Siga este link para ver outros tipos de publicações sobre o tema: Data mining.

Artigos de revistas sobre o tema "Data mining"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Data mining".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

PYLYPIUK, Tetiana, e Viktor SHCHYRBA. "DATA MINING METHODS". Collection of scientific papers Kamianets-Podilsky Ivan Ohienko National University Pedagogical series 29 (14 de dezembro de 2023): 7–10. http://dx.doi.org/10.32626/2307-4507.2023-29.7-10.

Texto completo da fonte
Resumo:
Research is devoted to Data Mining methods. A comparison of classical and mathematical and statistical methods of data analysis was made. One of the variants of correlation analysis method for intelligent data analysis is proposed and described in an argumentative manner. The question of applying different methodologies for Data Mining is actual. Classically, the following methods of knowledge discovery and analysis are offered in Data Mining: classification; regression; forecasting time sequences (series); clustering; association. As mathematical and statistical methods of analysis in applied research, the most of authors offer such methods as: statistical hypothesis testing, regression models construction and research. Since most real models are not amenable to analysis using classical methods, including regression analysis, the authors propose to use correlational analysis method in Data Mining.
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Shah Neha K, Shah Neha K. "Introduction of Data mining and an Analysis of Data mining Techniques". Indian Journal of Applied Research 3, n.º 5 (1 de outubro de 2011): 137–39. http://dx.doi.org/10.15373/2249555x/may2013/41.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Rakholiya, Kalpesh R., e Dr Dhaval Kathiriya. "Data Mining for Moving Object Data". Indian Journal of Applied Research 2, n.º 3 (1 de outubro de 2011): 111–13. http://dx.doi.org/10.15373/2249555x/dec2012/34.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Chomboon, K., N. Kaoungku, K. Kerdprasop e N. Kerdprasop. "Data Mining in Semantic Web Data". International Journal of Computer Theory and Engineering 6, n.º 6 (dezembro de 2014): 472–75. http://dx.doi.org/10.7763/ijcte.2014.v6.912.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Загороднюк, П. А. "Data mining in Go". Vestnik of Russian New University. Series «Complex systems: models, analysis, management», n.º 4 (10 de janeiro de 2022): 161–66. http://dx.doi.org/10.18137/rnu.v9187.21.04.p.161.

Texto completo da fonte
Resumo:
Целью данной статьи является оценка языка программирования Go как инструмента для реализации методов data mining. Для этого проводится анализ задачи классификации и метода k-ближайших соседей, затем предлагается способ программирования данного метода и организации процесс управления и подготовки исходных данных. В заключение на основе проведенной работы делается вывод, насколько Go подходит для решения подобных задач, и есть ли потенциал для реализации остальных методов. The purpose of this article is to evaluate the Go programming language as a tool for implementing data mining methods. To do this, an analysis of the classification problem and the k-nearest neighbors’ algorithm is carried out, then a method is proposed for how this method can be programmed and the process of managing and preparing the initial data can be organized. In conclusion, based on the work carried out, it sums up how well Go is suitable for solving such problems and whether there is potential for the implementation of other methods.
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

AVeselý. "Neural networks in data mining". Agricultural Economics (Zemědělská ekonomika) 49, No. 9 (2 de março de 2012): 427–31. http://dx.doi.org/10.17221/5427-agricecon.

Texto completo da fonte
Resumo:
To posses relevant information is an inevitable condition for successful enterprising in modern business. Information could be parted to data and knowledge. How to gather, store and retrieve data is studied in database theory. In the knowledge engineering, there is in the centre of interest the knowledge and methods of its formalization and gaining are studied. Knowledge could be gained from experts, specialists in the area of interest, or it can be gained by induction from sets of data. Automatic induction of knowledge from data sets, usually stored in large databases, is called data mining. Classical methods of gaining knowledge from data sets are statistical methods. In data mining, new methods besides statistical are used. These new methods have their origin in artificial intelligence. They look for unknown and unexpected relations, which can be uncovered by exploring of data in database. In the article, a utilization of modern methods of data mining is described and especially the methods based on neural networks theory are pursued. The advantages and drawbacks of applications of multiplayer feed forward neural networks and Kohonen’s self-organizing maps are discussed. Kohonen’s self-organizing map is the most promising neural data-mining algorithm regarding its capability to visualize high-dimensional data.
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

M., Inbavalli. "An Intelligent Agent based Mining Techniques for Distributed Data Mining". Journal of Advanced Research in Dynamical and Control Systems 12, SP4 (31 de março de 2020): 610–17. http://dx.doi.org/10.5373/jardcs/v12sp4/20201527.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Raval, Hitesh R., e Dr Vikram Kaushik. "Data Mining: Performance Tuning Of Temporal Data Mining Based On Frequent Inter-Transaction Itemsets Discovery". International Journal of Scientific Research 3, n.º 2 (1 de junho de 2012): 78–82. http://dx.doi.org/10.15373/22778179/feb2014/25.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Stoffel, Kilian. "Web + Data Mining = Web Mining". HMD Praxis der Wirtschaftsinformatik 46, n.º 4 (agosto de 2009): 6–20. http://dx.doi.org/10.1007/bf03340377.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Tsuta, Mizuki. "Data Mining". Nippon Shokuhin Kagaku Kogaku Kaishi 64, n.º 6 (2017): 334–35. http://dx.doi.org/10.3136/nskkk.64.334.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

Rossini, Luiz Amelio Sodaite, Renan Ricardo de Polli Silva, Eder Carlos Salazar Sotto e Liriane Soares De Araújo. "DATA MINING". Revista Interface Tecnológica 15, n.º 2 (30 de dezembro de 2018): 50–59. http://dx.doi.org/10.31510/infa.v15i2.486.

Texto completo da fonte
Resumo:
A Mineração de Dados (Data Mining) deve ser entendida como um conjunto de esforços empregados para a descoberta de padrões de acordo com bases de dados. Dessa maneira, há condições de gerar conhecimento útil para a tomada de decisões, através de algoritmos computacionais que recebem fatos do mundo real (entrada) e devolvem um padrão de comportamento (saída), expresso como modelagem de um perfil. Sendo assim, o objetivo deste artigo é definir a Mineração de Dados e os conceitos inerentes a ela, bem como elencar algumas ferramentas utilizadas para extração de conhecimento a partir dos dados. A metodologia do trabalho consiste em levantamento bibliográfico. Espera-se como resultado demonstrar a imprescindibilidade da Mineração de Dados no apoio à decisão nas organizações e contribuir para a produção científica e acadêmica.
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Nazem, Sufi M., e Bongsik Shin. "Data Mining". Journal of Database Management 10, n.º 1 (janeiro de 1999): 39–42. http://dx.doi.org/10.4018/jdm.1999010104.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

Sharma, Anubhav. "Data Mining". International Journal for Research in Applied Science and Engineering Technology 9, n.º 4 (30 de abril de 2021): 953–56. http://dx.doi.org/10.22214/ijraset.2021.33790.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Ziegel, Eric R., e Bhavani Thuraisingham. "Data Mining". Technometrics 42, n.º 3 (agosto de 2000): 327. http://dx.doi.org/10.2307/1271124.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

Alkadi, Ihssan. "Data Mining". Review of Business Information Systems (RBIS) 12, n.º 1 (1 de janeiro de 2008): 17–24. http://dx.doi.org/10.19030/rbis.v12i1.4394.

Texto completo da fonte
Resumo:
Recently data mining has become more popular in the information industry. It is due to the availability of huge amounts of data. Industry needs turning such data into useful information and knowledge. This information and knowledge can be used in many applications ranging from business management, production control, and market analysis, to engineering design and science exploration. Database and information technology have been evolving systematically from primitive file processing systems to sophisticated and powerful databases systems. The research and development in database systems has led to the development of relational database systems, data modeling tools, and indexing and data organization techniques. In relational database systems data are stored in relational tables. In addition, users can get convenient and flexible access to data through query languages, optimized query processing, user interfaces and transaction management and optimized methods for On-Line Transaction Processing (OLTP). The abundant data, which needs powerful data analysis tools, has been described as a data rich but information poor situation. The fast-growing, tremendous amount of data, collected and stored in large and numerous databases. Humans can not analyze these large amounts of data. So we need powerful tools to analyze this large amount of data. As a result, data collected in large databases become data tombs. These are data archives that are seldom visited. So, important decisions are often not made based on the information-rich data stored in databases rather based on a decision maker's intuition. This is because the decision maker does not have the tools to extract the valuable knowledge embedded in the vast amounts of data. Data mining tools which perform data analysis may uncover important data patterns, contributing greatly to business strategies, knowledge bases, and scientific and medical research. So data mining tools will turn data tombs into golden nuggets of knowledge.
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Kemp, Freda. "Data Mining". Journal of the Royal Statistical Society: Series A (Statistics in Society) 167, n.º 1 (fevereiro de 2004): 190–91. http://dx.doi.org/10.1111/j.1467-985x.2004.298_9.x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Lynch, Patrick K. "Data Mining". Biomedical Instrumentation & Technology 43, n.º 1 (1 de janeiro de 2009): 8. http://dx.doi.org/10.2345/0899-8205-43.1.8.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Hand, David J. "Data Mining". Social Science Computer Review 18, n.º 4 (novembro de 2000): 442–49. http://dx.doi.org/10.1177/089443930001800407.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Yongjian Fu. "Data mining". IEEE Potentials 16, n.º 4 (1997): 18–20. http://dx.doi.org/10.1109/45.624335.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

O'Shea, Donald C. "Data Mining". Optical Engineering 37, n.º 11 (1 de novembro de 1998): 2869. http://dx.doi.org/10.1117/1.601979.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Olaru, C., e L. Wehenkel. "Data mining". IEEE Computer Applications in Power 12, n.º 3 (julho de 1999): 19–25. http://dx.doi.org/10.1109/67.773801.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

Berzal, Fernando, e Nicolfás Matín. "Data mining". ACM SIGMOD Record 31, n.º 2 (junho de 2002): 66–68. http://dx.doi.org/10.1145/565117.565130.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

Witten, Ian H., e Eibe Frank. "Data mining". ACM SIGMOD Record 31, n.º 1 (março de 2002): 76–77. http://dx.doi.org/10.1145/507338.507355.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

Ngo, Terry. "Data mining". ACM SIGSOFT Software Engineering Notes 36, n.º 5 (30 de setembro de 2011): 51–52. http://dx.doi.org/10.1145/2020976.2021004.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

Hong, Se June. "Data mining". Future Generation Computer Systems 13, n.º 2-3 (novembro de 1997): 95–97. http://dx.doi.org/10.1016/s0167-739x(97)00014-9.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

Ozimek, John. "Data Mining". Journal of Database Marketing & Customer Strategy Management 10, n.º 3 (abril de 2003): 280–81. http://dx.doi.org/10.1057/palgrave.jdm.3240117.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

METCALF, A. "DATA MINING". American Speech 75, n.º 3 (1 de setembro de 2000): 237–39. http://dx.doi.org/10.1215/00031283-75-3-237.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

Meyer, Matthias. "Data mining". WIRTSCHAFTSINFORMATIK 48, n.º 6 (dezembro de 2006): 454–55. http://dx.doi.org/10.1007/s11576-006-0106-y.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

Bissantz, Nicolas, e Jürgen Hagedorn. "Data Mining". Business & Information Systems Engineering 1, n.º 1 (14 de dezembro de 2008): 118–22. http://dx.doi.org/10.1007/s12599-008-0005-4.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

Cupples, L. Adrienne, Julia Bailey, Kevin C. Cartier, Catherine T. Falk, Kuang-Yu Liu, Yuanqing Ye, Robert Yu, Heping Zhang e Hongyu Zhao. "Data mining". Genetic Epidemiology 29, S1 (2005): S103—S109. http://dx.doi.org/10.1002/gepi.20117.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

Benoît, Gerald. "Data mining". Annual Review of Information Science and Technology 36, n.º 1 (1 de fevereiro de 2005): 265–310. http://dx.doi.org/10.1002/aris.1440360107.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

Atif, Mohammad. "Data mining". International Journal of Communication and Information Technology 3, n.º 1 (1 de janeiro de 2022): 37–40. http://dx.doi.org/10.33545/2707661x.2022.v3.i1a.44.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

Trivedi, Nripesh. "Data mining". International Journal of Scientific Research and Management (IJSRM) 12, n.º 03 (21 de março de 2024): 1094. http://dx.doi.org/10.18535/ijsrm/v12i03.ec07.

Texto completo da fonte
Resumo:
Data Mining Data mining is about finding patterns in the data [1]. In this paper, I put forward an important insight about similarity in branches of computer science and data mining. All branches of computer science could be termed as a procedure to carry out data mining. In this paper, I detail that. The computer works by finding patterns in the input and output [2]. Artificial Intelligence works by finding the patterns of functions of the related variables [3]. Machine learning works by mathematical justification of machine learning methods and results [4]. That is the pattern followed in machine learning. Social networking is about finding patterns in user behaviour and user engagement [5][6].
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

Rastogi, Mohit. "Spatial data mining features between general data mining". South Asian Journal of Marketing & Management Research 11, n.º 11 (2021): 96–101. http://dx.doi.org/10.5958/2249-877x.2021.00116.8.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

Bathla, Gourav, Himanshu Aggarwal e Rinkle Rani. "Migrating From Data Mining to Big Data Mining". International Journal of Engineering & Technology 7, n.º 3.4 (25 de junho de 2018): 13. http://dx.doi.org/10.14419/ijet.v7i3.4.14667.

Texto completo da fonte
Resumo:
Data mining is one of the most researched fields in computer science. Several researches have been carried out to extract and analyse important information from raw data. Traditional data mining algorithms like classification, clustering and statistical analysis can process small scale of data with great efficiency and accuracy. Social networking interactions, business transactions and other communications result in Big data. It is large scale of data which is not in competency for traditional data mining techniques. It is observed that traditional data mining algorithms are not capable for storage and processing of large scale of data. If some algorithms are capable, then response time is very high. Big data have hidden information, if that is analysed in intelligent manner can be highly beneficial for business organizations. In this paper, we have analysed the advancement from traditional data mining algorithms to Big data mining algorithms. Applications of traditional data mining algorithms can be straight forward incorporated in Big data mining algorithm. Several studies have analysed traditional data mining with Big data mining, but very few have analysed most important algortihsm within one research work, which is the core motive of our paper. Readers can easily observe the difference between these algorthithms with pros and cons. Mathemtics concepts are applied in data mining algorithms. Means and Euclidean distance calculation in Kmeans, Vectors application and margin in SVM and Bayes therorem, conditional probability in Naïve Bayes algorithm are real examples. Classification and clustering are the most important applications of data mining. In this paper, Kmeans, SVM and Naïve Bayes algorithms are analysed in detail to observe the accuracy and response time both on concept and empirical perspective. Hadoop, Mapreduce etc. Big data technologies are used for implementing Big data mining algorithms. Performace evaluation metrics like speedup, scaleup and response time are used to compare traditional mining with Big data mining.
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

Zvyagin, L. S. "DATA MINING: BIG DATA AND DATA SCIENCE". SOFT MEASUREMENTS AND COMPUTING 5, n.º 54 (2022): 81–90. http://dx.doi.org/10.36871/2618-9976.2022.05.006.

Texto completo da fonte
Resumo:
Data mining is the process of discovering information that can be used in large amounts of data. This method uses mathematical analysis, which helps to identify patterns and trends in the data. Such patterns cannot be noticed during normal data viewing due to the complexity of the relationships that arise with a large amount of data. All of them are a set of tools and methods that help humanity in the changing world around us. It is becoming more and more voluminous, we receive huge aggregates of data on various processes. Big Data and Data Science allow large companies to systematize information about the markets in which they operate, which allows them to get a large amount of profit and benefits.
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

Kriegel, Hans-Peter. "Data Science/Data Mining". Digitale Welt 3, n.º 1 (11 de dezembro de 2018): 7–8. http://dx.doi.org/10.1007/s42354-019-0141-7.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

W, Kiehn,. "From Big Data to Data Mining Von Big Data zu Data Mining". GIS Business 11, n.º 6 (4 de dezembro de 2016): 18–20. http://dx.doi.org/10.26643/gis.v11i6.5294.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

Maheswari, R. Uma, S. Saravana Mahesan, Dr Tamilarasan e A. K. Subramani. "Role of Data Mining in CRM". International Journal of Engineering Research 3, n.º 2 (1 de fevereiro de 2014): 75–78. http://dx.doi.org/10.17950/ijer/v3s2/208.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

Anshu, Anshu. "Review Paper on Data Mining TechniquesandApplications". International Journal of Innovative Research in Computer Science & Technology 7, n.º 2 (março de 2019): 22–26. http://dx.doi.org/10.21276/ijircst.2019.7.2.4.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

Sherdiwala, Kainaz Bomi. "Data Mining Techniques in Stock Market". Indian Journal of Applied Research 4, n.º 8 (1 de outubro de 2011): 327–29. http://dx.doi.org/10.15373/2249555x/august2014/82.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

Zodage, Kalyani Shahaji, Puja Sarage, Trupti Sudrik e Rashmi Sonawane. "Health Prediction System Using Data Mining". Journal of Advances and Scholarly Researches in Allied Education 15, n.º 2 (1 de abril de 2018): 696–99. http://dx.doi.org/10.29070/15/56997.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

Pandey, Sachin. "Multilevel Association Rules in Data Mining". Journal of Advances and Scholarly Researches in Allied Education 15, n.º 5 (1 de julho de 2018): 74–78. http://dx.doi.org/10.29070/15/57517.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

S. Murali, S. Murali, C. B. Selvalakshmi C. B. Selvalakshmi, S. Padmadevi S. Padmadevi e P. N. Karthikayan P. N. Karthikayan. "Data Mining Patters in Grid Computing". International Journal of Scientific Research 2, n.º 3 (1 de junho de 2012): 137–38. http://dx.doi.org/10.15373/22778179/mar2013/43.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
45

Hashmi, Faiz. "Elementary approach towards Biological Data Mining". International Journal of Trend in Scientific Research and Development Volume-2, Issue-1 (31 de dezembro de 2017): 1109–14. http://dx.doi.org/10.31142/ijtsrd7198.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
46

Kumar, Raj. "Data Mining in Education: A Review". International Journal Of Mechanical Engineering And Information Technology 05, n.º 01 (26 de janeiro de 2017): 1843–45. http://dx.doi.org/10.18535/ijmeit/v5i1.02.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
47

S, Gowtham, e Karuppusamy S. "Review of Data Mining Classification Techniques". Bonfring International Journal of Software Engineering and Soft Computing 9, n.º 2 (30 de abril de 2019): 8–11. http://dx.doi.org/10.9756/bijsesc.9013.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
48

S, Pramod. "Modified Approach for Online Data Mining". International Journal of Engineering and Technology 2, n.º 6 (2010): 533–36. http://dx.doi.org/10.7763/ijet.2010.v2.177.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
49

Yasuda, Akio. "Reviewing "Text Mining": Textual Data Mining". IEEJ Transactions on Electronics, Information and Systems 125, n.º 5 (2005): 682–89. http://dx.doi.org/10.1541/ieejeiss.125.682.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
50

CHEN, ZHENGXIN. "FROM DATA MINING TO BEHAVIOR MINING". International Journal of Information Technology & Decision Making 05, n.º 04 (dezembro de 2006): 703–11. http://dx.doi.org/10.1142/s0219622006002271.

Texto completo da fonte
Resumo:
Knowledge economy requires data mining be more goal-oriented so that more tangible results can be produced. This requirement implies that the semantics of the data should be incorporated into the mining process. Data mining is ready to deal with this challenge because recent developments in data mining have shown an increasing interest on mining of complex data (as exemplified by graph mining, text mining, etc.). By incorporating the relationships of the data along with the data itself (rather than focusing on the data alone), complex data injects semantics into the mining process, thus enhancing the potential of making better contribution to knowledge economy. Since the relationships between the data reveal certain behavioral aspects underlying the plain data, this shift of mining from simple data to complex data signals a fundamental change to a new stage in the research and practice of knowledge discovery, which can be termed as behavior mining. Behavior mining also has the potential of unifying some other recent activities in data mining. We discuss important aspects on behavior mining, and discuss its implications for the future of data mining.
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia