Siga este link para ver outros tipos de publicações sobre o tema: Cyclocarbonates.

Artigos de revistas sobre o tema "Cyclocarbonates"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Cyclocarbonates".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

Hudzenko, N. V., V. K. Grishchenko, A. V. Barantsova, N. A. Busko e Z. V. Falchenko. "Cyclic carbonates of rapeseed methyl esters as monomers for urethane composites". Voprosy Khimii i Khimicheskoi Tekhnologii, n.º 2 (março de 2021): 30–38. http://dx.doi.org/10.32434/0321-4095-2021-135-2-30-38.

Texto completo da fonte
Resumo:
The two-stage synthesis of cyclic carbonates based on methyl esters of fatty acids from rapeseed oil is characterized. The first stage involves the synthesis of epoxides by the reaction of unsaturated methyl esters of rapeseed fatty acids with hydrogen peroxide, orthophosphoric and acetic acids. The second step is a carbonization reaction, which was carried out by passing carbon dioxide through the reactive mixture in the presence of tetrabutylammonium bromide as a catalyst. A reactive oligourethane based on cyclocarbonates cyclic carbonates of rapeseed fatty acids and piperazine was synthesized by the non-isocyanate method via the interaction of cyclocarbonate group with the amino group of piperazine. Polymer composites based on synthesized cyclocarbonates, epoxides and amines of different chemical nature were prepared and studied. Thus, there is a possibility of regulating the physical and mechanical properties of epoxyurethane composites.
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Kricheldorf, Hans R., Bettina Weegen-Schulz e Jörg Jenssen. "Cationic polymerization of cyclocarbonates". Makromolekulare Chemie. Macromolecular Symposia 60, n.º 1 (julho de 1992): 119–31. http://dx.doi.org/10.1002/masy.19920600111.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Kricheldorf, Hans R., Bettina Weegen-Schulz e Jörg Jenssen. "Cationic polymerization of aliphatic cyclocarbonates". Macromolecular Symposia 132, n.º 1 (julho de 1998): 421–30. http://dx.doi.org/10.1002/masy.19981320139.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Besse, Vincent, Fatou Camara, Coline Voirin, Remi Auvergne, Sylvain Caillol e Bernard Boutevin. "Synthesis and applications of unsaturated cyclocarbonates". Polymer Chemistry 4, n.º 17 (2013): 4545. http://dx.doi.org/10.1039/c3py00343d.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Chen, Jian, He Li, Mingmei Zhong e Qihua Yang. "Hierarchical mesoporous organic polymer with an intercalated metal complex for the efficient synthesis of cyclic carbonates from flue gas". Green Chemistry 18, n.º 24 (2016): 6493–500. http://dx.doi.org/10.1039/c6gc02367c.

Texto completo da fonte
Resumo:
Direct conversion of flue gas and epoxides to cyclocarbonates has been shown, using a 2,2-bipyridine Zn(ii) based hierarchical meso/microporous polymer as a catalyst. Mesopores facilitate reactant diffusion, while micropores enhance CO2 enrichment.
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Busko, N. A., V. K. Grishchenko, Ya V. Kochetova, Z. V. Falchenko, P. M. Davyskyba, M. O. Takse e M. O. Volochniuk. "SYNTHESIS AND STUDY OF THE PROPERTIES OF EPOXYCYCLOCARBONATES BASED ON ACRYLATE-VINYL COPOLYMERS". Polymer journal 45, n.º 3 (9 de setembro de 2023): 241–51. http://dx.doi.org/10.15407/polymerj.45.03.242.

Texto completo da fonte
Resumo:
A method of synthesis of acrylate-vinyl copolymers based on glycidyl methacrylate and styrene at different molar ratios and epoxy cyclocarbonates based on them was developed. Synthesis of styrene-glycidyl methacrylate (СP GMA/St) copolymers was carried out by the method of thermally initiated radical polymerization in steel reactors in the presence of 1% azo-bis-isobutyronitrile initiator at a temperature of 65 °C for 10 hours. The number of epoxy groups in the synthesized СP GMA/St, determined by the potentiometric titration method, naturally decreases with a decrease in the molar ratio of GMA/styrene. The synthesis of СP GMA/St epoxycyclocarbonates was carried out in a high-pressure autoclave by passing CO2 through the reaction mixture of a solution of KP in toluene with a catalyst (tetrabutylammonium bromide 5%) with stirring at a temperature of 110–120 °C, a pressure of (4-5) atm. The structure of СP and ECC was confirmed by IR spectroscopy. No bands of double bonds are observed in the IR spectra of СP GMA/St, there are vibration bands characteristic of oligostyrene and vibration bands of C=O, C–O–C and epoxy groups. During the formation of ECC, new vibration bands of cyclocarbonate groups with a maximum of 1802 cm-1 appear, changes are observed in the absorption region of C–O–C groups (1100–1300) cm-1, and the vibration bands of epoxy groups with a maximum of 843 cm-1 decrease. The study of relaxation transitions in acrylate-vinyl copolymers GMA/St and epoxy cyclocarbonates based on them using the DSC method showed that all samples are amorphous single-phase polymers. After changing the background, the excessive enthalpy observed during the first heating disappears, and the glass transition temperature shifts towards higher temperatures, which indicates the formation of a denser and thermodynamically balanced structure. The thermostability of the synthesized GMA/St copolymers and epoxy cyclocarbons was investigated by the method of thermogravimetry. It was established that all the obtained substances have one stage of weight loss and are heat resistant, since weight loss begins at a temperature above 240 °C. In the future, the obtained epoxycyclocarbonates will be used for the synthesis of polyurethanes by the non-isocyanate method.
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Zabalov, M. V., M. A. Levina, V. G. Krasheninnikov e R. P. Tiger. "Reactivity of New Monomers of the Polyurethanes Green Chemistry, the Reaction Mechanism, and the Medium Effect". Высокомолекулярные соединения Б 65, n.º 4 (1 de julho de 2023): 286–94. http://dx.doi.org/10.31857/s2308113923700511.

Texto completo da fonte
Resumo:
The influence of the substituents inductive effect and the proton-donor OH group in the substituted cyclocarbonates differing in the alkyl chain length on the activation barrier of their aminolysis reaction, which underlies the process of urethane formation without the participation of isocyanates, has been studied. Account for the solvent molecules has allowed quantitative interpretation of the process regularities. Kinetics of the model aminolysis reaction of a series of monomers in DMSO has been investigated.
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Zabalov, M. V., R. P. Tiger e A. A. Berlin. "Mechanism of urethane formation from cyclocarbonates and amines: a quantum chemical study". Russian Chemical Bulletin 61, n.º 3 (março de 2012): 518–27. http://dx.doi.org/10.1007/s11172-012-0076-8.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Yang, Xiaoqing, Peiping Zhou, Yingya Zhai, Kama Huang e Guozhu Jia. "The Synthesis of Cyclocarbonates from Epoxides Utilizing Sodium Bicarbonates instead of CO2 under Microwaves". Current Microwave Chemistry 02, n.º 999 (10 de dezembro de 2014): 1. http://dx.doi.org/10.2174/2213335602666141210214019.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Kricheldorf, Hans R., e Bettina Weegen-Schulz. "Polymers of carbonic acid. 11. Reactions and polymerizations of aliphatic cyclocarbonates with boron halogenides". Macromolecules 26, n.º 22 (outubro de 1993): 5991–98. http://dx.doi.org/10.1021/ma00074a022.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

Trankina, E. S., A. Yu Kazantseva, D. A. Khanin, S. E. Lyubimov, E. G. Kononova, Yu S. Andropova e A. M. Muzafarov. "Non-Isocyanate Poly(Siloxane-Urethanes) Based on Oligodimethylsiloxanes Containing Aminopropyl and Ethoxy Substituents". Высокомолекулярные соединения С 65, n.º 2 (1 de dezembro de 2023): 164–73. http://dx.doi.org/10.31857/s2308114723700437.

Texto completo da fonte
Resumo:
Environmentally friendly method for the synthesis of crosslinked poly(siloxane-urethanes) avoiding the use of toxic isocyanates has been presented. The synthesis has been performed in two stages: at the first stage, non-isocyanate poly(siloxane-urethanes) have been synthesized via aminolysis of cyclocarbonates (differing in the structure and functionality) with oligomer dimethylsiloxanes bearing aminopropyl and ethoxy substituents, and crosslinked non-isocyanate poly(siloxane-urethanes) have been obtained via hydrolysis of the ethoxy groups with air moisture. According to the TGA data, processes of thermooxidative decomposition of the non-isocyanate poly(siloxane-urethanes) begin at 240‒260°C, depending on the structure of the organic block. Structural organization of the films has been investigated and glass transition temperature of two blocks (flexible siloxane and rigid urethane ones) has been determined by means of DSC and TMA. Surface of the film samples of non-isocyanate poly(siloxane-urethanes) has been assessed by means of scanning electron microscopy.
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Zabalov, M. V., M. A. Levina, V. G. Krasheninnikov e R. P. Tiger. "Bifunctional catalysis by acetic acid in the urethane formation from cyclocarbonates and amines: quantum chemical and kinetic study". Russian Chemical Bulletin 63, n.º 8 (agosto de 2014): 1740–52. http://dx.doi.org/10.1007/s11172-014-0662-z.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

Zabalov, M. V., R. P. Tiger e A. A. Berlin. "Reaction of cyclocarbonates with amines as an alternative route to polyurethanes: A quantum-chemical study of reaction mechanism". Doklady Chemistry 441, n.º 2 (dezembro de 2011): 355–60. http://dx.doi.org/10.1134/s0012500811120032.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Salanti, Anika, Luca Zoia, Michele Mauri e Marco Orlandi. "Utilization of cyclocarbonated lignin as a bio-based cross-linker for the preparation of poly(hydroxy urethane)s". RSC Advances 7, n.º 40 (2017): 25054–65. http://dx.doi.org/10.1039/c7ra03416d.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

Boujioui, Fadoi, Flanco Zhuge, Helen Damerow, Mohammad Wehbi, Bruno Améduri e Jean-François Gohy. "Solid polymer electrolytes from a fluorinated copolymer bearing cyclic carbonate pendant groups". Journal of Materials Chemistry A 6, n.º 18 (2018): 8514–22. http://dx.doi.org/10.1039/c8ta01409d.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Couture, Guillaume, Vincent Ladmiral e Bruno Améduri. "Methods to prepare quaternary ammonium groups-containing alternating poly(chlorotrifluoroethylene-alt-vinyl ether) copolymers". RSC Advances 5, n.º 14 (2015): 10243–53. http://dx.doi.org/10.1039/c4ra09238d.

Texto completo da fonte
Resumo:
Quaternary ammonium groups-containing alternating poly(chlorotrifluoroethylene-alt-vinyl ether) copolymers were synthesized using post-polymerization functionalization methods such as azide–alkyne cycloaddition and cyclocarbonate–amine reaction.
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Zabalov, M. V., M. A. Levina e R. P. Tiger. "Molecular Organization of Reagents in the Kinetics and Catalysis of Liquid-Phase Reactions: XIII. Cyclic Transition States Involving Solvent Molecules in the Mechanism of Aminolysis of Cyclocarbonates in an Alcohol Medium". Kinetics and Catalysis 61, n.º 5 (setembro de 2020): 721–29. http://dx.doi.org/10.1134/s0023158420050134.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Panchireddy, Satyannarayana, Bruno Grignard, Jean-Michel Thomassin, Christine Jerome e Christophe Detrembleur. "Bio-based poly(hydroxyurethane) glues for metal substrates". Polymer Chemistry 9, n.º 19 (2018): 2650–59. http://dx.doi.org/10.1039/c8py00281a.

Texto completo da fonte
Resumo:
Bio- and CO2-based high performance thermoset poly(hydroxyurethane) (PHU) glues were designed from solvent- and isocyanate-free formulations based on cyclocarbonated soybean oil, diamines (aliphatic, cycloaliphatic or aromatic) and functional silica or ZnO fillers.
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Zhang, Zhiqiang, Haoyang Xu, Dongjie Guo, Junli Chen, Junping Du, Miaomiao Hou, Yanda Zhang, Liancai Xu, Hailong Wang e Guoqing Wang. "Molecular design and experimental study on synergistic catalysts for the synthesis of cyclocarbonate from styrene oxide and CO2". New Journal of Chemistry 44, n.º 44 (2020): 19037–45. http://dx.doi.org/10.1039/d0nj03689g.

Texto completo da fonte
Resumo:
Taking the reaction between styrene oxide and CO2 to yield cyclocarbonate as the target, the activities of synergistic catalysts, which are composed of Br and alcohol compounds serving as hydrogen bond donors (HBDs), were predicted by DFT calculations and confirmed by subsequent experiments.
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

Luo, Xiao-hua, Jun Feng, Hua-fen Wang, Wei Su, Xian-zheng Zhang e Ren-xi Zhuo. "Highly efficient enzymatic catalysis for cyclocarbonate polymerization". Polymer Journal 42, n.º 9 (4 de agosto de 2010): 722–27. http://dx.doi.org/10.1038/pj.2010.69.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Garipov, R. M., V. A. Sysoev, V. V. Mikheev, A. I. Zagidullin, R. Ya Deberdeev, V. I. Irzhak e Al Al Berlin. "Reactivity of Cyclocarbonate Groups in Modified Epoxy–Amine Compositions". Doklady Physical Chemistry 393, n.º 1-3 (novembro de 2003): 289–92. http://dx.doi.org/10.1023/b:dopc.0000003463.07883.c9.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

Purikova, O. G., L. A. Gorbach e O. O. Brovko. "Mechanical properties, chemical and thermo-oxidative resistance of biopolymer matrices based on the epoxy resin and functionalized soybean oil". Himia, Fizika ta Tehnologia Poverhni 15, n.º 2 (30 de junho de 2024): 291–300. http://dx.doi.org/10.15407/hftp15.02.291.

Texto completo da fonte
Resumo:
Biopolymer matrices has been synthesized on the basis of ED-20 epoxy resin and soybean oil (SbO) bearing cyclocarbonate and epoxy groups. Mono(cyanoethyl)diethylenetriamine (UP) and tris(2-hydroxyethyl)amine (TEA) were used as hardeners. Chemical structure, mechanical properties, thermo-oxidative resistance of the samples and their changes after contact with distilled water, alkaline or acidic environment were studied. By means of ATR-FTIR the possible formation of H-NIPU (hybrid non-isocyanate polyurethane) fragments between cyclocarbonate groups of SbO and amino groups of the hardener was demonstrated. Influence of the curing mode and the type of hardener on water absorption, chemical and thermal oxidation resistance of the developed biopolymer matrices was thoroughly investigated. UP-based biopolymer matrices showed water and alkali resistance similar to the ones of neat epoxy polymers, while TEA-based biopolymer matrices showed better resistance to the acidic medium. The thermo-oxidative stability of the chosen samples was revealed by the TGA method in an air atmosphere. It was demonstrated that epoxy polymer cured with TEA hardener were more stable than the one cured with UP hardener. The similar dependence is observed for biopolymer matrices based on TEA hardener. At the same time, the curing mode has almost no effect on ultimate tensile strength value of the samples with ED-20/UP composition. However, the addition of functionalized SbO to the epoxy matrix cured with both TEA and UP hardeners increases the ultimate tensile strength values regardless of the type of oil functionalization. As expected, all biopolymer matrices exhibited higher ultimate tensile strength compared with unmodified epoxy polymers, which provides the possibility of their further application to obtain multi-layered bioplastics.
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

ROKICKI, GABRIEL. "Modification of bisphenol-A epoxide resin with an aliphatic cyclocarbonate thinner". Polimery 36, n.º 07/08/09 (julho de 1991): 304–9. http://dx.doi.org/10.14314/polimery.1991.304.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

Stroganov, V. F., e L. A. Abdrakhmanova. "Modification of Poly(Vinyl Chloride) Compositions with Cyclocarbonate Derivatives of Epoxy Resins". Polymer Science, Series D 12, n.º 1 (janeiro de 2019): 20–23. http://dx.doi.org/10.1134/s1995421219010192.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

Grishchenko, V. K., A. Yu Filipovich, A. A. Brovko, L. V. Bazalyuk e V. V. Shevchenko. "Features of formation and viscoelastic properties of epoxyurethanes based on aliphatic cyclocarbonate oligomers". Polymer Science Series D 9, n.º 3 (julho de 2016): 270–72. http://dx.doi.org/10.1134/s1995421216030084.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

NEDOLYA, N. A., e V. P. ZINOV'EVA. "ChemInform Abstract: Vinyl Ether Containing a Cyclocarbonate Group. Part 4. Reactions with Amines." ChemInform 26, n.º 30 (17 de agosto de 2010): no. http://dx.doi.org/10.1002/chin.199530081.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

Couture, Guillaume, Vincent Ladmiral e Bruno Améduri. "Comparison of epoxy- and cyclocarbonate-functionalised vinyl ethers in radical copolymerisation with chlorotrifluoroethylene". Journal of Fluorine Chemistry 171 (março de 2015): 124–32. http://dx.doi.org/10.1016/j.jfluchem.2014.08.014.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

Diakoumakos, Constantinos D., e Dimiter L. Kotzev. "Non-Isocyanate-Based Polyurethanes Derived upon the Reaction of Amines with Cyclocarbonate Resins". Macromolecular Symposia 216, n.º 1 (setembro de 2004): 37–46. http://dx.doi.org/10.1002/masy.200451205.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

Yagund, �. M., L. I. Maklakov, V. F. Stroganov e V. N. Savchenko. "Studies of hydrogen bonds in model urethan compounds obtained by the "cyclocarbonate-amine" reaction". Journal of Applied Spectroscopy 45, n.º 1 (julho de 1986): 737–41. http://dx.doi.org/10.1007/bf00660876.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

Filipovich, A. Yu, A. A. Brovko, L. V. Ermolchuk e V. K. Grishchenko. "The viscoelastic and mechanical properties of epoxyurethanes obtained by epoxy and aliphatic cyclocarbonate oligomers". Polymer journal 37, n.º 2 (20 de junho de 2015): 137–43. http://dx.doi.org/10.15407/polymerj.37.02.137.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

Bobyleva, L. I., O. S. Kozlova, G. V. Rybina, S. I. Kryukov e Yu A. Moskvichev. "Quantitative determination of olefin oxide, chlorohydrin, and cyclocarbonate in the presence of each other". Journal of Analytical Chemistry 55, n.º 10 (outubro de 2000): 991–93. http://dx.doi.org/10.1007/bf02756093.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

Haydar, Lolwa, Wassim El Malti, Vincent Ladmiral, Ali Alaaeddine e Bruno Ameduri. "Original Fluorinated Non-Isocyanate Polyhydroxyurethanes". Molecules 28, n.º 4 (14 de fevereiro de 2023): 1795. http://dx.doi.org/10.3390/molecules28041795.

Texto completo da fonte
Resumo:
New fluorinated polyhydroxyurethanes (FPHUs) with various molar weights were synthesized via the polyaddition reaction of a fluorinated telechelic bis(cyclocarbonate) (bis-CC) with a diamine. The fluorinated bis-CC was initially synthesized by carbonylation of a fluorinated diepoxide, 1,4-bis(2′,3′-epoxypropyl)perfluorobutane, in the presence of LiBr catalyst, in high yield. Then, several reaction conditions were optimized through the model reactions of the fluorinated bis-CC with hexylamine. Subsequently, fluorinated polymers bearing hydroxyurethane moieties (FPHUs) were prepared by reacting the bis-CC with different hexamethylenediamine amounts in bulk at 80 °C and the presence of a catalyst. The chemoselective polymerization reaction yielded three isomers bearing primary and secondary hydroxyl groups in 61–82% yield. The synthesized fluorinated CCs and the corresponding FPHUs were characterized by 1H, 19F, and 13C NMR spectroscopy. They were compared to their hydrogenated homologues synthesized in similar conditions. The gel permeation chromatography (GPC), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA) data of the FPHUs revealed a higher molar mass and a slight increase in glass transition and decomposition temperatures compared to those of the PHUs.
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

Li, Fangfang, Shasha Yun, Liping Gui e Ying-Hua Zhou. "Hydrazino-containing Zr-MOF for enhanced Lewis acid-base catalysis of CO2 fixation into cyclocarbonate". Journal of Environmental Chemical Engineering 12, n.º 6 (dezembro de 2024): 114311. http://dx.doi.org/10.1016/j.jece.2024.114311.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

Karami, Zeinab, Parvin Naderi, Kourosh Kabiri e Mohammad Jalal Zohuriaan-Mehr. "Epoxidized and Cyclocarbonated Star-Shaped Macromolecules as Bio-Based Internal and External Crosslinkers for Superabsorbent Polymer Hydrogels". Journal of Polymers and the Environment 28, n.º 6 (31 de março de 2020): 1684–95. http://dx.doi.org/10.1007/s10924-020-01718-7.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

Annunziata, Liana, Stéphane Fouquay, Guillaume Michaud, Frédéric Simon, Sophie M. Guillaume e Jean-François Carpentier. "Mono- and di-cyclocarbonate telechelic polyolefins synthesized from ROMP using glycerol carbonate derivatives as chain-transfer agents". Polymer Chemistry 4, n.º 5 (2013): 1313. http://dx.doi.org/10.1039/c2py21141f.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

Soni, D. K., A. Maithani e P. K. Kamani. "Synthesis and Characterization of Non-Isocyanate Polyurethanes using Diglycidyl Ether of Bisphenol Acetone (DGEBPA) Epoxy Resin". Asian Journal of Chemistry 34, n.º 8 (2022): 2155–60. http://dx.doi.org/10.14233/ajchem.2022.23855.

Texto completo da fonte
Resumo:
Present work focuses on synthesis of non-isocyanate polyurethane (NIPU) using the conventional epoxy resin, diglycidyl ether of bisphenol acetone (DGEBPA). The conventional polyurethanes (PUs) are prepared by reaction of the toxic diisocyanates and polyols. The epoxy resin contains two epoxy groups which are converted to cyclic carbonate groups when reacted with carbon dioxide. In this work, the epoxy resin (ER) was converted into the cyclocarbonated epoxy resin (CCER) using methyltriphenylphosphonium iodide (MePh.I) as the catalyst and ethyl cellsuolve as the reaction medium. The reaction was carried out in a carbon dioxide atmosphere, slightly above the atmospheric pressure, for 20 h. The progress of reaction was monitored by percent oxirane oxygen content (%OOC). The FTIR study confirms the disappearance of epoxy groups at 910 cm-1 and appearance of cyclic carbonate groups at 1800 cm-1. The films of the resulting resin were prepared by curing with diethylamine (DEA), ethylene diamine (EDA) and reactive polyamide resin (70% NV). The formation of urethane linkage was confirmed by FTIR spectrum. The mechanical, chemical and appearance properties of the resulting NIPU were studied. The results were satisfactory, like improvement in adhesion and alkali resistance, but reduction in gloss and colour retention was observed. This eco-friendly route for synthesis of polyurethane can be used easily and variation in properties can be obtained by selecting the suitable epoxy compound as well as curing agent.
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

Loulergue, Patrick, Maria Amela-Cortes, Stéphane Cordier, Yann Molard, Loïc Lemiègre e Jean-Luc Audic. "Polyurethanes prepared from cyclocarbonated broccoli seed oil (PUcc): New biobased organic matrices for incorporation of phosphorescent metal nanocluster". Journal of Applied Polymer Science 134, n.º 45 (22 de junho de 2017): 45339. http://dx.doi.org/10.1002/app.45339.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

Diallo, Abdou Khadri, William Guerin, Martine Slawinski, Jean-Michel Brusson, Jean-François Carpentier e Sophie M. Guillaume. "Block and Random Copolymers of 1,2-Cyclohexyl Cyclocarbonate andl-Lactide or Trimethylene Carbonate Synthesized by Ring-Opening Polymerization". Macromolecules 48, n.º 10 (14 de maio de 2015): 3247–56. http://dx.doi.org/10.1021/acs.macromol.5b00548.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

NEDOLYA, N. A., T. F. TATAROVA e B. A. TROFIMOV. "ChemInform Abstract: Vinylic Ethers Bearing a Cyclocarbonate Group. Part 5. Synthesis of 3-( 2-Vinyloxyethoxy)-propylene-1,2-carbonate." ChemInform 27, n.º 33 (5 de agosto de 2010): no. http://dx.doi.org/10.1002/chin.199633136.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

Stroganov, Victor, Oleg Stoyanov, Ilya Stroganov e Eduard Kraus. "Functional Modification Effect of Epoxy Oligomers on the Structure and Properties of Epoxy Hydroxyurethane Polymers". Advances in Materials Science and Engineering 2018 (9 de agosto de 2018): 1–16. http://dx.doi.org/10.1155/2018/6743037.

Texto completo da fonte
Resumo:
We introduce different ways to solve the actual fragility problem of the epoxy-amine polymers by curing epoxidian oligomers with aliphatic amines without additional heat input. The pathways are the oligomer-oligomeric modification of epoxy resins-epoxy oligomers (EO), with their conversion to oligoethercyclocarbonates (OECC) by carbonization with carbon dioxide. The cocuring of these oligomers as a result of aminolysis competing reactions is “epoxide-amine” (forming a network polymer) and “cyclocarbonate-amine” (forming the linear hydroxyurethane, extending the internodal chains). Formation of internal and intermolecular hydrogen bonds was established on hydroxycarbonates (HA) and linear polyhydroxyurethanes (PHU) model compounds by IR and NMR spectroscopy. The results of the hydrogen bond system formation processes explain the change in the relaxation and physicomechanical properties of hard polymers modified by the epoxy-amine compositions (OECC), containing aromatic and aliphatic links. This paper presents a possible OECC modificator, the optimal EO:OECC ratio and its influence on the cross-link frequency, the polarity, the fragment and chain flexibilities and, as a consequence, the possible stiffness regulation for selected epoxy polymers. Thus, the causes of the increase in deformation-strength and adhesion characteristics were established by a factor of 1.5 to 3.0 due to an increase in cohesive strength (as a result of the combined network operation with covalent and physical bonds), as well as reduction of residual stresses (by adding the aliphatic fragments as additional relaxants), and reducing the defectiveness of the boundary layers (polymer-substrate).
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

Yamini, Giti, Alireza Shakeri, Mohammad Jalal Zohuriaan-Mehr e Kourosh Kabiri. "Cyclocarbonated lignosulfonate as a bio-resourced reactive reinforcing agent for epoxy biocomposite: From natural waste to value-added bio-additive". Journal of CO2 Utilization 24 (março de 2018): 50–58. http://dx.doi.org/10.1016/j.jcou.2017.12.007.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

Levina, M. A., D. G. Miloslavskii, M. V. Zabalov, M. L. Pridatchenko, A. V. Gorshkov, V. T. Shashkova, V. L. Krasheninnikov e R. P. Tiger. "Green Chemistry of Polyurethanes: Synthesis, Functional Composition, and Reactivity of Cyclocarbonate-Containing Sunflower Oil Triglycerides—Renewable Raw Materials for New Urethanes". Polymer Science, Series B 61, n.º 5 (setembro de 2019): 540–49. http://dx.doi.org/10.1134/s1560090419050117.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

Levina, M. A., M. V. Zabalov, V. G. Krasheninnikov e R. P. Tiger. "Comparative Reactivity of Cyclocarbonate Groups of Oligomeric Triglycerides Based on Soybean Oil and Model Compounds in the Reactions of Nonisocyanate Urethane Formation". Polymer Science, Series B 60, n.º 5 (setembro de 2018): 563–70. http://dx.doi.org/10.1134/s1560090418050081.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

Zabalov, M. V., e R. P. Tiger. "The supermolecule method, as applied to studies of liquid-phase reaction mechanisms taking cyclocarbonate aminolysis in dioxane as an example: specific features". Russian Chemical Bulletin 65, n.º 3 (março de 2016): 631–39. http://dx.doi.org/10.1007/s11172-016-1347-6.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
45

Zabalov, M. V., M. A. Levina e R. P. Tiger. "Various Reactivity of Cyclocarbonate-Containing Chains of Vegetable Oil Triglycerides as the Cause of the Abnormal Kinetics of Urethane Formation with Their Participation". Polymer Science, Series B 62, n.º 5 (setembro de 2020): 457–64. http://dx.doi.org/10.1134/s1560090420050152.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
46

Levina, M. A., D. G. Miloslavskii, M. L. Pridatchenko, A. V. Gorshkov, V. T. Shashkova, E. M. Gotlib e R. P. Tiger. "Green chemistry of polyurethanes: Synthesis, structure, and functionality of triglycerides of soybean oil with epoxy and cyclocarbonate groups—renewable raw materials for new urethanes". Polymer Science Series B 57, n.º 6 (novembro de 2015): 584–92. http://dx.doi.org/10.1134/s156009041506010x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
47

Levina, Mira A., Maxim V. Zabalov, Vadim G. Krasheninnikov e Roald P. Tiger. "Kinetics and quantum chemical aspects of the mechanism of the guanidine (TBD) catalyzed aminolysis of cyclocarbonate containing soybean oil triglycerides as the model process of green chemistry of polyurethanes". Reaction Kinetics, Mechanisms and Catalysis 129, n.º 1 (19 de outubro de 2019): 65–83. http://dx.doi.org/10.1007/s11144-019-01683-w.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
48

Karami, Zeinab, Kourosh Kabiri e Mohammad Jalal Zohuriaan-Mehr. "Non-isocyanate polyurethane thermoset based on a bio-resourced star-shaped epoxy macromonomer in comparison with a cyclocarbonate fossil-based epoxy resin: A preliminary study on thermo-mechanical and antibacterial properties". Journal of CO2 Utilization 34 (dezembro de 2019): 558–67. http://dx.doi.org/10.1016/j.jcou.2019.08.009.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
49

Zhou, Minghui, Zhengyan Qu, Jiuxuan Zhang, Hong Jiang, Zhenchen Tang e Rizhi Chen. "Boosting CO2 chemical fixation over MOF-808 by introduction of functional groups and defective Zr sites". Chemical Communications, 2024. http://dx.doi.org/10.1039/d3cc06154j.

Texto completo da fonte
Resumo:
The CO2 cycloaddition emerges as a promising approach for producing value-added cyclocarbonates and mitigating of greenhouse gas emissions. Although MOF-808 serves as a stable catalyst for cycloaddition, its limited activity...
Estilos ABNT, Harvard, Vancouver, APA, etc.
50

Tapia, Luis Miguel Nuñez, Pascal Thebault, Laurent Bischoff, Alain Ledoux, Florian Defontaine, Olivier Lesouhaitier e Fabrice Burel. "Synthesis and characterization of ammonium containing cyclocarbonates and polyurethanes there from". Reactive and Functional Polymers, novembro de 2023, 105777. http://dx.doi.org/10.1016/j.reactfunctpolym.2023.105777.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia