Artigos de revistas sobre o tema "Defect recombination"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Defect recombination".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Saeed, Faisal, Muhammad Haseeb Khan, Haider Ali Tauqeer, Asfand Haroon, Asad Idrees, Syed Mzhar Shehrazi, Lukas Prokop, Vojtech Blazek, Stanislav Misak e Nasim Ullah. "Numerical Investigation of Photo-Generated Carrier Recombination Dynamics on the Device Characteristics for the Perovskite/Carbon Nitride Absorber-Layer Solar Cell". Nanomaterials 12, n.º 22 (15 de novembro de 2022): 4012. http://dx.doi.org/10.3390/nano12224012.
Texto completo da fonteLausch, Dominik, Ronny Bakowskie, Michael Lorenz, S. Schweizer, Kai Petter e Christian Hagendorf. "Classification of Recombination-Active Defects in Multicrystalline Solar Cells Made from Upgraded Metallurgical Grade (UMG) Silicon". Solid State Phenomena 178-179 (agosto de 2011): 88–93. http://dx.doi.org/10.4028/www.scientific.net/ssp.178-179.88.
Texto completo da fonteXu, Xin, Zhenyuan Wu, Zebin Zhao, Zhengli Lu, Yujia Gao, Xi Huang, Jiawei Huang et al. "First-principles study of detrimental iodine vacancy in lead halide perovskite under strain and electron injection". Applied Physics Letters 121, n.º 9 (29 de agosto de 2022): 092106. http://dx.doi.org/10.1063/5.0107441.
Texto completo da fonteVoronkov, Vladimir V., e Robert Falster. "Light-Induced Boron-Oxygen Recombination Centres in Silicon: Understanding their Formation and Elimination". Solid State Phenomena 205-206 (outubro de 2013): 3–14. http://dx.doi.org/10.4028/www.scientific.net/ssp.205-206.3.
Texto completo da fonteStorasta, L., F. H. C. Carlsson, Peder Bergman e Erik Janzén. "Recombination Enhanced Defect Annealing in 4H-SiC". Materials Science Forum 483-485 (maio de 2005): 369–72. http://dx.doi.org/10.4028/www.scientific.net/msf.483-485.369.
Texto completo da fonteKlein, Paul B., Rachael L. Myers-Ward, Kok Keong Lew, Brenda L. VanMil, Charles R. Eddy, D. Kurt Gaskill, Amitesh Shrivastava e Tangali S. Sudarshan. "Temperature Dependence of the Carrier Lifetime in 4H-SiC Epilayers". Materials Science Forum 645-648 (abril de 2010): 203–6. http://dx.doi.org/10.4028/www.scientific.net/msf.645-648.203.
Texto completo da fonteПещерова, С. М., Е. Б. Якимов, А. И. Непомнящих, В. И. Орлов, О. В. Феклисова, Л. А. Павлова e Р. В. Пресняков. "Зависимость объемных электрофизических свойств мультикремния от параметров разориентации зерен". Физика и техника полупроводников 53, n.º 1 (2019): 59. http://dx.doi.org/10.21883/ftp.2019.01.46988.8814.
Texto completo da fonteGrant, Nicholas E., Fiacre E. Rougieux e Daniel Macdonald. "Low Temperature Activation of Grown-In Defects Limiting the Lifetime of High Purity n-Type Float-Zone Silicon Wafers". Solid State Phenomena 242 (outubro de 2015): 120–25. http://dx.doi.org/10.4028/www.scientific.net/ssp.242.120.
Texto completo da fonteHarada, Tomoki, Tetsuo Ikari e Atsuhiko Fukuyama. "Development of laser heterodyne photothermal displacement method for mapping carrier nonradiative recombination centers in semiconductors". Journal of Applied Physics 131, n.º 19 (21 de maio de 2022): 195701. http://dx.doi.org/10.1063/5.0085041.
Texto completo da fonteHara, Tomohiko, e Yoshio Ohshita. "Analysis of recombination centers near an interface of a metal–SiO2–Si structure by double carrier pulse deep-level transient spectroscopy". AIP Advances 12, n.º 9 (1 de setembro de 2022): 095316. http://dx.doi.org/10.1063/5.0106319.
Texto completo da fonteKawakita, Shirou, Mitsuru Imaizumi, Shogo Ishizuka, Hajime Shibata, Shigeru Niki, Shuichi Okuda e Hiroaki Kusawake. "Characterization of Electron-Induced Defects in Cu (In, Ga) Se2 Thin Films by Photoluminescence". MRS Proceedings 1771 (2015): 157–61. http://dx.doi.org/10.1557/opl.2015.405.
Texto completo da fonteGan, Yongjin, Guixin Qiu, Binyi Qin, Xueguang Bi, Yucheng Liu, Guochao Nie, Weilian Ning e Ruizhao Yang. "Numerical Analysis of Stable (FAPbI3)0.85(MAPbBr3)0.15-Based Perovskite Solar Cell with TiO2/ZnO Double Electron Layer". Nanomaterials 13, n.º 8 (8 de abril de 2023): 1313. http://dx.doi.org/10.3390/nano13081313.
Texto completo da fonteLien, Der-Hsien, Shiekh Zia Uddin, Matthew Yeh, Matin Amani, Hyungjin Kim, Joel W. Ager, Eli Yablonovitch e Ali Javey. "Electrical suppression of all nonradiative recombination pathways in monolayer semiconductors". Science 364, n.º 6439 (2 de maio de 2019): 468–71. http://dx.doi.org/10.1126/science.aaw8053.
Texto completo da fonteEl Hageali, Sami A., Harvey Guthrey, Steven Johnston, Jake Soto, Bruce Odekirk, Brian P. Gorman e Mowafak Al-Jassim. "Nondestructive microstructural investigation of defects in 4H-SiC epilayers using a multiscale luminescence analysis approach". Journal of Applied Physics 131, n.º 18 (14 de maio de 2022): 185705. http://dx.doi.org/10.1063/5.0088313.
Texto completo da fonteMontenegro, D., V. Hortelano, O. Martínez, M. C. Martínez-Tomas, V. Sallet, V. Muñoz e J. Jiménez. "Non radiative recombination centers in ZnO nanorods". MRS Proceedings 1538 (2013): 317–22. http://dx.doi.org/10.1557/opl.2013.548.
Texto completo da fonteOgihara, Chisato, Yuta Shintoku, Kei Yamaguchi e Kazuo Morigaki. "Preparation condition and recombination rates at radiative defects in a-Si:H". Canadian Journal of Physics 92, n.º 7/8 (julho de 2014): 561–64. http://dx.doi.org/10.1139/cjp-2013-0538.
Texto completo da fonteFadda, Sarah, Antonio Mario Locci e Francesco Delogu. "Modeling of Point Defects Annihilation in Multilayered Cu/Nb Composites under Irradiation". Advances in Materials Science and Engineering 2016 (2016): 1–17. http://dx.doi.org/10.1155/2016/9435431.
Texto completo da fonteSchillgalies, M., A. Laubsch, St Lutgen, A. Avramescu, G. Brüderl, D. Queren e U. Strauss. "Defect-related recombination in InGaN-lasers". physica status solidi (c) 5, n.º 6 (maio de 2008): 2192–94. http://dx.doi.org/10.1002/pssc.200778537.
Texto completo da fonteZakirov, M. I., e O. A. Korotchenkov. "Carrier recombination in sonochemically synthesized ZnO powders". Materials Science-Poland 35, n.º 1 (23 de abril de 2017): 211–16. http://dx.doi.org/10.1515/msp-2017-0016.
Texto completo da fonteKaytor, M. D., e D. M. Livingston. "Saccharomyces cerevisiae RAD52 alleles temperature-sensitive for the repair of DNA double-strand breaks." Genetics 137, n.º 4 (1 de agosto de 1994): 933–44. http://dx.doi.org/10.1093/genetics/137.4.933.
Texto completo da fonteChu, Weibin, Qijing Zheng, Oleg V. Prezhdo, Jin Zhao e Wissam A. Saidi. "Low-frequency lattice phonons in halide perovskites explain high defect tolerance toward electron-hole recombination". Science Advances 6, n.º 7 (fevereiro de 2020): eaaw7453. http://dx.doi.org/10.1126/sciadv.aaw7453.
Texto completo da fonteSaintigny, Yannick, Kate Makienko, Cristina Swanson, Mary J. Emond e Raymond J. Monnat,. "Homologous Recombination Resolution Defect in Werner Syndrome". Molecular and Cellular Biology 22, n.º 20 (15 de outubro de 2002): 6971–78. http://dx.doi.org/10.1128/mcb.22.20.6971-6978.2002.
Texto completo da fontePraepattarapisut, Warakorn, Weera Pengchan, Toempong Phetchakul e Amporn Poyai. "Defect Distribution and Yield Analysis Technique on Silicon Wafer". Advanced Materials Research 911 (março de 2014): 271–75. http://dx.doi.org/10.4028/www.scientific.net/amr.911.271.
Texto completo da fonteAstakhov, O., V. Smirnov, R. Carius, B. E. Pieters, Yu Petrusenko, V. Borysenko e F. Finger. "Dependence of open circuit voltage in a-Si:H and μc-Si:H solar cells on defect density in absorber layer varied by 2 MeV electron bombardment". Canadian Journal of Physics 92, n.º 7/8 (julho de 2014): 905–8. http://dx.doi.org/10.1139/cjp-2013-0610.
Texto completo da fonteHolzäpfel, E., F. Phillipp e M. Wilkens. "On the interpretation of dislocation-loop growth during in-situ high-voltage Electron Microscopy". Proceedings, annual meeting, Electron Microscopy Society of America 48, n.º 4 (agosto de 1990): 532–33. http://dx.doi.org/10.1017/s042482010017579x.
Texto completo da fonteSeibt, Michael, Philipp Saring, Philipp Hahne, Linda Stolze, M. A. Falkenberg, Carsten Rudolf, Doaa Abdelbarey e Henning Schuhmann. "Transmission Electron Microscopy Investigations of Metal-Impurity-Related Defects in Crystalline Silicon". Solid State Phenomena 178-179 (agosto de 2011): 275–84. http://dx.doi.org/10.4028/www.scientific.net/ssp.178-179.275.
Texto completo da fontePezoldt, Jörg, e Andrei Alexandrovich Kalnin. "Defects and Polytype Instabilities". Materials Science Forum 924 (junho de 2018): 147–50. http://dx.doi.org/10.4028/www.scientific.net/msf.924.147.
Texto completo da fonteChung, Gil Yong, Mark J. Loboda, Mike F. MacMillan, Jian Wei Wan e Darren M. Hansen. "Carrier Lifetime Analysis by Microwave Photoconductive Decay (μ-PCD) for 4H SiC Epitaxial Wafers". Materials Science Forum 556-557 (setembro de 2007): 323–26. http://dx.doi.org/10.4028/www.scientific.net/msf.556-557.323.
Texto completo da fonteTan, Shaun, Tianyi Huang e Yang Yang. "Defect passivation of perovskites in high efficiency solar cells". Journal of Physics: Energy 3, n.º 4 (1 de outubro de 2021): 042003. http://dx.doi.org/10.1088/2515-7655/ac2e13.
Texto completo da fonteWeber, William J., Fei Gao, Ram Devanathan, Weilin Jiang e Y. Zhang. "Defects and Ion-Solid Interactions in Silicon Carbide". Materials Science Forum 475-479 (janeiro de 2005): 1345–50. http://dx.doi.org/10.4028/www.scientific.net/msf.475-479.1345.
Texto completo da fonteYassievich, I. N., V. N. Abakumov e A. A. Pakhomov. "Recombination-Induced Defect Heating and Related Phenomena". Materials Science Forum 83-87 (janeiro de 1992): 511–16. http://dx.doi.org/10.4028/www.scientific.net/msf.83-87.511.
Texto completo da fonteLaw, M. E. "Parameters for point-defect diffusion and recombination". IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 10, n.º 9 (1991): 1125–31. http://dx.doi.org/10.1109/43.85758.
Texto completo da fonteVerner, I. V., e J. W. Corbett. "Instabilities and nonlinearities in defect recombination processes". Radiation Effects and Defects in Solids 112, n.º 3 (janeiro de 1990): 85–87. http://dx.doi.org/10.1080/10420159008213034.
Texto completo da fonteShu, Yinan, B. Scott Fales e Benjamin G. Levine. "Defect-Induced Conical Intersections Promote Nonradiative Recombination". Nano Letters 15, n.º 9 (24 de agosto de 2015): 6247–53. http://dx.doi.org/10.1021/acs.nanolett.5b02848.
Texto completo da fonteShimoi, Hitoshi, Yuta Hanazumi, Natsuki Kawamura, Miwa Yamada, Shohei Shimizu, Taro Suzuki, Daisuke Watanabe e Takeshi Akao. "Meiotic chromosomal recombination defect in sake yeasts". Journal of Bioscience and Bioengineering 127, n.º 2 (fevereiro de 2019): 190–96. http://dx.doi.org/10.1016/j.jbiosc.2018.07.027.
Texto completo da fonteYassievich, I. N. "Recombination-induced defect heating and related phenomena". Semiconductor Science and Technology 9, n.º 8 (1 de agosto de 1994): 1433–53. http://dx.doi.org/10.1088/0268-1242/9/8/001.
Texto completo da fonteSHIMOI, Hitoshi. "Meiotic Chromosomal Recombination Defect in Sake Yeast". JOURNAL OF THE BREWING SOCIETY OF JAPAN 116, n.º 7 (2021): 464–72. http://dx.doi.org/10.6013/jbrewsocjapan.116.464.
Texto completo da fonteSakowski, Konrad, Pawel Strak, Pawel Kempisty, Jacek Piechota, Izabella Grzegory, Piotr Perlin, Eva Monroy, Agata Kaminska e Stanislaw Krukowski. "Coulomb Contribution to Shockley–Read–Hall Recombination". Materials 17, n.º 18 (18 de setembro de 2024): 4581. http://dx.doi.org/10.3390/ma17184581.
Texto completo da fontePoteete, Anthony R., e Anita C. Fenton. "Genetic Requirements of Phage λ Red-Mediated Gene Replacement in Escherichia coli K-12". Journal of Bacteriology 182, n.º 8 (15 de abril de 2000): 2336–40. http://dx.doi.org/10.1128/jb.182.8.2336-2340.2000.
Texto completo da fonteSmith, J., e R. Rothstein. "A mutation in the gene encoding the Saccharomyces cerevisiae single-stranded DNA-binding protein Rfa1 stimulates a RAD52-independent pathway for direct-repeat recombination." Molecular and Cellular Biology 15, n.º 3 (março de 1995): 1632–41. http://dx.doi.org/10.1128/mcb.15.3.1632.
Texto completo da fonteGRÜNEIS, FERDINAND. "1/f NOISE IN EXTRINSIC SEMICONDUCTOR MATERIALS INTERPRETED AS MODULATED GENERATION-RECOMBINATION NOISE". Fluctuation and Noise Letters 09, n.º 02 (junho de 2010): 229–43. http://dx.doi.org/10.1142/s0219477510000137.
Texto completo da fonteHuertas, Pablo, María L. García-Rubio, Ralf E. Wellinger, Rosa Luna e Andrés Aguilera. "An hpr1 Point Mutation That Impairs Transcription and mRNP Biogenesis without Increasing Recombination". Molecular and Cellular Biology 26, n.º 20 (14 de agosto de 2006): 7451–65. http://dx.doi.org/10.1128/mcb.00684-06.
Texto completo da fonteMeftah, Afek, Noureddine Sengouga e Amjad Meftah. "Prediction of the performance degradation of GaAs solar cells by electron irradiation". Journal of Renewable Energies 11, n.º 4 (31 de dezembro de 2008): 603–10. http://dx.doi.org/10.54966/jreen.v11i4.110.
Texto completo da fonteZahradka, Davor, Ksenija Zahradka, Mirjana Petranović, Damir Đermić e Krunoslav Brčić-Kostić. "The RuvABC Resolvase Is Indispensable for Recombinational Repair in sbcB15 Mutants of Escherichia coli". Journal of Bacteriology 184, n.º 15 (1 de agosto de 2002): 4141–47. http://dx.doi.org/10.1128/jb.184.15.4141-4147.2002.
Texto completo da fonteDas, Basita, Zhifa Liu, Irene Aguilera, Uwe Rau e Thomas Kirchartz. "Defect tolerant device geometries for lead-halide perovskites". Materials Advances 2, n.º 11 (2021): 3655–70. http://dx.doi.org/10.1039/d0ma00902d.
Texto completo da fonteBailis, A. M., e R. Rothstein. "A defect in mismatch repair in Saccharomyces cerevisiae stimulates ectopic recombination between homeologous genes by an excision repair dependent process." Genetics 126, n.º 3 (1 de novembro de 1990): 535–47. http://dx.doi.org/10.1093/genetics/126.3.535.
Texto completo da fonteMahadik, Nadeemullah A., Robert E. Stahlbush, Syed B. Qadri, Orest J. Glembocki, Dimitri A. Alexson, Rachael L. Myers-Ward, Joseph L. Tedesco, Charles R. Eddy e D. Kurt Gaskill. "Structure of Inclusions in 4° Offcut 4H-SiC Epitaxy". Materials Science Forum 645-648 (abril de 2010): 315–18. http://dx.doi.org/10.4028/www.scientific.net/msf.645-648.315.
Texto completo da fonteFang, Yu, Jianping Wang, Fangyuan Shi, Zhengguo Xiao, Xingzhi Wu, Junyi Yang, Yongqiang Chen, Quanying Wu e Yinglin Song. "Native defect-related broadband ultrafast photocarrier dynamics in n-type β-Ga2O3". Applied Physics Letters 121, n.º 11 (12 de setembro de 2022): 112103. http://dx.doi.org/10.1063/5.0100190.
Texto completo da fonteTian, Ming, Reiko Shinkura, Nobuhiko Shinkura e Frederick W. Alt. "Growth Retardation, Early Death, and DNA Repair Defects in Mice Deficient for the Nucleotide Excision Repair Enzyme XPF". Molecular and Cellular Biology 24, n.º 3 (1 de fevereiro de 2004): 1200–1205. http://dx.doi.org/10.1128/mcb.24.3.1200-1205.2004.
Texto completo da fonteWebster, P. T., R. A. Carrasco, A. T. Newell, J. V. Logan, P. C. Grant, D. Maestas e C. P. Morath. "Utility of Shockley–Read–Hall analysis to extract defect properties from semiconductor minority carrier lifetime data". Journal of Applied Physics 133, n.º 12 (28 de março de 2023): 125704. http://dx.doi.org/10.1063/5.0147482.
Texto completo da fonte