Literatura científica selecionada sobre o tema "Data"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Data".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Data"
Migdał-Najman, Kamila, e Krzysztof Najman. "BIG DATA = CLEAR + DIRTY + DARK DATA". Prace Naukowe Uniwersytetu Ekonomicznego we Wrocławiu, n.º 469 (2017): 131–39. http://dx.doi.org/10.15611/pn.2017.469.13.
Texto completo da fonteRakholiya, Kalpesh R., e Dr Dhaval Kathiriya. "Data Mining for Moving Object Data". Indian Journal of Applied Research 2, n.º 3 (1 de outubro de 2011): 111–13. http://dx.doi.org/10.15373/2249555x/dec2012/34.
Texto completo da fonteArputhamary, B., e L. Arockiam. "Data Integration in Big Data Environment". Bonfring International Journal of Data Mining 5, n.º 1 (10 de fevereiro de 2015): 01–05. http://dx.doi.org/10.9756/bijdm.8001.
Texto completo da fonteChomboon, K., N. Kaoungku, K. Kerdprasop e N. Kerdprasop. "Data Mining in Semantic Web Data". International Journal of Computer Theory and Engineering 6, n.º 6 (dezembro de 2014): 472–75. http://dx.doi.org/10.7763/ijcte.2014.v6.912.
Texto completo da fonteZvyagin, L. S. "DATA MINING: BIG DATA AND DATA SCIENCE". SOFT MEASUREMENTS AND COMPUTING 5, n.º 54 (2022): 81–90. http://dx.doi.org/10.36871/2618-9976.2022.05.006.
Texto completo da fonteRemize, Michel. "La data pour dada". Archimag N°310, n.º 10 (1 de dezembro de 2017): 1. http://dx.doi.org/10.3917/arma.310.0001.
Texto completo da fonteGültepe, Yasemin. "Querying Bibliography Data Based on Linked Data". Journal of Software 10, n.º 8 (agosto de 2015): 1014–20. http://dx.doi.org/10.17706//jsw.10.8.1014-1020.
Texto completo da fonteSharma, Mansi, Palak Mittal, Nidhi Garg e Prateek Jain. "Data Analysis FIFA World Cup Data Set". Indian Journal of Science and Technology 12, n.º 39 (20 de outubro de 2019): 1–4. http://dx.doi.org/10.17485/ijst/2019/v12i39/145565.
Texto completo da fonteYerbulatov, Sultan. "Data Security and Privacy in Data Engineering". International Journal of Science and Research (IJSR) 13, n.º 4 (5 de abril de 2024): 232–36. http://dx.doi.org/10.21275/es24318121241.
Texto completo da fonteReddy Desani, Nithin. "Enhancing Data Governance through AI - Driven Data Quality Management and Automated Data Contracts". International Journal of Science and Research (IJSR) 12, n.º 8 (5 de agosto de 2023): 2519–25. http://dx.doi.org/10.21275/es23812104904.
Texto completo da fonteTeses / dissertações sobre o assunto "Data"
Riminucci, Stefania. "COVID-19,Open data e data visualization:interazione con dati epidemiologici". Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amslaurea.unibo.it/21577/.
Texto completo da fonteMondaini, Luca. "Data Visualization di dati spazio-temporali". Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2018. http://amslaurea.unibo.it/16853/.
Texto completo da fonteYu, Wenyuan. "Improving data quality : data consistency, deduplication, currency and accuracy". Thesis, University of Edinburgh, 2013. http://hdl.handle.net/1842/8899.
Texto completo da fonteLong, Christopher C. "Data Processing for NASA's TDRSS DAMA Channel". International Foundation for Telemetering, 1996. http://hdl.handle.net/10150/611474.
Texto completo da fontePresently, NASA's Space Network (SN) does not have the ability to receive random messages from satellites using the system. Scheduling of the service must be done by the owner of the spacecraft through Goddard Space Flight Center (GSFC). The goal of NASA is to improve the current system so that random messages, that are generated on board the satellite, can be received by the SN. The messages will be requests for service that the satellites control system deems necessary. These messages will then be sent to the owner of the spacecraft where appropriate action and scheduling can take place. This new service is known as the Demand Assignment Multiple Access system (DAMA).
Budd, Chris. "Data Protection and Data Elimination". International Foundation for Telemetering, 2015. http://hdl.handle.net/10150/596395.
Texto completo da fonteData security is becoming increasingly important in all areas of storage. The news services frequently have stories about lost or stolen storage devices and the panic it causes. Data security in an SSD usually involves two components: data protection and data elimination. Data protection includes passwords to protect against unauthorized access and encryption to protect against recovering data from the flash chips. Data elimination includes erasing the encryption key and erasing the flash. Telemetry applications frequently add requirements such as write protection, external erase triggers, and overwriting the flash after the erase. This presentation will review these data security features.
Furrier, Sean Alexander, e Sean Alexander Furrier. "Communicating Data: Data-Driven Storytelling". Thesis, The University of Arizona, 2017. http://hdl.handle.net/10150/624989.
Texto completo da fonteChitondo, Pepukayi David Junior. "Data policies for big health data and personal health data". Thesis, Cape Peninsula University of Technology, 2016. http://hdl.handle.net/20.500.11838/2479.
Texto completo da fonteHealth information policies are constantly becoming a key feature in directing information usage in healthcare. After the passing of the Health Information Technology for Economic and Clinical Health (HITECH) Act in 2009 and the Affordable Care Act (ACA) passed in 2010, in the United States, there has been an increase in health systems innovations. Coupling this health systems hype is the current buzz concept in Information Technology, „Big data‟. The prospects of big data are full of potential, even more so in the healthcare field where the accuracy of data is life critical. How big health data can be used to achieve improved health is now the goal of the current health informatics practitioner. Even more exciting is the amount of health data being generated by patients via personal handheld devices and other forms of technology that exclude the healthcare practitioner. This patient-generated data is also known as Personal Health Records, PHR. To achieve meaningful use of PHRs and healthcare data in general through big data, a couple of hurdles have to be overcome. First and foremost is the issue of privacy and confidentiality of the patients whose data is in concern. Secondly is the perceived trustworthiness of PHRs by healthcare practitioners. Other issues to take into context are data rights and ownership, data suppression, IP protection, data anonymisation and reidentification, information flow and regulations as well as consent biases. This study sought to understand the role of data policies in the process of data utilisation in the healthcare sector with added interest on PHRs utilisation as part of big health data.
BRASCHI, GIACOMO. "La circolazione dei dati e l'analisi big data". Doctoral thesis, Università degli studi di Pavia, 2019. http://hdl.handle.net/11571/1244327.
Texto completo da fonteDescription of the legal instruments that regulate the circulation of data and analysis of possible legislative developments desirable to favor the circulation of data
Perovich, Laura J. (Laura Jones). "Data Experiences : novel interfaces for data engagement using environmental health data". Thesis, Massachusetts Institute of Technology, 2014. http://hdl.handle.net/1721.1/95612.
Texto completo da fonteCataloged from PDF version of thesis.
Includes bibliographical references (pages 71-81).
For the past twenty years, the data visualization movement has reworked the way we engage with information. It has brought fresh excitement to researchers and reached broad audiences. But what comes next for data? I seek to create example "Data Experiences" that will contribute to developing new spaces of information engagement. Using data from Silent Spring Institute's environmental health studies as a test case, I explore Data Experiences that are immersive, interactive, and aesthetic. Environmental health datasets are ideal for this application as they are highly relevant to the general population and have appropriate complexity. Dressed in Data will focus on the experience of an individual with her/his own environmental health data while BigBarChart focuses on the experience of the community with the overall dataset. Both projects seek to present opportunities for nontraditional learning, community relevance, and social impact.
by Laura J. Perovich.
S.M.
Wang, Yi. "Data Management and Data Processing Support on Array-Based Scientific Data". The Ohio State University, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=osu1436157356.
Texto completo da fonteLivros sobre o assunto "Data"
Cooper, Richard, e Jessie Kennedy, eds. Data Management. Data, Data Everywhere. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-73390-4.
Texto completo da fonteJakarta Raya (Indonesia). Badan Kesatuan Bangsa., ed. Kumpulan data: Data kerawanan, data narkoba, data tawuran pelajar. [Jakarta]: Badan Kesatuan Bangsa, Prop. DKI Jakarta, 2002.
Encontre o texto completo da fonteMonino, Jean-Louis, e Soraya Sedkaoui. Big Data, Open Data and Data Development. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781119285199.
Texto completo da fonteZhu, Zhen. Data Warehousing, Data Lakes and Data Lakehouses. Editado por Aeron Zentner. 2455 Teller Road, Thousand Oaks California 91320 United States: SAGE Publications, Inc., 2024. http://dx.doi.org/10.4135/9781071937471.
Texto completo da fontePanchal, Ajay G. Data mining economic data. Manchester: UMIST, 1998.
Encontre o texto completo da fonteAutodata, ed. Diesel data: Technical data. Maidenhead: Autodata Limited, 1992.
Encontre o texto completo da fontePress, Scripps College, e ArjoWiggins (Firm), eds. Good data, bad data. [Claremont, California]: Scripps College Press, 2014.
Encontre o texto completo da fonteAndrews, D. F., e A. M. Herzberg. Data. New York, NY: Springer New York, 1985. http://dx.doi.org/10.1007/978-1-4612-5098-2.
Texto completo da fonteHerian, Robert. Data. Milton Park, Abingdon, Oxon; New York, NY: Routledge, 2021.: Routledge, 2021. http://dx.doi.org/10.4324/9781003162001.
Texto completo da fonteTyagi, Amit Kumar. Data Science and Data Analytics. Boca Raton: Chapman and Hall/CRC, 2021. http://dx.doi.org/10.1201/9781003111290.
Texto completo da fonteCapítulos de livros sobre o assunto "Data"
Pastore y Piontti, Ana, Nicola Perra, Luca Rossi, Nicole Samay e Alessandro Vespignani. "DATA, DATA, AND MORE DATA". In Charting the Next Pandemic, 11–28. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-93290-3_2.
Texto completo da fonteDomokos, László. "Data About Data". In Physical Property Prediction in Organic Chemistry, 11–18. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-74140-1_3.
Texto completo da fonteFurner, Jonathan. "“Data”: The data". In Information Cultures in the Digital Age, 287–306. Wiesbaden: Springer Fachmedien Wiesbaden, 2016. http://dx.doi.org/10.1007/978-3-658-14681-8_17.
Texto completo da fonteLuckin, Rose, Karine George e Mutlu Cukurova. "Data, data everywhere". In AI for School Teachers, 33–48. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003193173-3.
Texto completo da fonteBahman, Zohuri, e Mossavar-Rahmani Farhang. "Data Warehousing, Data Mining, Data Modeling, and Data Analytics". In A Model to Forecast Future Paradigms, 73–109. Includes bibliographical references and index. | Contents: Volume 1. Introduction to knowledge is power in four dimensions: Apple Academic Press, 2019. http://dx.doi.org/10.1201/9781003000662-3.
Texto completo da fonteBusulwa, Richard, e Nina Evans. "Data, data management, data analytics, and data science technologies". In Digital Transformation in Accounting, 183–96. Abingdon, Oxon ; New York, NY : Routledge, 2021. | Series: Business & digital transformation: Routledge, 2021. http://dx.doi.org/10.4324/9780429344589-18.
Texto completo da fonteIrti, Claudia. "Personal Data, Non-personal Data, Anonymised Data, Pseudonymised Data, De-identified Data". In Services and Business Process Reengineering, 49–57. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-3049-1_5.
Texto completo da fonteHerian, Robert. "Being in data". In Data, 67–88. Milton Park, Abingdon, Oxon; New York, NY: Routledge, 2021.: Routledge, 2021. http://dx.doi.org/10.4324/9781003162001-4.
Texto completo da fonteHerian, Robert. "Proximate data – a conclusion". In Data, 111–25. Milton Park, Abingdon, Oxon; New York, NY: Routledge, 2021.: Routledge, 2021. http://dx.doi.org/10.4324/9781003162001-6.
Texto completo da fonteHerian, Robert. "Introduction". In Data, 1–14. Milton Park, Abingdon, Oxon; New York, NY: Routledge, 2021.: Routledge, 2021. http://dx.doi.org/10.4324/9781003162001-1.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Data"
Zhang, Xiaofeng, Zhangyang Wang, Dong Liu e Qing Ling. "DADA: Deep Adversarial Data Augmentation for Extremely Low Data Regime Classification". In ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2019. http://dx.doi.org/10.1109/icassp.2019.8683197.
Texto completo da fonteYi, Zhang, Zhao Hongkai, Wei Yongyu, Xia Yulian e Zhang Xiaoyan. "Improved DataX Data Synchronization Technique for Distribution Grid Data Middleware Implementation". In 2024 IEEE 3rd International Conference on Electrical Engineering, Big Data and Algorithms (EEBDA). IEEE, 2024. http://dx.doi.org/10.1109/eebda60612.2024.10485928.
Texto completo da fonteAlfred, Rayner. "DARA: Data Summarisation with Feature Construction". In 2008 Second Asia International Conference on Modelling & Simulation (AMS). IEEE, 2008. http://dx.doi.org/10.1109/ams.2008.131.
Texto completo da fonteHunger, Casen, Lluis Vilanova, Charalampos Papamanthou, Yoav Etsion e Mohit Tiwari. "DATS - Data Containers for Web Applications". In ASPLOS '18: Architectural Support for Programming Languages and Operating Systems. New York, NY, USA: ACM, 2018. http://dx.doi.org/10.1145/3173162.3173213.
Texto completo da fonteKoehler, Martin, Alex Bogatu, Cristina Civili, Nikolaos Konstantinou, Edward Abel, Alvaro A. A. Fernandes, John Keane, Leonid Libkin e Norman W. Paton. "Data context informed data wrangling". In 2017 IEEE International Conference on Big Data (Big Data). IEEE, 2017. http://dx.doi.org/10.1109/bigdata.2017.8258015.
Texto completo da fonteLeadbetter, Adam, Damian Smyth, Robert Fuller, Eoin O'Grady e Adam Shepherd. "Where big data meets linked data: Applying standard data models to environmental data streams". In 2016 IEEE International Conference on Big Data (Big Data). IEEE, 2016. http://dx.doi.org/10.1109/bigdata.2016.7840943.
Texto completo da fonteAshok, Vikas, e Ravi Mukkamala. "Data mining without data". In the 10th annual ACM workshop. New York, New York, USA: ACM Press, 2011. http://dx.doi.org/10.1145/2046556.2046578.
Texto completo da fonteCassavia, Nunziato, Pietro Dicosta, Elio Masciari e Domenico Saccà. "Data Preparation for Tourist Data Big Data Warehousing". In Special Session on Knowledge Discovery meets Information Systems: Experiences and Lessons Learned Dealing with Real-life Scenarios. SCITEPRESS - Science and and Technology Publications, 2014. http://dx.doi.org/10.5220/0005144004190426.
Texto completo da fonteSanchez, Susan M. "DATA FARMING: BETTER DATA, NOT JUST BIG DATA". In 2018 Winter Simulation Conference (WSC). IEEE, 2018. http://dx.doi.org/10.1109/wsc.2018.8632383.
Texto completo da fonteLokesh, M., A. Keerthi Devi, U. Dinesh Chowdary, P. V. N. S. Divya Lakshmi e G. Rama Koteswara Rao. "Data Redundancy, Data Phishing, and Data Cloud Backup". In 2023 Fifth International Conference on Electrical, Computer and Communication Technologies (ICECCT). IEEE, 2023. http://dx.doi.org/10.1109/icecct56650.2023.10179679.
Texto completo da fonteRelatórios de organizações sobre o assunto "Data"
Martin, Mark, Lance Vowell, Ian King e Chris Augustus. Automated Data Cleansing in Data Harvesting and Data Migration. Office of Scientific and Technical Information (OSTI), março de 2011. http://dx.doi.org/10.2172/949761.
Texto completo da fonteP.L. Cloke. Data Qualification Report For: Thermodynamic Data File, DATA0.YMP.R0 For Geochemical Code, EQ3/6? Office of Scientific and Technical Information (OSTI), outubro de 2001. http://dx.doi.org/10.2172/899946.
Texto completo da fonteRussell, H. A. J., N. Benoit e D. Paradis. Data collection and data sources. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2016. http://dx.doi.org/10.4095/298871.
Texto completo da fonteMusick, R., T. Critchlow, M. Ganesh, Z. Fidelis, A. Zemla e T. Slezak. Data Foundry: Data Warehousing and Integration for Scientific Data Management. Office of Scientific and Technical Information (OSTI), fevereiro de 2000. http://dx.doi.org/10.2172/793555.
Texto completo da fonteZhang, Jovan Yang, Hari Viswanathan, Jeffery Hyman e Richard Middleton. Data Analytics of Hydraulic Fracturing Data. Office of Scientific and Technical Information (OSTI), agosto de 2016. http://dx.doi.org/10.2172/1304742.
Texto completo da fonteBishop, Bradley Wade. Data from Data Services Librarians Study. University of Tennessee, Knoxville Libraries, abril de 2020. http://dx.doi.org/10.7290/m29yhy5qen.
Texto completo da fonteBishop, Bradley Wade. Data from Data Management Plan Compliance. University of Tennessee, Knoxville Libraries, janeiro de 2020. http://dx.doi.org/10.7290/pebuwhcq7l.
Texto completo da fonteDosch, Brianne, e Tyler Martindate. Data from Business Journals Data Sharing. University of Tennessee, Knoxville Libraries, 2019. http://dx.doi.org/10.7290/pyxdnl2g0z.
Texto completo da fonteTafolla, Tanya, Eappen Nelluvelil, Jacob Moore, Daniel Dunning, Nathaniel Morgan e Robert Robey. MATAR: Data-Oriented Sparse Data Representation. Office of Scientific and Technical Information (OSTI), março de 2021. http://dx.doi.org/10.2172/1773304.
Texto completo da fonteHoitink, D. J., e K. W. Burk. Climatological data summary 1994, with historical data. Office of Scientific and Technical Information (OSTI), maio de 1995. http://dx.doi.org/10.2172/90676.
Texto completo da fonte