Siga este link para ver outros tipos de publicações sobre o tema: Dairy products.

Artigos de revistas sobre o tema "Dairy products"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Dairy products".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

Weik, Robert W. "Dairy Products". Journal of AOAC INTERNATIONAL 69, n.º 2 (1 de março de 1986): 233. http://dx.doi.org/10.1093/jaoac/69.2.233a.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Richardson, Gary H. "Dairy Products". Journal of AOAC INTERNATIONAL 70, n.º 2 (1 de março de 1987): 271a—272. http://dx.doi.org/10.1093/jaoac/70.2.271a.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Horáčková, Šárka, Blanka Vrchotová, Daniel Koval, Akkenzhe Omarova, Marcela Sluková e Jiří Štětina. "Use of Lactiplantibacillus plantarum for dairy and non-dairy fermented products". Czech Journal of Food Sciences 40, No. 5 (26 de outubro de 2022): 392–99. http://dx.doi.org/10.17221/132/2022-cjfs.

Texto completo da fonte
Resumo:
In this study, two strains of Lactiplantibacillus plantarum 299v and CCDM 181 were tested for their ability to grow in milk and soy beverage, for stability during cold storage of fermented beverages, compatibility with yoghurt culture and activity against yeasts. Both strains grew better in soy drink compared to milk. During co-culturing with the yoghurt culture, sufficient acidification of milk and soy beverage necessary for the production of fermented products was achieved. The stability of tested strains in media at pH 4.5 for 28 days at 5 °C was good. L. plantarum was effective in the inhibition of undesirable yeast growth, but the ability was strain-specific. Tested strains demonstrated also a strain-specific ability to suppress the growth of yoghurt culture bacteria. For a possible application of co-culturing L. plantarum with the yoghurt culture, verification of the mutual compatibility of specific strains is necessary.
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Nascimento, João Roberto Oliveira do. "Functional dairy products". Revista Brasileira de Ciências Farmacêuticas 40, n.º 3 (setembro de 2004): 441. http://dx.doi.org/10.1590/s1516-93322004000300023.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

BANKS, W. "Dairy products: technology". International Journal of Dairy Technology 46, n.º 3 (agosto de 1993): 83–86. http://dx.doi.org/10.1111/j.1471-0307.1993.tb01252.x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Theobald, Hannah. "Functional Dairy Products". Nutrition Bulletin 29, n.º 3 (setembro de 2004): 282. http://dx.doi.org/10.1111/j.1467-3010.2004.00411.x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Kennedy, John F., e Chaiwat Bandaiphet. "Functional Dairy Products". Carbohydrate Polymers 57, n.º 1 (agosto de 2004): 101. http://dx.doi.org/10.1016/j.carbpol.2004.04.007.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Evdokimov, Ivan, Lyudmila Alieva, Valeriy Varlamov, Vladimir Kurchenko, Vladimir Haritonov e Tatyana Butkevich. "USAGE OF CHITOSAN IN DAIRY PRODUCTS PRODUCTION". Foods and Raw Materials 3, n.º 2 (20 de outubro de 2015): 29–39. http://dx.doi.org/10.12737/13117.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Vedamuthu, E. R. "The Dairy Leuconostoc: Use in Dairy Products". Journal of Dairy Science 77, n.º 9 (setembro de 1994): 2725–37. http://dx.doi.org/10.3168/jds.s0022-0302(94)77215-5.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Bórawski, Piotr, Aneta Bełdycka-Bórawska, Andrzej Parzonko, Tomasz Rokicki e Lisa Holden. "Changes in the comparative advantage of Polish dairy products". Agricultural Economics (Zemědělská ekonomika) 68, No. 12 (21 de dezembro de 2022): 464–75. http://dx.doi.org/10.17221/322/2022-agricecon.

Texto completo da fonte
Resumo:
Competitiveness is one of the key concepts in economic sciences, andit is defined as the ability of businesses to compete in the market. The aim of this study was to assess the competitiveness of dairy products in Poland. The competitiveness was evaluated in a macroeconomic approach by analysing the exports, imports, and the trade balance. The results were processed and presented with the use of tabular, graphic, and descriptive methods. After Poland joined the European Union (EU) in 2004, one of the key goals was to improve the quality, storage, and applicability of dairy products, and to promote trade in milk and dairy products. The Polish dairy industry reported a positive balance in the foreign trade of milk and dairy products, which contributed to positive values in the competitiveness indicators of dairy products. The values of the export specialisation index (SI), export revealed comparative advantage (XRCA), relative import penetration index (MRCA), foreign trade coverage ratio (CRK), and the Grubel-Lloyd intra-industry trade index (IITk) were positive, which attests to the competitiveness of Polish dairy products. We proved that the COVID-19 pandemic had an impact on the competitiveness of dairy enterprises in Poland.
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

Tunick, Michael H. "Calcium in Dairy Products". Journal of Dairy Science 70, n.º 11 (novembro de 1987): 2429–38. http://dx.doi.org/10.3168/jds.s0022-0302(87)80305-3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Brant, D. L. "Fresh chilled dairy products". International Journal of Dairy Technology 41, n.º 4 (novembro de 1988): 92–93. http://dx.doi.org/10.1111/j.1471-0307.1988.tb00607.x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

Marshall, V. M. "Probiotic Dairy Products (2005)". International Journal of Dairy Technology 60, n.º 1 (fevereiro de 2007): 64–65. http://dx.doi.org/10.1111/j.1471-0307.2007.00273.x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Fleet, G. H. "Yeasts in dairy products". Journal of Applied Bacteriology 68, n.º 3 (março de 1990): 199–211. http://dx.doi.org/10.1111/j.1365-2672.1990.tb02566.x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

Qvist, Karsten Bruun. "Structure of Dairy Products". International Journal of Food Science & Technology 43, n.º 11 (novembro de 2008): 2101–2. http://dx.doi.org/10.1111/j.1365-2621.2007.01667.x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Dyer, Dave. "Can Dairy Products Compete?" Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie 36, n.º 4 (dezembro de 1988): 601–11. http://dx.doi.org/10.1111/j.1744-7976.1988.tb03303.x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Lampe, Johanna W. "Dairy Products and Cancer". Journal of the American College of Nutrition 30, sup5 (outubro de 2011): 464S—470S. http://dx.doi.org/10.1080/07315724.2011.10719991.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Scanlon, Martin G. "Structure of Dairy Products". Trends in Food Science & Technology 19, n.º 10 (outubro de 2008): 546. http://dx.doi.org/10.1016/j.tifs.2008.06.001.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Rivera-Espinoza, Yadira, e Yoja Gallardo-Navarro. "Non-dairy probiotic products". Food Microbiology 27, n.º 1 (fevereiro de 2010): 1–11. http://dx.doi.org/10.1016/j.fm.2008.06.008.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

Hansen, Thomsen J. "Mycotoxins in dairy products". Food Research International 25, n.º 2 (janeiro de 1992): 168. http://dx.doi.org/10.1016/0963-9969(92)90162-x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Weik, Robert W. "Report on Dairy Products". Journal of AOAC INTERNATIONAL 68, n.º 2 (1 de março de 1985): 236. http://dx.doi.org/10.1093/jaoac/68.2.236.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

Ponnal, Rehana P., Jackie E. Wood, Brendon D. Gill, Carlos A. Bergonia, Wendy M. Longstaff, Valerie Slabbert, Lissa C. Bainbridge-Smith e Robert A. Crawford. "Colorimetry of dairy products". International Dairy Journal 113 (fevereiro de 2021): 104886. http://dx.doi.org/10.1016/j.idairyj.2020.104886.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

Evdokimov, Ivan, Vitaliy Somov, Yuliya Kurash-, Sergey Perminov e Sergey Knyazev. "APPLICATION OF WHEY-DERIVED SYRUPS IN DAIRY PRODUCTS". Foods and Raw Materials 3, n.º 2 (20 de outubro de 2015): 89–95. http://dx.doi.org/10.12737/13113.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

Dyshluk, Lyubov, Lyubov Dyshluk, Stanislav Sukhikh, Stanislav Sukhikh, Svetlana Ivanova, Svetlana Ivanova, Irina Smirnova et al. "Prospects for using pine nut products in the dairy industry". Foods and Raw Materials 6, n.º 2 (20 de dezembro de 2018): 264–80. http://dx.doi.org/10.21603/2308-4057-2018-2-264-280.

Texto completo da fonte
Resumo:
Abstract: Functional products are currently attracting a lot of research interest. Modern people’s diet does not satisfy their need for nutrients, vitamins and minerals, and functional products can make it more balanced. In particular, our diet is lacking in protein. This paper discusses the prospects for enriching dairy products with plant protein derived from pine nuts and their products. Pine nut paste, fat-free milk, and oil cake are a valuable source of fatty acids, vitamins, and microelements. The protein, lipid, vitamin, and mineral content of these products makes them suitable for combining with milk. Their water-holding and fat-emulsifying capacities allow their use as stabilizers and emulsifiers. Siberian pine nuts grow wild in the Kemerovo Region, which makes their use as a raw material economically feasible. The article introduces a number of functional dairy products enriched with pine nut products, such as cheese, ice cream, and cottage cheese. Further, it describes the production process and the products’ nutritional value. The chemical composition of new types of dairy products shows that using pine nut oil cake, fat-free flour, paste, and oil enriches them with plant proteins, vegetable fats, vitamins as well as macro- and microelements. Replacing dairy raw materials with plants does not reduce the nutritional value of new dairy products. Dairy foods are rich in protein, fat, and minerals. The vitamin content of new dairy products with functional ingredients is similar to that of dairy-based products. Moreover, using functional products (pine nut oil cake, fat-free flour, paste, and oil) enriches new types of dairy products with tocopherols.
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

MUIR, D. DONALD. "The shelf-life of dairy products: 4. Intermediate and long life dairy products". International Journal of Dairy Technology 49, n.º 4 (novembro de 1996): 119–24. http://dx.doi.org/10.1111/j.1471-0307.1996.tb02503.x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

Duncan, Susan E. "Dairy Products: The Next Generation. Altering the Image of Dairy Products Through Technology". Journal of Dairy Science 81, n.º 4 (abril de 1998): 877–83. http://dx.doi.org/10.3168/jds.s0022-0302(98)75646-2.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

Abbas, Hayam M., Mona A. M. Abd El-Gawad, Jihan M. Kassem e Mohamed Salama. "Application of fat replacers in dairy products: A review". Foods and Raw Materials 12, n.º 2 (30 de janeiro de 2024): 319–33. http://dx.doi.org/10.21603/2308-4057-2024-2-612.

Texto completo da fonte
Resumo:
The consumption of fat raises the risk of coronary heart disease and a number of chronic diseases such as obesity. However, removing fat or reducing its level in the final product may give it undesirable properties since fat plays an important role in the quality of food, mainly its texture and flavor. Therefore, natural or artificial fat replacers are utilized in food formulations instead of natural fat. Fat mimics are based on carbohydrates, proteins, and/or lipids, with energy values of 0–38 kJ/g (0–9 kcal/g). They mimic physical properties and sensory attributes of fat but have less energy and calories. Fat substitutes have physical and functional characteristics of conventional fat molecules which are directly replaced with synthetic molecules that provide no calories or structured lipid molecules. Dairy products represent a principal part of consumer diet all over the world. Therefore, this review aimed to expound how fat replacers can be used to overcome the defects of fat absence or reduction in dairy products. It was reviewed different types and sources of fat replacers, both micro- and nanoparticulated, and highlighted their application in cheese, ice cream, frozen yogurt, fermented milk, and fatty dairy products. Some of the currently applied micro-particulated proteins include Simplesse® (whey protein), APV LeanCreme™, and Dairy-Lo® (micro-particulate protein + micro-particulate cellulose). While whey protein has a great role in the dairy sector today, there is a need for further research in this field.
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

Bełdycka-Bórawska, Aneta, Piotr Bórawski, Marta Guth, Andrzej Parzonko, Tomasz Rokicki, Bogdan Klepacki, Marcin Wysokiński, Agnieszka Maciąg e James Willam Dunn. "Price changes of dairy products in the European Union". Agricultural Economics (Zemědělská ekonomika) 67, No. 9 (24 de setembro de 2021): 373–81. http://dx.doi.org/10.17221/61/2021-agricecon.

Texto completo da fonte
Resumo:
This article presents changes in the prices of milk and other dairy products in the European Union (EU). First, the descriptive statistics of the prices of milk and dairy products are presented, and then correlation and regression analyses were conducted to measure the relationships between the prices. We used the augmented Dickey-Fuller (ADF) test and generalised autoregressive conditional heteroscedasticity (GARCH) model to measure the stationarity and changes in dairy product prices in the EU. At the EU level, we checked the changes in prices of butter, skim milk powder, whole milk powder, Cheddar, Edam, Gouda, Emmental and whey powder. Our analysis confirmed that the butter, skim milk powder, whole milk powder, Cheddar, Edam and Gouda processes depend on previous values. The biggest price changes were observed in whey powder (34.12%), butter (24.46%) and skim milk powder (21.78%).
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

Auezeva, N. S., e S. S. Ibraeva. "POSSIBILITY OF PRODUCTION OF DAIRY PRODUCTS WITH STEVIA EXTRACT". Bulletin of the Korkyt Ata Kyzylorda University 58, n.º 3 (2021): 88–92. http://dx.doi.org/10.52081/bkaku.2021.v58.i3.075.

Texto completo da fonte
Resumo:
The article presents the possibility of obtaining dairy products with stevia extract and the results of the study of organoleptic, physical and chemical properties of the finished product. Market relations require dairy producers to provide consumers with new dairy-based foods enriched with vegetable supplements. Mixed milk-based products, enriched with plant and animal products, allow you to prepare a new type of lunch with a new composition. As a natural sweetener, stevia extract gives a special sweet taste to yogurt products, as well as not only sweetens the product, but also makes it easier to absorb. This means that the stevia plant has not only tasty properties, but also easily digestible nutrients. Natural product made during the preparation of lactic acid products is a unique type of raw material with useful, highly digestible dietary properties. After all, natural milk contains a source of nutrients: immunoglobulins, hormones, growth factors, enzymes and other biologically active substances. Lactic acid product with stevia extract provides a sweet taste, a healthy type of food that does not lag behind in quality.
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

Zapirchenko, Lyudmyla, Mariia Buhaieva e Alina Zbarzhevetska. "World and Domestic Trends in the Production of Dairy Products". Central Ukrainian Scientific Bulletin. Economic Sciences, n.º 8(41) (2022): 20–27. http://dx.doi.org/10.32515/2663-1636.2021.8(41).20-27.

Texto completo da fonte
Resumo:
In modern economic conditions, the dairy industry, on the one hand, belongs to the complex in both organizational and technological aspects of its components, and on the other hand, it is an industry that remains a leader in animal husbandry. The study is to consider current trends in dairy production, identify areas for increasing milk production in farms and identify practical recommendations for possible transformational changes in farms It is determined that the dairy industry is gaining more importance in the food systems of most countries. The productivity of cows by regions of Ukraine and at the international level in some countries was studied. It was found that the importance of increasing the production of all types of products, especially milk for the development of the livestock industry, and the dairy industry in the agri-food sector to provide the population with wholesome food. Problems that hinder the development of the industry are identified. A number of restraining factors in the development of the dairy industry have been identified, namely: low purchase prices, difficulties with capital construction and modernization of farms and premises due to unprofitable credit policies of financial institutions for farmers, low level of integration of dairy production and processing, low concentration of cows at enterprises, the use of traditional obsolete technologies in the production of raw materials and others. Thus, the dairy industry, both at the state level and worldwide, needs systematic further intensification and development. Reserves for improving the quality of milk, increasing production can be a system of measures to increase milk productivity of cows and reduce the cost of milk production. Leading measures in the future should be innovative approaches to the development of the industry, based on technology, advanced animal feeding systems, modern technical and technological support, the use of IT technologies, breeding and energy and resource conservation.
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

Zapirchenko, Lyudmyla, Mariia Buhaieva e Alina Zbarzhevetska. "World and Domestic Trends in the Production of Dairy Products". Central Ukrainian Scientific Bulletin. Economic Sciences, n.º 8(41) (2022): 20–27. http://dx.doi.org/10.32515/2663-1636.2022.8(41).20-27.

Texto completo da fonte
Resumo:
In modern economic conditions, the dairy industry, on the one hand, belongs to the complex in both organizational and technological aspects of its components, and on the other hand, it is an industry that remains a leader in animal husbandry. The study is to consider current trends in dairy production, identify areas for increasing milk production in farms and identify practical recommendations for possible transformational changes in farms It is determined that the dairy industry is gaining more importance in the food systems of most countries. The productivity of cows by regions of Ukraine and at the international level in some countries was studied. It was found that the importance of increasing the production of all types of products, especially milk for the development of the livestock industry, and the dairy industry in the agri-food sector to provide the population with wholesome food. Problems that hinder the development of the industry are identified. A number of restraining factors in the development of the dairy industry have been identified, namely: low purchase prices, difficulties with capital construction and modernization of farms and premises due to unprofitable credit policies of financial institutions for farmers, low level of integration of dairy production and processing, low concentration of cows at enterprises, the use of traditional obsolete technologies in the production of raw materials and others. Thus, the dairy industry, both at the state level and worldwide, needs systematic further intensification and development. Reserves for improving the quality of milk, increasing production can be a system of measures to increase milk productivity of cows and reduce the cost of milk production. Leading measures in the future should be innovative approaches to the development of the industry, based on technology, advanced animal feeding systems, modern technical and technological support, the use of IT technologies, breeding and energy and resource conservation.
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

Russell, Pauline. "Asian Indigenous Dairy Products - By International Dairy Federation (IDF)". International Journal of Dairy Technology 61, n.º 3 (agosto de 2008): 313–14. http://dx.doi.org/10.1111/j.1471-0307.2008.00399.x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

Sofie Biong, Anne, Paula Berstad e Jan I. Pedersen. "Biomarkers for intake of dairy fat and dairy products". European Journal of Lipid Science and Technology 108, n.º 10 (outubro de 2006): 827–34. http://dx.doi.org/10.1002/ejlt.200600044.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

Zhang, Ying, Haiyan Wang, Wei Ma, Xiuwei Li, Jianqiang Wang, Jinpeng Wang e Jing Xu. "Children’s Iodine Intake from Dairy Products and Related Factors: A Cross-Sectional Study in Two Provinces of China". Nutrients 16, n.º 13 (2 de julho de 2024): 2104. http://dx.doi.org/10.3390/nu16132104.

Texto completo da fonte
Resumo:
Dairy products are a significant source of iodine, and their contribution to iodine intake must be evaluated regularly. However, there is a lack of data on iodine intake from dairy products in China. Through a cross-sectional study, we determined the iodine content of dairy products in the Chinese diet and estimated iodine intake among Chinese children. Intake records for 30 consecutive days were used to investigate the consumption of dairy products by 2009 children from Yunnan and Liaoning Provinces. The iodine contents of 266 dairy products with high intake frequency were determined using inductively coupled plasma–mass spectrometry (ICP-MS). We then calculated the iodine intake and contribution of dairy products and explored the related factors of dairy iodine intake through a generalized linear mixed model. Ultra-high-temperature (UHT) sterilized milk accounted for 78.7% of the total dairy products, with an iodine content of 23.0 μg/100 g. The dairy product intake rate of children in China was 83.6%, with an average daily intake of 143.1 g. The median iodine intake from milk and dairy was 26.8 μg/d, 41.5% of the estimated average recommendation (EAR) for younger children and 31.8% of the EAR for older children. The daily milk iodine intake of children in Yunnan Province was 9.448 μg/day lower than that of children in Liaoning Province (p < 0.001), and the daily iodine intake of children in rural areas was 17.958 μg/day lower than that of children in urban areas (p < 0.001). Chinese dairy products were rich in iodine, and the content of iodine was intermediate to that reported in Europe and the USA. However, children’s daily intake of milk iodine was lower than that of children in other developed countries due to the lower daily intake of dairy products, especially those in rural areas.
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

Nasuda, Yuko, Masato Ohnuma, Michihiro Furusaka, Kaoru Hara e Toshinori Ishida. "Nanostructure Analysis of Dairy Products". Nippon Shokuhin Kagaku Kogaku Kaishi 67, n.º 6 (15 de junho de 2020): 186–92. http://dx.doi.org/10.3136/nskkk.67.186.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

Oliveira, Maricê Nogueira de. "Handbook of functional dairy products". Revista Brasileira de Ciências Farmacêuticas 40, n.º 4 (dezembro de 2004): 559. http://dx.doi.org/10.1590/s1516-93322004000400013.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

Durak, M. Zeki. "Antihypertensive Peptides in Dairy Products". American Journal of Biomedical Science & Research 7, n.º 2 (11 de fevereiro de 2020): 191–95. http://dx.doi.org/10.34297/ajbsr.2020.07.001139.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

Tidona, Flavio, Andrea Criscione, Anna Maria Guastella, Antonio Zuccaro, Salvatore Bordonaro e Donata Marletta. "Bioactive peptides in dairy products". Italian Journal of Animal Science 8, n.º 3 (janeiro de 2009): 315–40. http://dx.doi.org/10.4081/ijas.2009.315.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

Matveeva, T. A., e I. Yu Reznichenko. "Monitoring calcium in dairy products". Dairy Industry 63, n.º 8 (2021): 16–17. http://dx.doi.org/10.31515/1019-8946-2021-08-16-17.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

Denke, Margo A. "Dairy Products and Red Meat". Circulation 103, n.º 6 (13 de fevereiro de 2001): 784–86. http://dx.doi.org/10.1161/01.cir.103.6.784.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

Belmer, S. V. "Dairy products in infant nutrition". Voprosy detskoj dietologii 13, n.º 1 (2015): 50–53. http://dx.doi.org/10.20953/1727-5784-2015-1-50-53.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

Kumar, Naresh, e O. P. Singhal. "Atherosclerosis: are dairy products safe?" International Journal of Dairy Technology 45, n.º 2 (maio de 1992): 49–52. http://dx.doi.org/10.1111/j.1471-0307.1992.tb01724.x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

Robinson, R. K. "Handbook of Functional Dairy Products". International Journal of Dairy Technology 58, n.º 2 (maio de 2005): 127. http://dx.doi.org/10.1111/j.1471-0307.2005.00161.x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

Muir, D. D. "Dairy Fats and Related Products". International Journal of Dairy Technology 62, n.º 3 (agosto de 2009): 458–59. http://dx.doi.org/10.1111/j.1471-0307.2009.00517.x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
45

Burgess, Ken. "Dairy Powders and Concentrated Products". International Journal of Dairy Technology 63, n.º 3 (29 de junho de 2010): 475–76. http://dx.doi.org/10.1111/j.1471-0307.2010.00589.x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
46

CHOI, JONGWOO, LATHA SABIKHI, ASHRAF HASSAN e SANJEEV ANAND. "Bioactive peptides in dairy products". International Journal of Dairy Technology 65, n.º 1 (24 de outubro de 2011): 1–12. http://dx.doi.org/10.1111/j.1471-0307.2011.00725.x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
47

Miller, Susie. "The Outlook for Dairy Products". Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie 37, n.º 4 (13 de novembro de 2008): 1215–20. http://dx.doi.org/10.1111/j.1744-7976.1989.tb00831.x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
48

Kidane, H., e P. J. Gunawardana. "Australian Exports of Dairy Products". Journal of Food Products Marketing 5, n.º 4 (15 de março de 2000): 69–90. http://dx.doi.org/10.1300/j038v05n04_05.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
49

Heaney, Robert P. "Calcium, Dairy Products and Osteoporosis". Journal of the American College of Nutrition 19, sup2 (abril de 2000): 83S—99S. http://dx.doi.org/10.1080/07315724.2000.10718088.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
50

Agostoni, C., A. Rottoli, S. Trojan e E. Riva. "Dairy Products and Adolescent Nutrition". Journal of International Medical Research 22, n.º 2 (março de 1994): 67–76. http://dx.doi.org/10.1177/030006059402200201.

Texto completo da fonte
Resumo:
Adolescence is an intense anabolic period. The requirement for all nutrients is increased, but particularly that for dietary calcium. A balanced intake of the macronutrients (protein, fats and carbohydrates) is recommended to prevent the chronic degenerative disorders of adulthood. The temporal pattern of the calorie intake also deserves attention since it may affect homeostatic regulation. Adolescents often show disorders of dietary behaviour predisposing them to both obesity and anorexia. Dietary intervention in this age-group should promote the regular consumption of breakfast, a balanced intake of animal and vegetable foods and an increased calcium supply to maximize bone density. Dairy products and vegetables (mainly enriched cereals) constitute the basis of a good diet for adolescents, to supply their needs for growth and for subsequent good health.
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia