): 1–11. http://dx.doi.org/10.4018/ijdst.307991.
Texto completo da fonteZhang, Huanhuan, Jinxiu Ma, Junfeng Jing e Pengfei Li. "Fabric Defect Detection Using L0 Gradient Minimization and Fuzzy C-Means". Applied Sciences 9, n.º 17 (26 de agosto de 2019): 3506. http://dx.doi.org/10.3390/app9173506.
Texto completo da fonteSong, K. Y., J. Kittler e M. Petrou. "Defect detection in random colour textures". Image and Vision Computing 14, n.º 9 (outubro de 1996): 667–83. http://dx.doi.org/10.1016/0262-8856(96)84491-x.
Texto completo da fonteTeses / dissertações sobre o assunto "Defect textures"
Xie, Xianghua. "Defect detection in random colour textures". Thesis, University of Bristol, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.425096.
Texto completo da fonteAfghah, Seyedeh Sajedeh. "MODELING SKYRMIONS, DEFECT TEXTURES, AND ELECTRICAL SWITCHINGIN LIQUID CRYSTALS". Kent State University / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=kent1532952208004472.
Texto completo da fonteMahyaoui, Camille. "Exploitation des textures de phases cristal-liquides pour diverses applications optiques". Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASP118.
Texto completo da fonteLiquid crystals have been used for their electro-optical properties since the 1970s, both in LCD screens and for less widespread applications such as smart glass. The glass industry is particularly interested in the latter. The technology currently on the market uses a polymer matrix in which droplets of liquid crystal in the nematic phase are dispersed. Under the effect of an electrical voltage, the glass switches from a scattering to a transparent state. However, the transparency of this second state is not optimal, which has prompted the search for other technical solutions. It has recently been shown that the smectic A phase can also be used to design a smart glass prototype: a type of topological defect (focal conic domains) is generated in the smectic A phase and polymerised to be maintained in the nematic phase. Thanks to this step, the sample reversibly changes from a scattering state to a transparent state when a voltage is applied. This system belongs to the family of PSLCs (Polymer Stabilised Liquid Crystals). In this thesis, we optimised the polymerisation parameters (monomer concentration, photoinitiator, UV light intensity) to maximise the contrast between the transparent and scattering states. The relationship between the electro-optical properties and the microstructure of the samples was also studied. The principle was then extended to another liquid crystal phase that is formally very close to the smectic A phase: the twist-bend nematic (NTB) phase. This phase exhibits a wide variety of topological defects, enabling us not only to show that the NTB phase can also be used for smart glass applications, but also to develop an electrically tunable diffraction grating. For the latter application, the ‘rope-like texture' of the NTB phase was polymerised to be maintained in the nematic phase, which is known to align reversibly along the electric field. We then revisited the smectic A phase, which has already been extensively studied, but whose properties have not yet been fully investigated. In particular, we sought to make use of the quasi-hexagonal lattice of focal conic domains that is obtained by simple spin-coating deposition. We have shown that this lattice can be used to confine nanoparticles (3 nm - 10 nm). The method works for several types of nanoparticles (gold, quantum dots). An in-depth study of the aggregation state of nanoparticles and their location in the liquid crystal matrix was carried out. Two populations of nanoparticles were identified: micrometre-sized aggregates floating on the surface of the liquid crystal and localised on the defects, and nanoparticles adsorbed on the substrate. An evolution in the distribution of adsorbed particles was observed over long periods: a honeycomb lattice appeared in a few months. Finally, the optical properties of the two types of defects observed in the smectic A phase under hybrid anchoring conditions were studied: focal conic domains (which appear in samples thicker than 1.5 µm) and ‘linear defects' (observed in samples thinner than 1.5 µm). The focal conic domains scatter light and give the sample a hazy appearance, while the linear defects diffract visible light, giving the sample a structural colour. We have shown that the scattering properties of the focal conics are enhanced the thicker the liquid crystal layer, and that the linear defects behave as a diffraction grating. The structure of these two types of defects was studied using optical microscopy. A model based on Dupin's cyclides was proposed for focal conic domains. The structure of linear defects has not yet been fully elucidated
Song, Keng Yew. "Surface defect detection on textured background". Thesis, University of Surrey, 1993. http://epubs.surrey.ac.uk/844113/.
Texto completo da fontePathak, Ajay Kumar. "Automated defect detection in textured materials". Thesis, Hong Kong : University of Hong Kong, 2001. http://sunzi.lib.hku.hk/hkuto/record.jsp?B23295168.
Texto completo da fonteNgan, Yuk-tung Henry. "Motif-based method for patterned texture defect detection". Click to view the E-thesis via HKUTO, 2008. http://sunzi.lib.hku.hk/hkuto/record/b40203608.
Texto completo da fonteNgan, Yuk-tung Henry, e 顏旭東. "Motif-based method for patterned texture defect detection". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2008. http://hub.hku.hk/bib/B40203608.
Texto completo da fonteNgan, Yuk-tung Henry, e 顏旭東. "Patterned Jacquard fabric defect detection". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2004. http://hub.hku.hk/bib/B30070880.
Texto completo da fontePiepmeier, Jenelle Armstrong. "Textural analysis for defect detection in automated inspection systems". Thesis, Georgia Institute of Technology, 1995. http://hdl.handle.net/1853/19108.
Texto completo da fonteBarrett, Heather A. "A COMPARATIVE TRANSMISSION ELECTRON MICROSCOPY INVESTIGATION OF DEFECTS AND TEXTURES IN CRYPTOMELANE". Miami University / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=miami1375787636.
Texto completo da fonteLivros sobre o assunto "Defect textures"
National Seminar on the Application of Textures in Materials Research (1st 1997 Hyderabad, India). Textures in materials research: Proceedings of the First National Seminar on the Application of Textures in Materials Research (NASAT-97) held in [sic] Dec. 4-5, 1997 at the Defence Metallurgical Research Laboratory, Hyderabad (India). Enfield, N.H: Science Publishers, 1999.
Encontre o texto completo da fonteShields, David Dwayne. Recent attempts to defend the Byzantine text of the Greek New Testament. Ann Arbor, MI: University Microfilms International, 2000.
Encontre o texto completo da fonteShields, David Dwayne. Recent attempts to defend the Byzantine text of the Greek New Testament [microform]. Ann Arbor, MI: University Microfilms International, 1986.
Encontre o texto completo da fontePurushothama, B., e H. V. Sreenivasamurthy. Texturising: Defects, Causes, Effects, Remedies and Prevention Through Quality Management. Woodhead Publishing India PVT. LTD, 2018.
Encontre o texto completo da fontePurushothama, B., e H. V. Sreenivasamurthy. Texturising: Defects, Causes, Effects, Remedies and Prevention Through Quality Management. Woodhead Publishing India PVT. LTD, 2018.
Encontre o texto completo da fonteTaylor-Jones, Kate. Rhythm, Texture, Moods. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780190254971.003.0013.
Texto completo da fonteWickham, Chris. Sleepwalking into a New World. Princeton University Press, 2018. http://dx.doi.org/10.23943/princeton/9780691181141.001.0001.
Texto completo da fonteCapítulos de livros sobre o assunto "Defect textures"
Xie, Xianghua, e Majid Mirmehdi. "Texture Exemplars for Defect Detection on Random Textures". In Pattern Recognition and Image Analysis, 404–13. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11552499_46.
Texto completo da fonteGoodby, J. W. "Introduction to Defect Textures in Liquid Crystals". In Handbook of Visual Display Technology, 1897–924. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-14346-0_82.
Texto completo da fonteGoodby, J. W. "Introduction to Defect Textures in Liquid Crystals". In Handbook of Visual Display Technology, 1–23. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-35947-7_82-2.
Texto completo da fonteGoodby, J. W. "Introduction to Defect Textures in Liquid Crystals". In Handbook of Visual Display Technology, 1289–314. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-540-79567-4_82.
Texto completo da fonteLópez, Fernando, José Manuel Prats, Alberto Ferrer e José Miguel Valiente. "Defect Detection in Random Colour Textures Using the MIA T2 Defect Maps". In Lecture Notes in Computer Science, 752–63. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11867661_68.
Texto completo da fonteSiegmund, Dirk, Ashok Prajapati, Florian Kirchbuchner e Arjan Kuijper. "An Integrated Deep Neural Network for Defect Detection in Dynamic Textile Textures". In Progress in Artificial Intelligence and Pattern Recognition, 77–84. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-01132-1_9.
Texto completo da fonteSchael, Marc. "Texture Defect Detection Using Invariant Textural Features". In Lecture Notes in Computer Science, 17–24. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/3-540-45404-7_3.
Texto completo da fonteChetverikov, Dmitry, e Krisztián Gede. "Textures and structural defects". In Computer Analysis of Images and Patterns, 167–74. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/3-540-63460-6_114.
Texto completo da fonteSingh, Shri. "Defects and Textures in Liquid Crystals". In Handbook of Liquid Crystals—Volume II, 285–389. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-52621-3_6.
Texto completo da fonteLv, Ying, Xiaodong Yue, Qiang Chen e Meiqian Wang. "Fabric Defect Detection with Cartoon–Texture Decomposition". In Artificial Intelligence on Fashion and Textiles, 277–83. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-99695-0_33.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Defect textures"
Akter, Tanjila, Abu Salaho As Samman, Anamika Hossain Lily, Md Sadekur Rahman, Nuzhat Noor Islam Prova e Md Imran Kabir Joy. "Deep Learning Approaches for Multi Class Leather Texture Defect Classifcation". In 2024 15th International Conference on Computing Communication and Networking Technologies (ICCCNT), 1–6. IEEE, 2024. http://dx.doi.org/10.1109/icccnt61001.2024.10725952.
Texto completo da fonteWan, Jingyan, Changsheng Zhou e Xu Zhao. "Self-Supervised Fast Texture Defect Detection Based on Salient Object Detection". In 2024 IEEE International Conference on Real-time Computing and Robotics (RCAR), 558–63. IEEE, 2024. http://dx.doi.org/10.1109/rcar61438.2024.10671027.
Texto completo da fonteWang, Haiwen, Charles C. Wojcik e Shanhui Fan. "Topological defects and textures of photonic spin". In CLEO: Fundamental Science. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/cleo_fs.2023.fth3c.6.
Texto completo da fonteMirmahdavi, S. A., A. Ahmadyfard, A. A. Shahraki e P. Khojasteh. "A Novel Modeling of Random Textures Using Fourier Transform for Defect Detection". In 2013 UKSim 15th International Conference on Computer Modelling and Simulation (UKSim 2013). IEEE, 2013. http://dx.doi.org/10.1109/uksim.2013.95.
Texto completo da fonteRalló, Miquel, María S. Millán e Jaume Escofet. "Unsupervised local defect segmentation in textures using Gabor filters: application to industrial inspection". In SPIE Optical Engineering + Applications, editado por Andrew G. Tescher. SPIE, 2009. http://dx.doi.org/10.1117/12.826157.
Texto completo da fonteSkripkina, D. V., e A. V. Levitin. "Comparative Analysis of One-class and Two-class Support Vector Machines for Detecting Textural Anomalies in Leather Images". In 33rd International Conference on Computer Graphics and Vision. Keldysh Institute of Applied Mathematics, 2023. http://dx.doi.org/10.20948/graphicon-2023-503-508.
Texto completo da fonteTang, S. H., e S. Wu. "Deformation-Induced Microstructure Effects on Ultrasonic Waves: Simple Shear Versus Pure Shear". In ASME 2006 Pressure Vessels and Piping/ICPVT-11 Conference. ASMEDC, 2006. http://dx.doi.org/10.1115/pvp2006-icpvt-11-93131.
Texto completo da fonteTout, karim, e patrick Bouteille. "Defect detection on inductive thermography images using convolutional neural networks". In 16th Quantitative InfraRed Thermography conference. QIRT Council, 2022. http://dx.doi.org/10.21611/qirt.2022.3037.
Texto completo da fonteSchwarzer, Heiko, e Stephan Teiwes. "Detection and classification of structural defects on textured surfaces". In Optics in Computing. Washington, D.C.: Optica Publishing Group, 1997. http://dx.doi.org/10.1364/oc.1997.jwa.5.
Texto completo da fonteZhou, Hao, Yixin Chen, David Troendle e Byunghyun Jang. "One-Class Model for Fabric Defect Detection". In 10th International Conference on Natural Language Processing (NLP 2021). Academy and Industry Research Collaboration Center (AIRCC), 2021. http://dx.doi.org/10.5121/csit.2021.112314.
Texto completo da fonteRelatórios de organizações sobre o assunto "Defect textures"
Baete, Christophe. PR-405-153600-R01 Validation of the AC Corrosion Criteria Based on Real-World Pipeline Measurements. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), maio de 2019. http://dx.doi.org/10.55274/r0011592.
Texto completo da fonteShomer, Ilan, Ruth E. Stark, Victor Gaba e James D. Batteas. Understanding the hardening syndrome of potato (Solanum tuberosum L.) tuber tissue to eliminate textural defects in fresh and fresh-peeled/cut products. United States Department of Agriculture, novembro de 2002. http://dx.doi.org/10.32747/2002.7587238.bard.
Texto completo da fonteSwan, Megan, e Christopher Calvo. Site characterization and change over time in semi-arid grassland and shrublands at three parks?Chaco Culture National Historic Park, Petrified Forest National Park, and Wupatki National Monument: Upland vegetation and soils monitoring 2007?2021. National Park Service, 2024. http://dx.doi.org/10.36967/2301582.
Texto completo da fonte