Siga este link para ver outros tipos de publicações sobre o tema: Cycloalkanes.

Artigos de revistas sobre o tema "Cycloalkanes"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Cycloalkanes".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

Herman, David C., Phillip M. Fedorak e J. William Costerton. "Biodegradation of cycloalkane carboxylic acids in oil sand tailings". Canadian Journal of Microbiology 39, n.º 6 (1 de junho de 1993): 576–80. http://dx.doi.org/10.1139/m93-083.

Texto completo da fonte
Resumo:
The biodegradation of both an n-alkane and several carboxylated cycloalkanes was examined within tailings produced by the extraction of bitumen from the Athabasca oil sands. The carboxylated cycloalkanes examined were structurally similar to naphthenic acids that have been associated with the acute toxicity of oil sand tailings. The biodegradation potential of naphthenic acids was estimated by determining the biodegradation of both the carboxylated cycloalkanes and hexadecane in oil sand tailings. Carboxylated cycloalkanes were biodegraded within oil sand tailings, although compounds with methyl substitutions on the cycloalkane ring were more resistant to microbial degradation. Microbial activity against hexadecane and certain carboxylated cycloalkanes was found to be nitrogen and phosphorus limited.Key words: biodegradation, carboxylated cycloalkanes, oil sand tailings.
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Chen, Yubin, Bin Yuan, Chaomin Wang, Sihang Wang, Xianjun He, Caihong Wu, Xin Song et al. "Online measurements of cycloalkanes based on NO+ chemical ionization in proton transfer reaction time-of-flight mass spectrometry (PTR-ToF-MS)". Atmospheric Measurement Techniques 15, n.º 23 (2 de dezembro de 2022): 6935–47. http://dx.doi.org/10.5194/amt-15-6935-2022.

Texto completo da fonte
Resumo:
Abstract. Cycloalkanes are important trace hydrocarbons existing in the atmosphere, and they are considered a major class of intermediate volatile organic compounds (IVOCs). Laboratory experiments showed that the yields of secondary organic aerosols (SOAs) from oxidation of cycloalkanes are higher than acyclic alkanes with the same carbon number. However, measurements of cycloalkanes in the atmosphere are still challenging at present. In this study, we show that online measurements of cycloalkanes can be achieved using proton transfer reaction time-of-flight mass spectrometry with NO+ chemical ionization (NO+ PTR-ToF-MS). Cyclic and bicyclic alkanes are ionized with NO+ via hydride ion transfer, leading to major product ions of CnH2n-1+ and CnH2n-3+, respectively. As isomers of cycloalkanes, alkenes undergo association reactions with major product ions of CnH2n ⚫ (NO)+, and concentrations of 1-alkenes and trans-2-alkenes in the atmosphere are usually significantly lower than cycloalkanes (about 25 % and <5 %, respectively), as a result inducing little interference with cycloalkane detection in the atmosphere. Calibrations of various cycloalkanes show similar sensitivities associated with small humidity dependence. Applying this method, cycloalkanes were successfully measured at an urban site in southern China and during a chassis dynamometer study of vehicular emissions. Concentrations of both cyclic and bicyclic alkanes are significant in urban air and vehicular emissions, with comparable cyclic alkanes / acyclic alkanes ratios between urban air and gasoline vehicles. These results demonstrate that NO+ PTR-ToF-MS provides a new complementary approach for the fast characterization of cycloalkanes in both ambient air and emission sources, which can be helpful to fill the gap in understanding the importance of cycloalkanes in the atmosphere.
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Wang, Jian, He Liu, Shiguang Fan, Shuai Wang, Guanjun Xu, Aijun Guo e Zongxian Wang. "Dehydrogenation of Cycloalkanes over N-Doped Carbon-Supported Catalysts: The Effects of Active Component and Molecular Structure of the Substrate". Nanomaterials 11, n.º 11 (26 de outubro de 2021): 2846. http://dx.doi.org/10.3390/nano11112846.

Texto completo da fonte
Resumo:
Efficient dehydrogenation of cycloalkanes under mild conditions is the key to large-scale application of cycloalkanes as a hydrogen storage medium. In this paper, a series of active metals loaded on nitrogen-doped carbon (M/CN, M = Pt, Pd, Ir, Rh, Au, Ru, Ag, Ni, Cu) were prepared to learn the role of active metals in cycloalkane dehydrogenation with cyclohexane as the model reactant. Only Pt/CN, Pd/CN, Rh/CN and Ir/CN can catalyze the dehydrogenation of cyclohexane under the set conditions. Among them, Pt/CN exhibited the best catalytic activity with the TOF value of 269.32 h−1 at 180 °C, followed by Pd/CN, Rh/CN and Ir/CN successively. More importantly, the difference of catalytic activity between these active metals diminishes with the increase in temperature. This implies that there is a thermodynamic effect of cyclohexane dehydrogenation with the synthetic catalysts, which was evidenced by the study on the activation energy. In addition, the effects of molecular structure on cycloalkane dehydrogenation catalyzed by Pt/CN were studied. The results reveal that cycloalkane dehydrogenation activity and hydrogen production rate can be enhanced by optimizing the type, quantity and position of alkyl substituents on cyclohexane.
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Bogdanowicz-Szwed, Krystyna, e Michalina Kozicka. "Phase-Transfer Catalysed Alkylation of Enamines of some Cyclic β-Keto Carbothionic Acid Anilides with 1,2-Dibromoethane. Synthesis of Enamines of 1-Oxo-2-(3-phenyl tetrahydrothiazol-2-ylidene)-cycloalkanes". Zeitschrift für Naturforschung B 42, n.º 9 (1 de setembro de 1987): 1174–80. http://dx.doi.org/10.1515/znb-1987-0919.

Texto completo da fonte
Resumo:
The alkylation of morpholine enam ines of 2-oxo-cycloalkane-1-carbothionic acid anilides (1-3) with 1,2-dibromoethane under phase-transfer catalytic conditions yields enam ines of 1-oxo-2-(3-phenyl-tetrahydrothiazol-2-ylidene)-cycloalkanes (4-6). Compounds 4-6 were hydrolysed to appropriate keto derivatives 8-10. The structure of obtained com pounds was established on the basis of IR. NM R and MS spectral data.
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Wang, Wei, Shaoying Sun, Fengan Han, Guangyi Li, Xianzhao Shao e Ning Li. "Synthesis of Diesel and Jet Fuel Range Cycloalkanes with Cyclopentanone and Furfural". Catalysts 9, n.º 11 (25 de outubro de 2019): 886. http://dx.doi.org/10.3390/catal9110886.

Texto completo da fonte
Resumo:
Diesel and jet fuel range cycloalkanes were obtained in ~84.8% overall carbon yield with cyclopentanone and furfural, which can be produced from hemicellulose. Firstly, 2,5-bis(furan-2-ylmethyl)-cyclopentanone was prepared by the aldol condensation/hydrogenation reaction of cyclopentanone and furfural under solid base and selective hydrogenation catalyst. Over the optimized catalyst (Pd/C-CaO), 98.5% carbon yield of 2,5-bis(furan-2-ylmethyl)-cyclopentanone was acquired at 423 K. Subsequently, the 2,5-bis(furan-2-ylmethyl)-cyclopentanone was further hydrodeoxygenated over the M/H-ZSM-5(Pd, Pt and Ru) catalyst. Overall, 86.1% carbon yield of diesel and jet fuel range cycloalkanes was gained over the Pd/H-ZSM-5 catalyst under solvent-free conditions. The cycloalkane mixture obtained in this work has a high density (0.82 g mL−1) and a low freezing point (241.7 K). Therefore, it can be mixed into diesel and jet fuel to increase their volumetric heat values or payloads.
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Staudt, Svenja, Edyta Burda, Carolin Giese, Christina A. Müller, Jan Marienhagen, Ulrich Schwaneberg, Werner Hummel, Karlheinz Drauz e Harald Gröger. "Direct Oxidation of Cycloalkanes to Cycloalkanones with Oxygen in Water". Angewandte Chemie International Edition 52, n.º 8 (21 de janeiro de 2013): 2359–63. http://dx.doi.org/10.1002/anie.201204464.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Shen, Hai M., Xiong Wang, A. Bing Guo, Long Zhang e Yuan B. She. "Catalytic oxidation of cycloalkanes by porphyrin cobalt(II) through efficient utilization of oxidation intermediates". Journal of Porphyrins and Phthalocyanines 24, n.º 10 (29 de setembro de 2020): 1166–73. http://dx.doi.org/10.1142/s1088424620500303.

Texto completo da fonte
Resumo:
The catalytic oxidation of cycloalkanes using molecular oxygen employing porphyrin cobalt(II) as catalyst was enhanced through use of cycloalkyl hydroperoxides, which are the primary intermediates in oxidation of cycloalkanes, as additional oxidants to further oxidize cycloalkanes in the presence of porphyrin copper(II), especially for cyclohexane, for which the selectivity was enhanced from 88.6 to 97.2% to the KA oil; at the same time, the conversion of cyclohexane was enhanced from 3.88 to 4.41%. The enhanced efficiency and selectivity were mainly attributed to the avoided autoxidation of cycloalkanes and efficient utilization of oxidation intermediate cycloalkyl hydroperoxides as additional oxidants instead of conventional thermal decomposition. In addition to cyclohexane, the protocol presented in this research is also very applicable in the oxidation of other cycloalkanes such as cyclooctane, cycloheptane and cyclopentane, and can serve as a applicable and efficient strategy to boost the conversion and selectivity simultaneously in oxidation of alkanes. This work also is a very important reference for the extensive application of metalloporphyrins in catalysis chemistry.
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Silva, Letícia B., Felipe S. Stefanello, Sarah C. Feitosa, Clarissa P. Frizzo, Marcos A. P. Martins, Nilo Zanatta, Bernardo A. Iglesias e Helio G. Bonacorso. "Novel 7-(1H-pyrrol-1-yl)spiro[chromeno[4,3-b]quinoline-6,1′-cycloalkanes]: synthesis, cross-coupling reactions, and photophysical properties". New Journal of Chemistry 45, n.º 8 (2021): 4061–70. http://dx.doi.org/10.1039/d0nj05740a.

Texto completo da fonte
Resumo:
This paper covers the synthesis of a series of eleven examples of new 7-(1H-pyrrol-1-yl)spiro[chromeno[4,3-b]quinoline-6,1′-cycloalkanes] (3), where cycloalkanes are cyclopentane, cyclohexane, and cycloheptane.
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Wackett, Lawrence P. "Cycloalkanes and bacteria". Environmental Microbiology 16, n.º 1 (janeiro de 2014): 333–34. http://dx.doi.org/10.1111/1462-2920.12336.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Geraghty, Niall W. A., e John J. Hannan. "Functionalisation of cycloalkanes: the photomediated reaction of cycloalkanes with alkynes". Tetrahedron Letters 42, n.º 18 (abril de 2001): 3211–13. http://dx.doi.org/10.1016/s0040-4039(01)00390-2.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

Xiu, Jianmin, e Wenbin Yi. "Radical-based regioselective cross-coupling of indoles and cycloalkanes". Catalysis Science & Technology 6, n.º 4 (2016): 998–1002. http://dx.doi.org/10.1039/c5cy01907a.

Texto completo da fonte
Resumo:
An investigation on regiochemistry of radical functionalization of indoles using cycloalkanes through di-tert-butyl peroxide (DTBP)-promoted C(sp3)–H activation was conducted. A wide range of indoles bearing substituents at different position was functionalized directly with simple cycloalkanes in moderate to high regioselctivity.
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Fliszár, S., F. Poliquin, I. Bǎdilescu e E. Vauthier. "Structure dependent regularities of zero-point plus heat content energies in organic molecules". Canadian Journal of Chemistry 66, n.º 2 (1 de fevereiro de 1988): 300–303. http://dx.doi.org/10.1139/v88-052.

Texto completo da fonte
Resumo:
A representative collection of heat content plus zero-point energies deduced in the harmonic oscillator approximation suggests a number of simple additivity rules which allow ZPE + (HT − H0) to be related to structural features. Accurate evaluations are obtained for alkanes, alkenes, alkynes, cycloalkanes, chloroalkanes, and amines, as well as for large and small cycloalkanes in which CH2 is replaced by O.
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

Nakayama, Kaii, Hidehiro Kamiya e Yohei Okada. "Radical cation Diels–Alder reactions of arylidene cycloalkanes". Beilstein Journal of Organic Chemistry 18 (25 de agosto de 2022): 1100–1106. http://dx.doi.org/10.3762/bjoc.18.112.

Texto completo da fonte
Resumo:
TiO2 photoelectrochemical and electrochemical radical cation Diels–Alder reactions of arylidene cycloalkanes are described, leading to the construction of spiro ring systems. Although the mechanism remains an open question, arylidene cyclobutanes are found to be much more effective in the reaction than other cycloalkanes. Since the reaction is completed with a substoichiometric amount of electricity, a radical cation chain pathway is likely to be involved.
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Geraghty, Niall W. A., e John J. Hannan. "ChemInform Abstract: Functionalization of Cycloalkanes: The Photomediated Reaction of Cycloalkanes with Alkynes." ChemInform 32, n.º 30 (25 de maio de 2010): no. http://dx.doi.org/10.1002/chin.200130057.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

Banerjee, Arghya, Satavisha Sarkar e Bhisma K. Patel. "C–H functionalisation of cycloalkanes". Organic & Biomolecular Chemistry 15, n.º 3 (2017): 505–30. http://dx.doi.org/10.1039/c6ob01975g.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Moir, Michael E., Stéphanie Charbonneau e J. Brian A. Mitchell. "SOOT REDUCTION CHEMICALS FOR IN-SITU BURNING". International Oil Spill Conference Proceedings 1993, n.º 1 (1 de março de 1993): 761–63. http://dx.doi.org/10.7901/2169-3358-1993-1-761.

Texto completo da fonte
Resumo:
ABSTRACT A soot reduction additive for use in the in-situ burning of oil spills has been developed. The additive is in the form of a liquid concentrate that can be sprayed on a spill. The soot producing tendency of hydrocarbons decreases in the order: aromatics, branched paraffins, cycloalkanes, normal paraffins. Similarly, the soot reduction ability of ferrocene and derivatives decreases in the order: aromatics, cycloalkanes, branched paraffins, normal paraffins. A method of predicting soot reduction is inferred from model studies and confirmation obtained from experiments on known hydrocarbon mixtures.
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Kögler, Gerhard, Hansotto Drotloff e Martin Möller. "Molecular Motion of Solid Cycloalkanes". Molecular Crystals and Liquid Crystals Incorporating Nonlinear Optics 153, n.º 1 (dezembro de 1987): 179–89. http://dx.doi.org/10.1080/00268948708074534.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Wiberg, Kenneth B. "The C7−C10 Cycloalkanes Revisited". Journal of Organic Chemistry 68, n.º 24 (novembro de 2003): 9322–29. http://dx.doi.org/10.1021/jo030227n.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Yonehara, Fumi, Yoshiyuki Kido, Satoshi Morita e Masahiko Yamaguchi. "GaCl3-Catalyzed Arylation of Cycloalkanes". Journal of the American Chemical Society 123, n.º 45 (novembro de 2001): 11310–11. http://dx.doi.org/10.1021/ja0164172.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

Kowert *, Bruce A., Jared B. Jones, Jacob A. Zahm e Robert M. Turner II. "Size-dependent diffusion in cycloalkanes". Molecular Physics 102, n.º 13 (10 de julho de 2004): 1489–97. http://dx.doi.org/10.1080/00268970410001734251.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Wodrich, Matthew D., Jérôme F. Gonthier, Stephan N. Steinmann e Clémence Corminboeuf. "How Strained are Carbomeric-Cycloalkanes?" Journal of Physical Chemistry A 114, n.º 24 (24 de junho de 2010): 6705–12. http://dx.doi.org/10.1021/jp1029322.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

Drumright, R. E., E. Ellington, P. E. Kastl e D. B. Priddy. "Cycloalkane perketal initiators for styrene polymerization. 2. Decomposition chemistry of gem-bis(tert-butylperoxy)cycloalkanes". Macromolecules 26, n.º 9 (abril de 1993): 2253–58. http://dx.doi.org/10.1021/ma00061a018.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

Letcher, T. M., J. D. Mercer-Chalmers, U. P. Govender e R. Battino. "Excess molar enthalpies and excess molar volumes of mixtures of cycloalkanes and pseudo-cycloalkanes". Thermochimica Acta 224 (setembro de 1993): 39–42. http://dx.doi.org/10.1016/0040-6031(93)80152-z.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

Joudaki, Daryoush, e Fatemeh Shafiei. "QSPR Models for the Prediction of Some Thermodynamic Properties of Cycloalkanes Using GA-MLR Method". Current Computer-Aided Drug Design 16, n.º 5 (9 de novembro de 2020): 571–82. http://dx.doi.org/10.2174/1573409915666191028110756.

Texto completo da fonte
Resumo:
Aim and Objective: Cycloalkanes have been largely used in the field of medicine, components of food, pharmaceutical drugs, and they are mainly used to produce fuel. : In present study the relationship between molecular descriptors and thermodynamic properties such as the standard enthalpies of formation (∆H°f), the standard enthalpies of fusion (∆H°fus), and the standard Gibbs free energy of formation (∆G°f)of the cycloalkanes is represented. Materials and Methods: The Genetic Algorithm (GA) and multiple linear regressions (MLR) were successfully used to predict the thermodynamic properties of cycloalkanes. A large number of molecular descriptors were obtained with the Dragon program. The Genetic algorithm and backward method were used to reduce and select suitable descriptors. Results: QSPR models were used to delineate the important descriptors responsible for the properties of the studied cycloalkanes. The multicollinearity and autocorrelation properties of the descriptors contributed in the models were tested by calculating the Variance Inflation Factor (VIF), Pearson Correlation Coefficient (PCC) and the Durbin–Watson (DW) statistics. The predictive powers of the MLR models were discussed using Leave-One-Out Cross-Validation (LOOCV) and test set validation methods. The statistical parameters of the training, and test sets for GA–MLR models were calculated. Conclusion: The results of the present study indicate that the predictive ability of the models was satisfactory and molecular descriptors such as: the Functional group counts, Topological indices, GETAWAY descriptors, Constitutional indices, and molecular properties provide a promising route for developing highly correlated QSPR models for prediction the studied properties.
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

Chen, Fang, Ning Li, Shanshan Li, Guangyi Li, Aiqin Wang, Yu Cong, Xiaodong Wang e Tao Zhang. "Synthesis of jet fuel range cycloalkanes with diacetone alcohol from lignocellulose". Green Chemistry 18, n.º 21 (2016): 5751–55. http://dx.doi.org/10.1039/c6gc01497f.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

Banerjee, Arghya, Sourav Kumar Santra, Aniket Mishra, Nilufa Khatun e Bhisma K. Patel. "Copper(i)-promoted cycloalkylation–peroxidation of unactivated alkenes via sp3C–H functionalisation". Organic & Biomolecular Chemistry 13, n.º 5 (2015): 1307–12. http://dx.doi.org/10.1039/c4ob01962h.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

Zhang, Wanbo, Ping Guo, Xingbo Ge, Jianfen Du e Zhouhua Wang. "Influence factors on CO2 solubility in cycloalkanes and cycloalkane volume expansion: Temperature, pressure and molecular structure". Journal of Molecular Liquids 332 (junho de 2021): 115859. http://dx.doi.org/10.1016/j.molliq.2021.115859.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

Li, Zheng, Andrew L. Otsuki e Mark Mascal. "Production of cellulosic gasoline via levulinic ester self-condensation". Green Chemistry 20, n.º 16 (2018): 3804–8. http://dx.doi.org/10.1039/c8gc01432a.

Texto completo da fonte
Resumo:
Levulinate ester self-condensation gives tetrasubstituted cyclopentadienes, the reduction and decarboxylation of which gives branched cycloalkanes that are high-octane substitutes for petroleum gasoline.
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

Ansari, Istikhar A., Farasha Sama, Mukul Raizada, M. Shahid, Musheer Ahmad e Zafar A. Siddiqi. "Structurally well-characterized new multinuclear Cu(ii) and Zn(ii) clusters: X-ray crystallography, theoretical studies, and applications in catalysis". New Journal of Chemistry 40, n.º 11 (2016): 9840–52. http://dx.doi.org/10.1039/c6nj02150f.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

Tang, Hao, Yancheng Hu, Guangyi Li, Aiqin Wang, Guoliang Xu, Cong Yu, Xiaodong Wang, Tao Zhang e Ning Li. "Synthesis of jet fuel range high-density polycycloalkanes with polycarbonate waste". Green Chemistry 21, n.º 14 (2019): 3789–95. http://dx.doi.org/10.1039/c9gc01627a.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

Li, Ze-lin, Li-kun Jin e Chun Cai. "Efficient synthesis of 2-substituted azoles: radical C–H alkylation of azoles with dicumyl peroxide, methylarenes and cycloalkanes under metal-free condition". Organic Chemistry Frontiers 4, n.º 10 (2017): 2039–43. http://dx.doi.org/10.1039/c7qo00396j.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

Yang, Qingjing, Pui Ying Choy, Yinuo Wu, Baomin Fan e Fuk Yee Kwong. "Oxidative coupling between C(sp2)–H and C(sp3)–H bonds of indoles and cyclic ethers/cycloalkanes". Organic & Biomolecular Chemistry 14, n.º 9 (2016): 2608–12. http://dx.doi.org/10.1039/c6ob00076b.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

Kissin, Yury V. "Catagenesis of light cycloalkanes in petroleum". Organic Geochemistry 15, n.º 6 (janeiro de 1990): 575–94. http://dx.doi.org/10.1016/0146-6380(90)90103-7.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

Drotloff, Hansotto, e Martin Möller. "On the phase transitions of cycloalkanes". Thermochimica Acta 112, n.º 1 (fevereiro de 1987): 57–62. http://dx.doi.org/10.1016/0040-6031(87)88079-6.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

Matsubara, Hiroshi, Yoshiko Hino, Masashi Tokizane e Ilhyong Ryu. "Microflow photo-radical chlorination of cycloalkanes". Chemical Engineering Journal 167, n.º 2-3 (março de 2011): 567–71. http://dx.doi.org/10.1016/j.cej.2010.08.086.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

Chatterjee, Basujit, Deepti Kalsi, Akash Kaithal, Alexis Bordet, Walter Leitner e Chidambaram Gunanathan. "One-pot dual catalysis for the hydrogenation of heteroarenes and arenes". Catalysis Science & Technology 10, n.º 15 (2020): 5163–70. http://dx.doi.org/10.1039/d0cy00928h.

Texto completo da fonte
Resumo:
A catalytic system resulting from a monohydrido bridged ruthenium complex hydrogenated both heteroarenes and arenes, exhibited dual catalysis and provided access to valuable saturated heterocycles and cycloalkanes.
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

Zhang, Xuesong, Hanwu Lei, Lei Zhu, Joan Wu e Shulin Chen. "From lignocellulosic biomass to renewable cycloalkanes for jet fuels". Green Chemistry 17, n.º 10 (2015): 4736–47. http://dx.doi.org/10.1039/c5gc01583a.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

Nishimura, Norio, Tohru Tanaka e Takushi Motoyama. "Additivity of the partial molar volumes of organic compounds". Canadian Journal of Chemistry 65, n.º 9 (1 de setembro de 1987): 2248–53. http://dx.doi.org/10.1139/v87-375.

Texto completo da fonte
Resumo:
A critical test of additivity for partial molar volume has been made at 25 °C in CCl4 with polyethylene glycol dimethyl ethers, crown ethers, cycloalkanes, n-alkanes, and others. Plots of partial molar volume at infinite dilution [Formula: see text] against the properly chosen number of repeating unit (n) are linear except for small cyclic molecules, and the slopes of homologous straight chain and ring compounds are the same. The values of [Formula: see text] extrapolated to n = 0 for cycloalkanes and crown ethers support the validity of the contribution due to the translational kinetic energy that has been predicted recently on a theoretical basis. The importance of packing efficiencies around the solute molecules has been examined by means of simple models.
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

Ren, Guangzhi, Guangyi Li, Ying Zhang, Aiqin Wang, Xiaodong Wang, Yu Cong, Tao Zhang e Ning Li. "Synthesis of jet fuel and diesel range cycloalkanes with 2-methylfuran and benzaldehyde". Sustainable Energy & Fuels 6, n.º 4 (2022): 1156–63. http://dx.doi.org/10.1039/d1se01752g.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

Zhang, Xuesong, Hanwu Lei, Lei Zhu, Moriko Qian, J. C. Chan, Xiaolu Zhu, Yupeng Liu et al. "Development of a catalytically green route from diverse lignocellulosic biomasses to high-density cycloalkanes for jet fuels". Catalysis Science & Technology 6, n.º 12 (2016): 4210–20. http://dx.doi.org/10.1039/c5cy01623a.

Texto completo da fonte
Resumo:
A novel pathway for producing high-density cycloalkanes for jet fuels from diverse lignocellulosic biomasses and determining the optimal biomass source via catalytic microwave-induced pyrolysis and hydrogenation processes.
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

Tavanti, Michele, Juan Mangas-Sanchez, Sarah L. Montgomery, Matthew P. Thompson e Nicholas J. Turner. "A biocatalytic cascade for the amination of unfunctionalised cycloalkanes". Organic & Biomolecular Chemistry 15, n.º 46 (2017): 9790–93. http://dx.doi.org/10.1039/c7ob02569f.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

Gutman, Ivan, e Haruo Hosoya. "Molecular Graphs with Equal Z-Counting and Independence Polynomials". Zeitschrift für Naturforschung A 45, n.º 5 (1 de maio de 1990): 645–48. http://dx.doi.org/10.1515/zna-1990-0509.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

Banerjee, Arghya, Sourav Kumar Santra, Nilufa Khatun, Wajid Ali e Bhisma K. Patel. "Oxidant controlled regioselective mono- and di-functionalization reactions of coumarins". Chemical Communications 51, n.º 84 (2015): 15422–25. http://dx.doi.org/10.1039/c5cc06200d.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

Oswal, S. L., e M. M. Maisuria. "Speeds of sound, isentropic compressibilities, and excess molar volumes of cycloalkane, alkanes and aromatic hydrocarbons at 303.15 K. I. Results for cycloalkane + cycloalkanes, and cycloalkane + alkanes". Journal of Molecular Liquids 100, n.º 2 (julho de 2002): 91–112. http://dx.doi.org/10.1016/s0167-7322(02)00021-1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
45

Tang, Hao, Ning Li, Guangyi Li, Aiqin Wang, Yu Cong, Guoliang Xu, Xiaodong Wang e Tao Zhang. "Synthesis of gasoline and jet fuel range cycloalkanes and aromatics from poly(ethylene terephthalate) waste". Green Chemistry 21, n.º 10 (2019): 2709–19. http://dx.doi.org/10.1039/c9gc00571d.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
46

Giustra, Zachary X., Gang Chen, Monica Vasiliu, Abhijeet Karkamkar, Tom Autrey, David A. Dixon e Shih-Yuan Liu. "A comparison of hydrogen release kinetics from 5- and 6-membered 1,2-BN-cycloalkanes". RSC Advances 11, n.º 54 (2021): 34132–36. http://dx.doi.org/10.1039/d1ra07477f.

Texto completo da fonte
Resumo:
The reaction order and Arrhenius activation parameters for spontaneous hydrogen release from cyclic amine boranes, i.e., BN-cycloalkanes, were determined for 1,2-BN-cyclohexane (1) and 3-methyl-1,2-BN-cyclopentane (2) in tetraglyme.
Estilos ABNT, Harvard, Vancouver, APA, etc.
47

Fang, Zhongxue, Chenlong Wei, Jing Lin, Zhenhua Liu, Wei Wang, Chenshu Xu, Xuemin Wang e Yu Wang. "Silver-catalyzed decarboxylative C(sp2)–C(sp3) coupling reactions via a radical mechanism". Organic & Biomolecular Chemistry 15, n.º 47 (2017): 9974–78. http://dx.doi.org/10.1039/c7ob02455j.

Texto completo da fonte
Resumo:
A silver catalyzed decarboxylative C(sp2)–C(sp3) coupling of vinylic carboxylic acids with alcohols, alkylbenzenes, cycloalkanes and cyclic ethers was developed by using DTBP as an oxidant.
Estilos ABNT, Harvard, Vancouver, APA, etc.
48

Yang, Xiaokun, Teng Li, Kan Tang, Xinpei Zhou, Mi Lu, Whalmany L. Ounkham, Stephen M. Spain, Brian J. Frost e Hongfei Lin. "Highly efficient conversion of terpenoid biomass to jet-fuel range cycloalkanes in a biphasic tandem catalytic process". Green Chemistry 19, n.º 15 (2017): 3566–73. http://dx.doi.org/10.1039/c7gc00710h.

Texto completo da fonte
Resumo:
A novel efficient biphasic tandem catalytic process (biTCP) with a high carbon efficiency was developed for synthesizing cycloalkanes that can used to make dense jet fuels from renewable terpenoid biomass (such as 1,8-cineole).
Estilos ABNT, Harvard, Vancouver, APA, etc.
49

Kirillova, Marina V., Polyana Tomé de Paiva, Wagner A. Carvalho, Dalmo Mandelli e Alexander M. Kirillov. "Mixed-ligand aminoalcohol-dicarboxylate copper(II) coordination polymers as catalysts for the oxidative functionalization of cyclic alkanes and alkenes". Pure and Applied Chemistry 89, n.º 1 (1 de janeiro de 2017): 61–73. http://dx.doi.org/10.1515/pac-2016-1012.

Texto completo da fonte
Resumo:
AbstractNew copper(II) catalytic systems for the mild oxidative C–H functionalization of cycloalkanes and cycloalkenes were developed, which are based on a series of mixed-ligand aminoalcohol-dicarboxylate coordination polymers, namely [Cu2(μ-dmea)2(μ-nda)(H2O)2]n·2nH2O (1), [Cu2(μ-Hmdea)2(μ-nda)]n·2nH2O (2), and [Cu2(μ-Hbdea)2(μ-nda)]n·2nH2O (3) that bear slightly different dicopper(II) aminoalcoholate cores, as well as on a structurally distinct dicopper(II) [Cu2(H4etda)2(μ-nda)]·nda·4H2O (4) derivative [abbreviations: H2nda, 2,6-naphthalenedicarboxylic acid; Hdmea, N,N′-dimethylethanolamine; H2mdea, N-methyldiethanolamine; H2bdea, N-butyldiethanolamine; H4etda, N,N,N′,N′-tetrakis(2-hydroxyethyl)ethylenediamine]. Compounds 1–4 act as homogeneous catalysts in the three types of model catalytic reactions that proceed in aqueous acetonitrile medium under mild conditions (50–60°C): (i) the oxidation of cyclohexane by hydrogen peroxide to cyclohexyl hydroperoxide, cyclohexanol, and cyclohexanone, (ii) the oxidation of cycloalkenes (cyclohexene, cyclooctene) by hydrogen peroxide to a mixture of different oxidation products, and (iii) the single-pot hydrocarboxylation of cycloalkanes (cyclopentane, cyclohexane, cycloheptane, cyclooctane) by carbon monoxide, water, and a peroxodisulfate oxidant into the corresponding cycloalkanecarboxylic acids. The catalyst and substrate scope as well as some mechanistic features were investigated; the highest catalytic activity of 1–4 was observed in the hydrocarboxylation of cycloalkanes, allowing to achieve up to 50% total product yields (based on substrate).
Estilos ABNT, Harvard, Vancouver, APA, etc.
50

Kong, Jiechen, Bolong Li e Chen Zhao. "Tuning Ni nanoparticles and the acid sites of silica-alumina for liquefaction and hydrodeoxygenation of lignin to cyclic alkanes". RSC Advances 6, n.º 76 (2016): 71940–51. http://dx.doi.org/10.1039/c6ra16977e.

Texto completo da fonte
Resumo:
A facile and effective method for the one-pot hydrodeoxygenation of enzymatic lignin to C6–C9 cycloalkanes is reported in liquid dodecane with 100 C% selectivity (approaching 50 wt% yield).
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia