Literatura científica selecionada sobre o tema "Data storage into DNA molecules"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Data storage into DNA molecules".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Data storage into DNA molecules"
Jiang, Jiao. "Application of gene editing technology to DNA digital data storage". Highlights in Science, Engineering and Technology 73 (29 de novembro de 2023): 452–58. http://dx.doi.org/10.54097/hset.v73i.14051.
Texto completo da fonteGarafutdinov, R. R., A. R. Sakhabutdinova e A. V. Chemeris. "Long-term room temperature storage of DNA molecules". Biomics 12, n.º 4 (2020): 552–63. http://dx.doi.org/10.31301/2221-6197.bmcs.2020-49.
Texto completo da fonteCeze, Luis, Jeff Nivala e Karin Strauss. "Molecular digital data storage using DNA". Nature Reviews Genetics 20, n.º 8 (8 de maio de 2019): 456–66. http://dx.doi.org/10.1038/s41576-019-0125-3.
Texto completo da fonteZhang, Yun Peng, Feng Ying Tian, Man Hui Sun, Ding Yu, Fei Xiang Fan e Wei Guo Liu. "Based on DNA OTP Key Generation and Management Research". Applied Mechanics and Materials 427-429 (setembro de 2013): 2470–72. http://dx.doi.org/10.4028/www.scientific.net/amm.427-429.2470.
Texto completo da fonteCoudy, Delphine, Marthe Colotte, Aurélie Luis, Sophie Tuffet e Jacques Bonnet. "Long term conservation of DNA at ambient temperature. Implications for DNA data storage". PLOS ONE 16, n.º 11 (11 de novembro de 2021): e0259868. http://dx.doi.org/10.1371/journal.pone.0259868.
Texto completo da fonteCarmean, Douglas, Luis Ceze, Georg Seelig, Kendall Stewart, Karin Strauss e Max Willsey. "DNA Data Storage and Hybrid Molecular–Electronic Computing". Proceedings of the IEEE 107, n.º 1 (janeiro de 2019): 63–72. http://dx.doi.org/10.1109/jproc.2018.2875386.
Texto completo da fonteXu, Chengtao, Chao Zhao, Biao Ma e Hong Liu. "Uncertainties in synthetic DNA-based data storage". Nucleic Acids Research 49, n.º 10 (9 de abril de 2021): 5451–69. http://dx.doi.org/10.1093/nar/gkab230.
Texto completo da fonteSolanki, Arnav, Zak Griffin, Purab Ranjan Sutradhar, Karisha Pradhan, Caiden Merritt, Amlan Ganguly e Marc Riedel. "Neural network execution using nicked DNA and microfluidics". PLOS ONE 18, n.º 10 (19 de outubro de 2023): e0292228. http://dx.doi.org/10.1371/journal.pone.0292228.
Texto completo da fonteBhattarai-Kline, Santi, Sierra K. Lear e Seth L. Shipman. "One-step data storage in cellular DNA". Nature Chemical Biology 17, n.º 3 (26 de janeiro de 2021): 232–33. http://dx.doi.org/10.1038/s41589-021-00737-2.
Texto completo da fonteZhang, Cheng, Ranfeng Wu, Fajia Sun, Yisheng Lin, Yuan Liang, Jiongjiong Teng, Na Liu, Qi Ouyang, Long Qian e Hao Yan. "Parallel molecular data storage by printing epigenetic bits on DNA". Nature 634, n.º 8035 (23 de outubro de 2024): 824–32. http://dx.doi.org/10.1038/s41586-024-08040-5.
Texto completo da fonteTeses / dissertações sobre o assunto "Data storage into DNA molecules"
Berton, Chloé. "Sécurité des données stockées sur molécules d’ADN". Electronic Thesis or Diss., Ecole nationale supérieure Mines-Télécom Atlantique Bretagne Pays de la Loire, 2024. http://www.theses.fr/2024IMTA0431.
Texto completo da fonteThe volume of digital data produced worldwide every year is increasing exponentially, and current storage solutions are reaching their limits. In this context, data storage on DNA molecules holds great promise. Storing up to 10¹⁸ bytes per gram of DNA for almost no energy consumption, it has a lifespan 100 times longer than hard disks. As this storage technology is still under development, the opportunity presents itself to natively integrate data security mechanisms. This is the aim of this thesis. Our first contribution is a risk analysis of the entire storage chain, which has enabled us to identify vulnerabilities in digital and biological processes, particularly in terms of confidentiality, integrity, availability and traceability. A second contribution is the identification of elementary biological operators for simple manipulations of DNA. Using these operators, we have developed a DNACipher encryption solution that requires biomolecular decryption (DNADecipher) of the molecules before the data can be read correctly. This third contribution, based on enzymes, required the development of a coding algorithm for digital data into DNA sequences, a contribution called DSWE. This algorithm respects the constraints of biological processes (e.g. homopolymers) and our encryption solution. Our final contribution is an experimental validation of our secure storage chain. This is the first proof of concept showing that it is possible to secure this new storage medium using biomolecular manipulations
Piretti, Mattia. "Synthetic DNA as a novel data storage solution for digital images". Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amslaurea.unibo.it/22028/.
Texto completo da fonteGermishuizen, Willem Andreas. "Dielectrophoresis as an addressing mechanism in a novel data storage system based on DNA". Thesis, University of Cambridge, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.615680.
Texto completo da fonteYanez, Ciceron. "SYNTHESIS OF NOVEL FLUORENE-BASED TWO-PHOTON ABSORBING MOLECULES AND THEIR APPLICATIONS IN OPTICAL DATA STORAGE, MICROFABRICATIO". Doctoral diss., University of Central Florida, 2009. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/3573.
Texto completo da fontePh.D.
Department of Chemistry
Sciences
Chemistry PhD
Camerlengo, Terry Luke. "Techniques for Storing and Processing Next-Generation DNA Sequencing Data". The Ohio State University, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=osu1388502159.
Texto completo da fonteYanez, Ciceron. "Synthesis of novel fluorene-based two-photon absorbing molecules and their applications in optical data storage, microfabrication, and stimulated emission depletion". Orlando, Fla. : University of Central Florida, 2009. http://purl.fcla.edu/fcla/etd/CFE0002913.
Texto completo da fonteHalladjian, Sarkis. "Spatially Integrated Abstraction of Genetic Molecules". Electronic Thesis or Diss., université Paris-Saclay, 2020. http://www.theses.fr/2020UPASG056.
Texto completo da fonteThe human genome consists mainly of DNA, a macromolecule consisting of a long linear sequence of bases, tightly packed to fit in the relatively small nucleus. The packing gives rise to multiple hierarchical organizational levels. Recent research has shown that, along with the linear sequence, the spatial arrangement of the genome plays an important role in the genome’s function and activity. The visualization of both linear and spatial aspects of genome data is therefore necessary. In this thesis, we focus on the concept of continuous visual abstraction for multiscale data, applied to the visualization of the human genome. Visual abstraction is a concept inspired by illustrations that makes the job of visual processing simpler, by guiding the attention of the viewer to important aspects. We first extract characteristics of multiscale data and makes a parallel comparison between genome and astronomical data. The existing differences create the need for different approaches. A common point however is the need for continuous transitions that helps viewers grasp the relationships and relative size differences between scales. To satisfy the conditions posed by the two aspects of the multiscale genome data, we present two conceptual frameworks, based on the same data. The first framework, ScaleTrotter, represents the spatial structure of the genome, on all available levels. It gives users the freedom to travel from the nucleus of a cell to the atoms of the bases, passing through the different organizational levels of the genome. To make the exploration of the structure of all levels possible, smooth temporal transitions are used. Even though all the scales are not simultaneously visible, the temporal transition used superimposes two representations of the same element at consecutive scales emphasizing their relationship. To ensure the understandability and interactivity of the data, unnecessary parts of the data are abstracted away with the use of a scale-dependent camera. The second framework, Multiscale Unfolding, focuses on aspects that are not visible in ScaleTrotter: the linear sequence and a simultaneous overview of all the organizational levels. The data is straightened to unfold the packing that occurs on several levels in a way that conserves the connectivity between the elements. To represent all the available levels, we use smooth spatial transitions between the levels. These spatial transitions are based on the same concept of the temporal transitions of the previous framework, superimposing scales and emphasizing on their relationship and size difference. We introduce an interaction technique called Multiscale Zliding that allows the exploration of the data and further emphasizes the size differences between the levels. In each framework, one of either linear of spatial aspect of genome data is sacrificed to emphasize the other. The thesis concludes with a discussion about the possibility of combining the two frameworks, minimizing the sacrifices to explore the two equally important aspects of the genome. In this thesis, we take a step closer to fully understanding the activity of the genome
Favero, Francesco. "Development of two new approaches for NGS data analysis of DNA and RNA molecules and their application in clinical and research fields". Doctoral thesis, Università del Piemonte Orientale, 2019. http://hdl.handle.net/11579/102446.
Texto completo da fonteBoukis, Andreas Christos [Verfasser], e M. A. R. [Akademischer Betreuer] Meier. "Moleküle als potentielle Datenspeichersysteme: Multikomponentenreaktionen sind der Schlüssel = Molecules as potential data storage systems: Multicomponent reactions are the key / Andreas Christos Boukis ; Betreuer: M. A. R. Meier". Karlsruhe : KIT-Bibliothek, 2018. http://d-nb.info/1164081071/34.
Texto completo da fontePearson, Anthony Craig. "Nanoscale Surface Patterning and Applications: Using Top-Down Patterning Methods to Aid Bottom-Up Fabrication". BYU ScholarsArchive, 2012. https://scholarsarchive.byu.edu/etd/3757.
Texto completo da fonteLivros sobre o assunto "Data storage into DNA molecules"
I, Bell George, e Marr Thomas G, eds. Computers and DNA: The proceedings of the Interface Between Computation Science and Nucleic Acid Sequencing Workshop, held Dec. 12 to 16, 1988 in Santa Fe, New Mexico. Redwood City, Calif: Addison-Wesley, 1990.
Encontre o texto completo da fonteVenter, J. Craig, Chris Fields e Mark D. Adams. Automated DNA Sequencing and Analysis. Elsevier Science & Technology Books, 2012.
Encontre o texto completo da fonte(Editor), Mark D. Adams, Chris Fields (Editor) e J. Craig Venter (Editor), eds. Automated DNA Sequencing and Analysis. Academic Press, 1994.
Encontre o texto completo da fonteShomorony, Ilan, e Reinhard Heckel. Information-Theoretic Foundations of DNA Data Storage. Now Publishers, 2022.
Encontre o texto completo da fonteDemidov, Vadim V. DNA Beyond Genes: From Data Storage and Computing to Nanobots, Nanomedicine, and Nanoelectronics. Springer, 2020.
Encontre o texto completo da fonteDemidov, Vadim V. DNA Beyond Genes: From Data Storage and Computing to Nanobots, Nanomedicine, and Nanoelectronics. Springer International Publishing AG, 2021.
Encontre o texto completo da fonteData in Modern Biology (Codata Bulletin,). Elsevier Science Pub Co, 1985.
Encontre o texto completo da fonteHilgurt, S. Ya, e O. A. Chemerys. Reconfigurable signature-based information security tools of computer systems. PH “Akademperiodyka”, 2022. http://dx.doi.org/10.15407/akademperiodyka.458.297.
Texto completo da fonteCapítulos de livros sobre o assunto "Data storage into DNA molecules"
Chen, Yuan-Jyue, e Georg Seelig. "Scaling Up DNA Computing with Array-Based Synthesis and High-Throughput Sequencing". In Natural Computing Series, 281–93. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-9891-1_16.
Texto completo da fonteSingh, Baljinder. "DNA Digital Data Storage: Breakthroughs in Biomedical Research". In Biomedical Translational Research, 135–40. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-4345-3_9.
Texto completo da fonteJenifer, P., e T. Kirthiga Devi. "Enhancing Data Security Using DNA Algorithm in Cloud Storage". In Artificial Intelligence Techniques for Advanced Computing Applications, 19–26. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-5329-5_3.
Texto completo da fonteKim, Raphael. "DNA as Digital Data Storage: Opportunities and Challenges for HCI". In Communications in Computer and Information Science, 225–32. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-60700-5_29.
Texto completo da fonteSiddaramappa, V., e K. B. Ramesh. "DNA-Based XOR Operation (DNAX) for Data Security Using DNA as a Storage Medium". In Integrated Intelligent Computing, Communication and Security, 343–51. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-8797-4_36.
Texto completo da fonteKruglik, S. G., C. Otto, A. G. Shvedko, V. V. Ermolenkov, V. A. Orlovich, V. S. Chirvony e P. Y. Turpin. "New Raman Data on Photoinduced Porphyrin Translocation and Exciplex Formation in Cu(TMpy-P4) — DNA Complex". In Spectroscopy of Biological Molecules: Modern Trends, 395–96. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-011-5622-6_177.
Texto completo da fonteYatribi, Anouar, Mostafa Belkasmi e Fouad Ayoub. "An Efficient and Secure Forward Error Correcting Scheme for DNA Data Storage". In Proceedings of the Tenth International Conference on Soft Computing and Pattern Recognition (SoCPaR 2018), 226–37. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-17065-3_23.
Texto completo da fonteSatz, Alexander L., e Weiren Cui. "Analysis of DNA-Encoded Library Screening Data: Selection of Molecules for Synthesis". In Methods in Molecular Biology, 195–205. New York, NY: Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2545-3_23.
Texto completo da fonteRasool, Abdur, Qiang Qu, Qingshan Jiang e Yang Wang. "A Strategy-based Optimization Algorithm to Design Codes for DNA Data Storage System". In Algorithms and Architectures for Parallel Processing, 284–99. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-95388-1_19.
Texto completo da fontePragaladan, R., e S. Sathappan. "A Secure Cloud Data Storage Combining DNA Structure and Multi-aspect Time-Integrated Cut-off Potential". In Advances in Intelligent Systems and Computing, 361–74. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-7200-0_33.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Data storage into DNA molecules"
Ghosh, Nishant, N. Anushka Reddy, VNS Sasank, K. Suvarchala e Sushma Patkar. "Preserving History with Synthetic DNA: An Innovative Data Storage Solution". In 2024 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT), 1–6. IEEE, 2024. http://dx.doi.org/10.1109/conecct62155.2024.10677101.
Texto completo da fonteEn-Nattouh, Youssef, e Reda Jourani. "Improved storage of Big Data in DNA using the PCA algorithm". In 2024 International Conference on Circuit, Systems and Communication (ICCSC), 1–5. IEEE, 2024. http://dx.doi.org/10.1109/iccsc62074.2024.10616520.
Texto completo da fonteSrivastava, Shubham, Krishna Gopal Benerjee e Adrish Banerjee. "Efficient Bidirectional RNNs for Substitution Error Correction in DNA Data Storage". In 2024 IEEE International Conference on Machine Learning for Communication and Networking (ICMLCN), 434–39. IEEE, 2024. http://dx.doi.org/10.1109/icmlcn59089.2024.10625179.
Texto completo da fonteYuvarani, R., e R. Mahaveerakannan. "Enhanced Cloud Security Through DNA-based Authentication for Data Storage and Transactions". In 2024 5th International Conference on Electronics and Sustainable Communication Systems (ICESC), 589–94. IEEE, 2024. http://dx.doi.org/10.1109/icesc60852.2024.10689928.
Texto completo da fontePalunčić, Filip, Daniella Palunčić e B. T. Maharaj. "Capacity of Runlength-Limited and GC-Content Constrained Codes for DNA Data Storage". In 2024 IEEE International Symposium on Information Theory (ISIT), 1937–42. IEEE, 2024. http://dx.doi.org/10.1109/isit57864.2024.10619166.
Texto completo da fonteMartens, Koen, David Barge, Lijun Liu, Sybren Santermans, Colin Stoquart, Jacobus Delport, Kherim Willems et al. "The Nanopore-FET as a High-Throughput Barcode Molecule Reader for Single-Molecule Omics and Read-out of DNA Digital Data Storage". In 2022 IEEE International Electron Devices Meeting (IEDM). IEEE, 2022. http://dx.doi.org/10.1109/iedm45625.2022.10019451.
Texto completo da fonteHeller, Michael J., Carl Edman, Don Ackley, WJ Kitchen, Christian Gurtner e Rachel Formosa. "ELECTRIC FIELD ASSISTED SELF-ASSEMBLY OF DNA BASED MOLECULAR CHROMOPHORE COMPONENTS FOR OPTICAL DATA STORAGE AND OTHER NANOTECHNOLOGY APPLICATIONS". In Spatial Light Modulators and Integrated Optoelectronic Arrays. Washington, D.C.: OSA, 1999. http://dx.doi.org/10.1364/slm.1999.stua2.
Texto completo da fontePatel, Radhika, Dweepna Garg, Milind Shah, Safeya Dharmajwala, Kush Jindal e Amit Nayak. "DNA Archives: Revolutionizing Data Storage". In 2023 3rd International Conference on Innovative Mechanisms for Industry Applications (ICIMIA). IEEE, 2023. http://dx.doi.org/10.1109/icimia60377.2023.10426397.
Texto completo da fonteWeide-Zaage, Kirsten. "Technical Implementation of DNA Data-Storage". In 2024 International Conference on Electronics Packaging (ICEP). IEEE, 2024. http://dx.doi.org/10.23919/icep61562.2024.10535600.
Texto completo da fonteMansuripur, Masud. "DNA, human memory, and the storage technology of the 21st century". In Optical Data Storage, editado por Terril Hurst e Seiji Kobayashi. SPIE, 2002. http://dx.doi.org/10.1117/12.453368.
Texto completo da fonteRelatórios de organizações sobre o assunto "Data storage into DNA molecules"
Iudicone, Daniele, e Marina Montresor. Omics community protocols. EuroSea, 2023. http://dx.doi.org/10.3289/eurosea_d3.19.
Texto completo da fonteHeifetz, Yael, e Michael Bender. Success and failure in insect fertilization and reproduction - the role of the female accessory glands. United States Department of Agriculture, dezembro de 2006. http://dx.doi.org/10.32747/2006.7695586.bard.
Texto completo da fonteRon, Eliora, e Eugene Eugene Nester. Global functional genomics of plant cell transformation by agrobacterium. United States Department of Agriculture, março de 2009. http://dx.doi.org/10.32747/2009.7695860.bard.
Texto completo da fonteRodriguez Muxica, Natalia. Open configuration options Bioinformatics for Researchers in Life Sciences: Tools and Learning Resources. Inter-American Development Bank, fevereiro de 2022. http://dx.doi.org/10.18235/0003982.
Texto completo da fonteEpel, Bernard, e Roger Beachy. Mechanisms of intra- and intercellular targeting and movement of tobacco mosaic virus. United States Department of Agriculture, novembro de 2005. http://dx.doi.org/10.32747/2005.7695874.bard.
Texto completo da fonteLichter, Amnon, Gopi K. Podila e Maria R. Davis. Identification of Genetic Determinants that Facilitate Development of B. cinerea at Low Temperature and its Postharvest Pathogenicity. United States Department of Agriculture, março de 2011. http://dx.doi.org/10.32747/2011.7592641.bard.
Texto completo da fonte