Literatura científica selecionada sobre o tema "Cycle hydrologique régional"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Cycle hydrologique régional".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Cycle hydrologique régional"
Klein, Geoffrey. "Variabilité du manteau neigeux des Alpes Européennes entre 1950 et 2016 dans un contexte de changement climatique : revue bibliographique". Climatologie 15 (2018): 22–45. http://dx.doi.org/10.4267/climatologie.1325.
Texto completo da fonteDucrocq, Véronique, Brice Boudevillain, Christophe Bouvier, Isabelle Braud, Nadia Fourrie, Cindy Lebeaupin-Brossier, Pierre Javelle et al. "Le programme HYMEX – Connaissances et prévision des pluies intenses et crues rapides en région méditerranéenne". La Houille Blanche, n.º 3-4 (outubro de 2019): 5–12. http://dx.doi.org/10.1051/lhb/2019048.
Texto completo da fonteTeses / dissertações sobre o assunto "Cycle hydrologique régional"
Jomaa, Fatima. "Précipitations sur le sud de la France : caractérisation, source et impacts sur le cycle hydrologique régional". Electronic Thesis or Diss., Université Grenoble Alpes, 2024. http://www.theses.fr/2024GRALU025.
Texto completo da fonteThe Mediterranean region stands out as a potential ’hotspot’ in climate science which signifies a region where the impacts of climate change are expected to be particularly significant. In Mediterranean region there is intricate interplay between the ocean atmosphere and land, coupled with distinct morphological features. This strong coupling refers to the interactions among the Mediterranean Sea, the atmosphere, and the surrounding land, influencing specific local climate dynamics. In our study, we focused on the Southern part of France located in the northwestern Mediterranean region. Due to these special geographical features and the complex interactions between ocean and atmospheric processes at different spatial and temporal scales, the climate and especially the hydroclimate of the Southern part of France exhibits intricate spatial and temporal characteristics and their variability. There is a lack of understanding of local hydrological processes, which requires a high-resolution comprehensive analysis of all hydrological cycle components in this region. In our work, we will focus on the atmospheric branch of the hydrological cycle in the Gulf of Lion and we will consider precipitation, moisture transport, and surface hydrological processes such as runoff and soil moisture.The aim of this PhD research can be summarized in three main questions addressing the complexities of the hydrological cycle over southern France:1. What are the strengths and weaknesses of various type of datasets in capturing the precipitation variability and its extremes over southern France ?To answer this question, we investigated the accuracy and reliability of all available data sources for this region in representing the actual climatic conditions, providing insights into their applicability for hydrological studies in the Mediterranean region. Results of this analysis are presenting in Chapter 2.2. What are the sources of moisture transport contributing to precipitation and extreme weather events in southern France ?To answer this question, we analyzed the moisture transport in this region. Additionally, we investigated the moisture transport for the conditions of extreme precipitation events. To explores the mechanisms driving of moisture transport we performed clustering analysis of corresponding weather patterns. Results are presenting in Chapter 3.3. How do variability and trends in precipitation impact soil moisture and continental runoff in southern France ?To answer this question, we analyzed the interactions between precipitation patterns and terrestrial components of the hydrological cycle, such as soil moisture and runoff. Reasulate are presenting in Chapter 4.The structure of this thesis is organized as follows: Chapter 1 introduces the data sources utilized in this study, discussing their respective limitations. It also details the methodologies employed to evaluate these datasets and to investigate the sources of moisture affecting this region. Chapter 2 focuses on the examination of precipitation characteristics within the region. It assesses various precipitation datasets to understand their reliability and accuracy in capturing the area’s precipitation dynamics. Chapter 3 is dedicated to analyzing long-term moisture transport patterns. This chapter aims to elucidate the mechanisms behind moisture movement into the region. Chapter 4 delves into the analysis of runoff and soil moisture, exploring their relationship with precipitation. It examines how precipitation influences soil moisture and runoff, contributing to the broader understanding of the regional hydrological cycle
Boé, Julien. "Changement global et cycle hydrologique: Une étude de régionalisation sur la France". Phd thesis, Université Paul Sabatier - Toulouse III, 2007. http://tel.archives-ouvertes.fr/tel-00256811.
Texto completo da fonteUne méthode de désagrégation statistique, basée sur le concept de type de temps, est développée et mise en œuvre afin de régionaliser un ensemble de scénarios climatiques pour forcer un modèle hydro-météorologique. Des impacts sévères sont visibles dès le milieu du 21ème siècle, avec notamment une forte diminution des débits moyens en été et automne, et une large augmentation du nombre de jours d'étiage.
D'autres méthodes de désagrégation sont utilisées afin de tester la sensibilité des résultats
au choix de la méthode: celle-ci s'avère limitée. La principale source d'incertitude
réside en fait dans le choix du modèle climatique. Nous essayons pour finir de mieux comprendre les raisons physiques de cette dispersion des scénarios climatiques sur l'Europe.
Boe, Julien. "Changement global et cycle hydrologique : une étude de régionalisation sur la France". Toulouse 3, 2007. http://thesesups.ups-tlse.fr/227/.
Texto completo da fonteAs most of Europe, France might undergo severe climate changes during the 21st century. In this thesis we study the impacts of these changes on the hydrological cycle, at the scale of the French river basins. A statistical downscaling method, based on the concept on weather types is built and applied to regionalize an ensemble of climate scenarios in order to force an hydro-meteorological model. Severe impacts occur as soon as the middle of the 21st century, characterized by a strong decrease of mean river flows and a great increase in the occurrence of low-flow. Other downscaling methods are used in order to test the sensivity of the results to the choice of the method: this sensivity is limited. Actually, the main source of uncertainty lies in the choice of the climate model. To finish, we try to better understand the reasons for the spread of the climate change scenarios over Europe
Biancamaria, Sylvain. "Etude du cycle hydrologique des régions boréales et apports de l'altimétrie à large fauchée". Phd thesis, Université Paul Sabatier - Toulouse III, 2009. http://tel.archives-ouvertes.fr/tel-00455572.
Texto completo da fonteBiancamaria, Sylvain. "Etude du cycle hydrologique des régions boréales et apport de l'altimétrie à large fauchée". Toulouse 3, 2009. http://thesesups.ups-tlse.fr/765/.
Texto completo da fonteArctic regions will be the most affected by climate change: therefore this work aims at studying the hydrological cycle of these regions. A new methodology to extract snow volume from radiometric data has been validated for the boreal regions and exhibits a different behaviour between snow volume over Eurasia and over North America. Yet, water volume variation is more difficult to estimate from currently available satellite data. That's why the potential of the new SWOT (Surface Water and Ocean Topography) mission, which will provide global water elevation maps, has been investigated. This has been done by implementing a virtual mission. The first step has been to model a Siberian river, the lower Ob, by coupling a land surface scheme and an inundation model. A realist estimation of the river discharge and water heights has been performed by tuning some of the models parameters. Then, SWOT synthetic observations have been assimilated in the modelling using a local Ensemble Kalman Smoother, leading to a significant decrease (more than 50%) of the modelling errors. The benefit of SWOT for all surface waters has also been studied. From in-situ rating curves and SWOT instrumental error, it has been shown that SWOT will provide an estimate of instantaneous river discharge with an error below 30%, if the river depth is above 1m. The error on the monthly discharge due only to the satellite temporal sampling decreases with drainage area, and should be lower than 20% for drainage area above 6,900 km2. Finally, it has been computed that annual volume variation for all the lakes in the world is around 9,000 km3. Currently, less than 15% of this lake storage change can be monitored with nadir altimeters, whereas SWOT will be able to observe from 50% to 65% of this volume variation
Vauclair, Fabrice. "Variabilité interannuelle des bilans de masse et de chaleur des couches superficielles (0-500m) de l'Océan atlantique tropical". Toulouse 3, 2001. http://www.theses.fr/2001TOU30157.
Texto completo da fonteSaint-Lu, Marion. "Étude des liens entre les événements El Niño et le cycle hydrologique des régions tropicales dans différents contextes climatiques". Thesis, Université Paris-Saclay (ComUE), 2015. http://www.theses.fr/2015SACLV028/document.
Texto completo da fonteInterannual variability in the tropical Pacific is mainly modulated by the El Niño / Southern Oscillation (ENSO).Understanding the time evolution of this phenomenon is a major issue, given its strong impacts on health andeconomics. Studying the ENSO variability in different climatic contexts allows us to understand its links to themean-state. We use climatic simulations of the mid-Holocene (6,000 years and 4,000 years before present),the last glacial maximum (21,000 years before present) and a theoretical climate with atmospheric carbondioxyde multiplied by four, computed with several numerical models. We show that ENSO characteristics aresignificantly different in the different climatic contexts. The links between these differences and the climatemean-state are numerous and non linear. Studying paleoclimates is then necessary to understand ENSOchanges and to be able to project its future evolution. Some of the past archives that are used to reconstructthe paleo-ENSO are located in the southwest Pacific, under the influence of the south Pacific convergencezone (SPCZ). We show that the impact of ENSO on the location of the SPCZ changes with the climate.This determines how to interpret archives’ records. Thus, the mechanisms linking ENSO to the SPCZ in themodern climate cannot be directly extrapolated to other climates. By combining information from models andarchives, we are able to improve our understanding on the variability changes in the southwest Pacific. Finally,we address the ENSO change with a new vision, through its role within the global energetic budget. Accordingto the IPSL-CM5A-LR model, the relative contribution of El Niño events to the global energy redistribution isreduced in the mid-Holocene, compared to the modern climate. The mean capacity of the tropical Pacific toexport its energy is reduced. Therefore, the global heat pump represented by the tropical Pacific is less powerfulin the mid-Holocene, both by its reduced capacity to export energy and by the reduced El Niño contribution.This result suggests that there is consistency between the ENSO change and the role of heat pump played bythe tropical Pacific
Saint-Lu, Marion. "Étude des liens entre les événements El Niño et le cycle hydrologique des régions tropicales dans différents contextes climatiques". Electronic Thesis or Diss., Université Paris-Saclay (ComUE), 2015. http://www.theses.fr/2015SACLV028.
Texto completo da fonteInterannual variability in the tropical Pacific is mainly modulated by the El Niño / Southern Oscillation (ENSO).Understanding the time evolution of this phenomenon is a major issue, given its strong impacts on health andeconomics. Studying the ENSO variability in different climatic contexts allows us to understand its links to themean-state. We use climatic simulations of the mid-Holocene (6,000 years and 4,000 years before present),the last glacial maximum (21,000 years before present) and a theoretical climate with atmospheric carbondioxyde multiplied by four, computed with several numerical models. We show that ENSO characteristics aresignificantly different in the different climatic contexts. The links between these differences and the climatemean-state are numerous and non linear. Studying paleoclimates is then necessary to understand ENSOchanges and to be able to project its future evolution. Some of the past archives that are used to reconstructthe paleo-ENSO are located in the southwest Pacific, under the influence of the south Pacific convergencezone (SPCZ). We show that the impact of ENSO on the location of the SPCZ changes with the climate.This determines how to interpret archives’ records. Thus, the mechanisms linking ENSO to the SPCZ in themodern climate cannot be directly extrapolated to other climates. By combining information from models andarchives, we are able to improve our understanding on the variability changes in the southwest Pacific. Finally,we address the ENSO change with a new vision, through its role within the global energetic budget. Accordingto the IPSL-CM5A-LR model, the relative contribution of El Niño events to the global energy redistribution isreduced in the mid-Holocene, compared to the modern climate. The mean capacity of the tropical Pacific toexport its energy is reduced. Therefore, the global heat pump represented by the tropical Pacific is less powerfulin the mid-Holocene, both by its reduced capacity to export energy and by the reduced El Niño contribution.This result suggests that there is consistency between the ENSO change and the role of heat pump played bythe tropical Pacific
Habets, Florence. "Modélisation du cycle continental de l'eau à l'échelle régionale : application aux bassins versants de l'Adour et du Rhône". Toulouse 3, 1998. http://www.theses.fr/1998TOU30139.
Texto completo da fonteLeroy-Dos, Santos Christophe. "Variabilité du cycle hydrologique atmosphérique en régions polaires à partir de mesures des isotopes stables de l'eau dans la vapeur, les précipitations et les carottes de névé". Electronic Thesis or Diss., université Paris-Saclay, 2021. http://www.theses.fr/2021UPASJ006.
Texto completo da fonteIn a global warming context, understanding the evolution of sea level rise is a major challenge. It is key to estimate the evolution of the atmospheric hydrological cycle in the polar regions, which directly influences the surface mass balance of the Arctic and Antarctic ice caps (the two largest freshwater reservoirs on the planet). Records are available from satellite data for the last 50 years and a few rare weather data since the 50's in Antarctica, but these records are too short to study the patterns of interannual variability and the difference between anthropogenic and natural signals. One of the best ways to access longer records is to use climate proxies in snow cores. The water isotopic composition in these cores is widely used to reconstruct past temperature variations. However, the link between temperature and isotopic composition is not very well constrained because many other parameters influence the isotopic composition of snow at the time of its formation (i.e. temperature, altitude, humidity, origin of the air mass) or after snow deposition on the surface (i.e. atmosphere-snow exchange, signal scattering, sublimation of surface snow).The objective of this thesis is to better understand the atmospheric hydrological cycle and its influence on the isotopic composition of vapour and precipitation in polar regions with the idea of improving the interpretation of snow core records in these regions. This work is divided into 3 parts.Firstly, we developed a technical solution to meet the challenge of measuring the vapor isotopic composition all year round in polar regions. Indeed, winter being very dry in these regions (down to 10 ppmv at Dome C in winter), the use of a Picarro laser analyzer is limited because it is very sensitive to humidity variations below 2000 ppmv. Winter is a key season in the polar regions as it is associated with significant climate variability due to numerous synoptic events. During this thesis, the fabrication of 2 prototypes of low humidity level generator (LHLG) allowed the calibration of the Picarro analyzers over a range of 200 to 2500 ppmv.Then, I analyzed the longest series of vapor and precipitation isotopic composition measurements ever performed in a polar region: 4.5 years continuously at 78°N in Svalbard. I showed that the water isotopic composition at this measurement site was unsignificantly influenced by local processes. Thanks to this, I was able to attribute the observed winter variability to synoptic events and thus assign a different isotopic signature to the air masses according to their origin (North Atlantic or Arctic).Finally, I installed the new calibration instrument (LHLG) built at the beginning of my PhD at Dumont D'Urville (DDU), on the coast in Terre Adélie. Thanks to this, the first continuous measurement campaign of the vapor isotopic composition at DDU initiated in January 2019 is still ongoing. I present here the first 22 months of this new record. This unique series makes possible to document the isotopic signature of the atmospheric hydrological cycle in Terre Adélie all year round. I have studied the influence of katabatic winds, sea ice and atmospheric rivers on the signal recorded in the vapor. These preliminary results open perspectives for the interpretation of recently drilled cores from the ASUMA program