Artigos de revistas sobre o tema "CXCR2 receptors"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "CXCR2 receptors".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Hou, Zhi-Shuai, Hong-Kui Zhao, Pedro Perdiguero, Meng-Qun Liu, Kai-Wen Xiang, Chu Zeng, Zhao Li et al. "Pleiotropic Role of Rainbow Trout CXCRs in Response to Disease and Environment: Insights from Transcriptional Signatures and Structure Analysis". Biomolecules 14, n.º 3 (12 de março de 2024): 337. http://dx.doi.org/10.3390/biom14030337.
Texto completo da fonteKorbecki, Jan, Klaudyna Kojder, Patrycja Kapczuk, Patrycja Kupnicka, Barbara Gawrońska-Szklarz, Izabela Gutowska, Dariusz Chlubek e Irena Baranowska-Bosiacka. "The Effect of Hypoxia on the Expression of CXC Chemokines and CXC Chemokine Receptors—A Review of Literature". International Journal of Molecular Sciences 22, n.º 2 (15 de janeiro de 2021): 843. http://dx.doi.org/10.3390/ijms22020843.
Texto completo da fonteDoroshenko, Tatyana, Yuri Chaly, Valery Savitskiy, Olga Maslakova, Anna Portyanko, Irina Gorudko e Nikolai N. Voitenok. "Phagocytosing neutrophils down-regulate the expression of chemokine receptors CXCR1 and CXCR2". Blood 100, n.º 7 (1 de outubro de 2002): 2668–71. http://dx.doi.org/10.1182/blood.100.7.2668.
Texto completo da fonteLepsenyi, Mattias, Nader Algethami, Amr A. Al-Haidari, Anwar Algaber, Ingvar Syk, Milladur Rahman e Henrik Thorlacius. "CXCL2-CXCR2 axis mediates αV integrin-dependent peritoneal metastasis of colon cancer cells". Clinical & Experimental Metastasis 38, n.º 4 (11 de junho de 2021): 401–10. http://dx.doi.org/10.1007/s10585-021-10103-0.
Texto completo da fonteKonrad, F. M., e J. Reutershan. "CXCR2 in Acute Lung Injury". Mediators of Inflammation 2012 (2012): 1–8. http://dx.doi.org/10.1155/2012/740987.
Texto completo da fonteUhl, Barbara, Katharina T. Prochazka, Katrin Pansy, Kerstin Wenzl, Johanna Strobl, Claudia Baumgartner, Marta M. Szmyra et al. "Distinct Chemokine Receptor Expression Profiles in De Novo DLBCL, Transformed Follicular Lymphoma, Richter’s Trans-Formed DLBCL and Germinal Center B-Cells". International Journal of Molecular Sciences 23, n.º 14 (17 de julho de 2022): 7874. http://dx.doi.org/10.3390/ijms23147874.
Texto completo da fonteCoperchini, Francesca, Laura Croce, Michele Marinò, Luca Chiovato e Mario Rotondi. "Role of chemokine receptors in thyroid cancer and immunotherapy". Endocrine-Related Cancer 26, n.º 8 (agosto de 2019): R465—R478. http://dx.doi.org/10.1530/erc-19-0163.
Texto completo da fonteDaniele, Simona, Simona Saporiti, Stefano Capaldi, Deborah Pietrobono, Lara Russo, Uliano Guerrini, Tommaso Laurenzi et al. "Functional Heterodimerization between the G Protein-Coupled Receptor GPR17 and the Chemokine Receptors 2 and 4: New Evidence". International Journal of Molecular Sciences 24, n.º 1 (23 de dezembro de 2022): 261. http://dx.doi.org/10.3390/ijms24010261.
Texto completo da fonteZhang, Jing, Shouguo Huang, Lini Quan, Qiu Meng, Haiyan Wang, Jie Wang e Jin Chen. "Determination of Potential Therapeutic Targets and Prognostic Markers of Ovarian Cancer by Bioinformatics Analysis". BioMed Research International 2021 (19 de março de 2021): 1–13. http://dx.doi.org/10.1155/2021/8883800.
Texto completo da fonteInngjerdingen, Marit, Bassam Damaj e Azzam A. Maghazachi. "Expression and regulation of chemokine receptors in human natural killer cells". Blood 97, n.º 2 (15 de janeiro de 2001): 367–75. http://dx.doi.org/10.1182/blood.v97.2.367.
Texto completo da fonteSchmausser, Bernd, Christine Josenhans, Simon Endrich, Sebastian Suerbaum, Cassian Sitaru, Mindaugas Andrulis, Stephanie Brändlein, Peter Rieckmann, Hans Konrad Müller-Hermelink e Matthias Eck. "Downregulation of CXCR1 and CXCR2 Expression on Human Neutrophils by Helicobacter pylori: a New Pathomechanism in H. pylori Infection?" Infection and Immunity 72, n.º 12 (dezembro de 2004): 6773–79. http://dx.doi.org/10.1128/iai.72.12.6773-6779.2004.
Texto completo da fonteRichardson, Micheler, Timothy Adekoya, Nikia Smith e Parag Kothari. "Opposite effects of CXCR1 and CXCR2 overexpression in prostate tumorigenesis". Journal of Immunology 208, n.º 1_Supplement (1 de maio de 2022): 178.12. http://dx.doi.org/10.4049/jimmunol.208.supp.178.12.
Texto completo da fonteТаганович, А. Д., Н. Н. Ковганко, В. И. Прохорова, О. В. Готько, Л. А. Державец e Д. И. Мурашко. "Chemokines CXCL5, CXCL8 and Their Receptors CXCR1, CXCR2 as Potential Biomarkers of Non-Small Cell Lung Cancer". Лабораторная диагностика. Восточная Европа, n.º 3 (20 de outubro de 2020): 252–71. http://dx.doi.org/10.34883/pi.2020.9.3.007.
Texto completo da fonteLitman-Zawadzka, Ala, Marta Łukaszewicz-Zając, Mariusz Gryko, Agnieszka Kulczyńska-Przybik, Bogusław Kędra e Barbara Mroczko. "Specific Receptors for the Chemokines CXCR2 and CXCR4 in Pancreatic Cancer". International Journal of Molecular Sciences 21, n.º 17 (27 de agosto de 2020): 6193. http://dx.doi.org/10.3390/ijms21176193.
Texto completo da fonteYildirim, Sedat, Frank Bautz, Andreas M. Boehmler, Lothar Kanz e Robert Möhle. "Regulation of CXCR1, CXCR2 and CXCR4 in Human Neutrophils: Potential Role in the Release from the Bone Marrow, Clearance of Senescent Cells, and Cell Function at Sites of Inflammation." Blood 106, n.º 11 (16 de novembro de 2005): 3068. http://dx.doi.org/10.1182/blood.v106.11.3068.3068.
Texto completo da fonteDavies, Faith E., Mona H. Al Rayes, J. Anthony Child, Gareth J. Morgan e Andrew C. Rawstron. "The Bone Marrow Microenvironment Influences the Differential Chemokine Receptor Expression of Normal and Neoplastic Plasma Cells." Blood 104, n.º 11 (16 de novembro de 2004): 2353. http://dx.doi.org/10.1182/blood.v104.11.2353.2353.
Texto completo da fonteLachota, Mieszko, Daniel Alfredo Palacios, Dennis Clement, Eivind Heggernes Ask, Hanna Julie Hoel, Merete Thune Wiiger, Marianna Vincenti, Magdalena Winiarska, Radoslaw Zagozdzon e Karl-Johan Malmberg. "Innate-like Chemokine Receptor Profile and Migratory Behaviour By Terminally Differentiated and Educated NK Cells". Blood 136, Supplement 1 (5 de novembro de 2020): 24–25. http://dx.doi.org/10.1182/blood-2020-140944.
Texto completo da fonteKhandaker, Masud H., Gordon Mitchell, Luoling Xu, Joseph D. Andrews, Rajkumari Singh, Harry Leung, Joaquı́n Madrenas, Stephen S. G. Ferguson, Ross D. Feldman e David J. Kelvin. "Metalloproteinases Are Involved in Lipopolysaccharide– and Tumor Necrosis Factor-–Mediated Regulation of CXCR1 and CXCR2 Chemokine Receptor Expression". Blood 93, n.º 7 (1 de abril de 1999): 2173–85. http://dx.doi.org/10.1182/blood.v93.7.2173.
Texto completo da fonteKhandaker, Masud H., Gordon Mitchell, Luoling Xu, Joseph D. Andrews, Rajkumari Singh, Harry Leung, Joaquı́n Madrenas, Stephen S. G. Ferguson, Ross D. Feldman e David J. Kelvin. "Metalloproteinases Are Involved in Lipopolysaccharide– and Tumor Necrosis Factor-–Mediated Regulation of CXCR1 and CXCR2 Chemokine Receptor Expression". Blood 93, n.º 7 (1 de abril de 1999): 2173–85. http://dx.doi.org/10.1182/blood.v93.7.2173.407a06_2173_2185.
Texto completo da fonteLima, Margarida, Magdalena Leander, Marlene Santos, Ana Helena Santos, Catarina Lau, Maria Luís Queirós, Marta Gonçalves et al. "Chemokine Receptor Expression on Normal Blood CD56+NK-Cells Elucidates Cell Partners That Comigrate during the Innate and Adaptive Immune Responses and Identifies a Transitional NK-Cell Population". Journal of Immunology Research 2015 (2015): 1–18. http://dx.doi.org/10.1155/2015/839684.
Texto completo da fonteClemetson, Kenneth J., Jeannine M. Clemetson, Amanda E. I. Proudfoot, Christine A. Power, Marco Baggiolini e Timothy N. C. Wells. "Functional expression of CCR1, CCR3, CCR4, and CXCR4 chemokine receptors on human platelets". Blood 96, n.º 13 (15 de dezembro de 2000): 4046–54. http://dx.doi.org/10.1182/blood.v96.13.4046.
Texto completo da fonteClemetson, Kenneth J., Jeannine M. Clemetson, Amanda E. I. Proudfoot, Christine A. Power, Marco Baggiolini e Timothy N. C. Wells. "Functional expression of CCR1, CCR3, CCR4, and CXCR4 chemokine receptors on human platelets". Blood 96, n.º 13 (15 de dezembro de 2000): 4046–54. http://dx.doi.org/10.1182/blood.v96.13.4046.h8004046_4046_4054.
Texto completo da fonteWei, Yanzhao, Xiaohan Zheng, Ting Huang, Yuanji Zhong, Shengtong Sun, Xufang Wei, Qibing Liu, Tan Wang e Zhenqiang Zhao. "Human embryonic stem cells secrete macrophage migration inhibitory factor: A novel finding". PLOS ONE 18, n.º 8 (24 de agosto de 2023): e0288281. http://dx.doi.org/10.1371/journal.pone.0288281.
Texto completo da fonteWenzl, Kerstin, Katharina Troppan, Alexander JA Deutsch, Werner Linkesch, Peter Neumeister e Christine Beham-Schmid. "Distinct Chemokine Receptor Profile In Chronic Lymphocytic Leukaemia and Richter Transformed Diffuse Large B Cell Lymphomas Compared To Germinal Center B Cells and De Novo Diffuse Large B Cell Lymphomas". Blood 122, n.º 21 (15 de novembro de 2013): 4852. http://dx.doi.org/10.1182/blood.v122.21.4852.4852.
Texto completo da fonteTarnowski, Maciej, Rui Liu, Joanna Tarnowska, Janina Ratajczak, Robert Mitchell, Mariusz Z. Ratajczak e Magdalena Kucia. "Novel Evidence That the Small Chemokine Macrophage Migration Inhibitory Factor (MIF) Is Highly Secreted by Human Rhabdomyosarcomas, Activates Both SDF-1–binding Receptors, CXCR4 and CXCR7, and Unexpectedly Inhibits Recruitment of Stromal Cells to the Growing Tumor." Blood 116, n.º 21 (19 de novembro de 2010): 3849. http://dx.doi.org/10.1182/blood.v116.21.3849.3849.
Texto completo da fonteNgo, Hai, Evdoxia Hatjiharissi, Xavier Leleu, Judith Runnels, Anne-Sophie Moreau, Xiaoying Jia, Garrett O’Sullivan et al. "The CXCR4/SDF-1 Axis Regulates Migration and Adhesion in Waldenstrom Macroglobulinemia." Blood 108, n.º 11 (1 de novembro de 2006): 2418. http://dx.doi.org/10.1182/blood.v108.11.2418.2418.
Texto completo da fonteCummings, C. James, Thomas R. Martin, Charles W. Frevert, Joanne M. Quan, Venus A. Wong, Steven M. Mongovin, Tonja R. Hagen, Kenneth P. Steinberg e Richard B. Goodman. "Expression and Function of the Chemokine Receptors CXCR1 and CXCR2 in Sepsis". Journal of Immunology 162, n.º 4 (15 de fevereiro de 1999): 2341–46. http://dx.doi.org/10.4049/jimmunol.162.4.2341.
Texto completo da fonteFan, Guo-Huang, Lynne A. Lapierre, James R. Goldenring, Jiqing Sai e Ann Richmond. "Rab11-Family Interacting Protein 2 and Myosin Vb Are Required for CXCR2 Recycling and Receptor-mediated Chemotaxis". Molecular Biology of the Cell 15, n.º 5 (maio de 2004): 2456–69. http://dx.doi.org/10.1091/mbc.e03-09-0706.
Texto completo da fonteYe, Shaojing, Fei Ma, Dlovan F. D. Mahmood, Katherine L. Meyer-Siegler, Raymond E. Menard, David E. Hunt, Lin Leng, Richard Bucala e Pedro L. Vera. "Intravesical CD74 and CXCR4, macrophage migration inhibitory factor (MIF) receptors, mediate bladder pain". PLOS ONE 16, n.º 8 (23 de agosto de 2021): e0255975. http://dx.doi.org/10.1371/journal.pone.0255975.
Texto completo da fonteHoruk, R., A. W. Martin, Z. Wang, L. Schweitzer, A. Gerassimides, H. Guo, Z. Lu et al. "Expression of chemokine receptors by subsets of neurons in the central nervous system." Journal of Immunology 158, n.º 6 (15 de março de 1997): 2882–90. http://dx.doi.org/10.4049/jimmunol.158.6.2882.
Texto completo da fonteSmithson, Alex, Maria Rosa Sarrias, Juanjo Barcelo, Belen Suarez, Juan Pablo Horcajada, Sara Maria Soto, Alex Soriano et al. "Expression of Interleukin-8 Receptors (CXCR1 and CXCR2) in Premenopausal Women with Recurrent Urinary Tract Infections". Clinical Diagnostic Laboratory Immunology 12, n.º 12 (dezembro de 2005): 1358–63. http://dx.doi.org/10.1128/cdli.12.12.1358-1363.2005.
Texto completo da fonteBerg, Christian, Michael J. Wedemeyer, Motiejus Melynis, Roman R. Schlimgen, Lasse H. Hansen, Jon Våbenø, Francis C. Peterson, Brian F. Volkman, Mette M. Rosenkilde e Hans R. Lüttichau. "The non-ELR CXC chemokine encoded by human cytomegalovirus UL146 genotype 5 contains a C-terminal β-hairpin and induces neutrophil migration as a selective CXCR2 agonist". PLOS Pathogens 18, n.º 3 (10 de março de 2022): e1010355. http://dx.doi.org/10.1371/journal.ppat.1010355.
Texto completo da fonteVacchini, Alessandro, Anneleen Mortier, Paul Proost, Massimo Locati, Mieke Metzemaekers e Elena Borroni. "Differential Effects of Posttranslational Modifications of CXCL8/Interleukin-8 on CXCR1 and CXCR2 Internalization and Signaling Properties". International Journal of Molecular Sciences 19, n.º 12 (27 de novembro de 2018): 3768. http://dx.doi.org/10.3390/ijms19123768.
Texto completo da fonteKhandaker, Masud H., Luoling Xu, Rahbar Rahimpour, Gordon Mitchell, Mark E. DeVries, J. Geoffrey Pickering, Sharwan K. Singhal, Ross D. Feldman e David J. Kelvin. "CXCR1 and CXCR2 Are Rapidly Down-Modulated by Bacterial Endotoxin Through a Unique Agonist-Independent, Tyrosine Kinase-Dependent Mechanism". Journal of Immunology 161, n.º 4 (15 de agosto de 1998): 1930–38. http://dx.doi.org/10.4049/jimmunol.161.4.1930.
Texto completo da fonteUrbantat, Ruth, Anne Blank, Irina Kremenetskaia, Peter Vajkoczy, Güliz Acker e Susan Brandenburg. "The CXCL2/IL8/CXCR2 Pathway Is Relevant for Brain Tumor Malignancy and Endothelial Cell Function". International Journal of Molecular Sciences 22, n.º 5 (5 de março de 2021): 2634. http://dx.doi.org/10.3390/ijms22052634.
Texto completo da fonteFeniger-Barish, Rotem, Dan Belkin, Alon Zaslaver, Shira Gal, Mally Dori, Maya Ran e Adit Ben-Baruch. "GCP-2–induced internalization of IL-8 receptors: hierarchical relationships between GCP-2 and other ELR+-CXC chemokines and mechanisms regulating CXCR2 internalization and recycling". Blood 95, n.º 5 (1 de março de 2000): 1551–59. http://dx.doi.org/10.1182/blood.v95.5.1551.005a36_1551_1559.
Texto completo da fonteCardona, Astrid E., Margaret E. Sasse, Liping Liu, Sandra M. Cardona, Makiko Mizutani, Carine Savarin, Taofang Hu e Richard M. Ransohoff. "Scavenging roles of chemokine receptors: chemokine receptor deficiency is associated with increased levels of ligand in circulation and tissues". Blood 112, n.º 2 (15 de julho de 2008): 256–63. http://dx.doi.org/10.1182/blood-2007-10-118497.
Texto completo da fonteSalim, Juan P., Rosana F. Marta e Felisa C. Molinas. "Megakaryocyte-Active Chemokines: Dysregulation in the SDF-1a/CXCR4 Axis in Patients with Essential Thrombocythemia." Blood 106, n.º 11 (16 de novembro de 2005): 4969. http://dx.doi.org/10.1182/blood.v106.11.4969.4969.
Texto completo da fonteJoseph, Prem Raj B., Kirti V. Sawant e Krishna Rajarathnam. "Heparin-bound chemokine CXCL8 monomer and dimer are impaired for CXCR1 and CXCR2 activation: implications for gradients and neutrophil trafficking". Open Biology 7, n.º 11 (novembro de 2017): 170168. http://dx.doi.org/10.1098/rsob.170168.
Texto completo da fonteDesbaillets, Isabelle, Annie-Claire Diserens, Nicolas de Tribolet, Marie-France Hamou e Erwin G. Van Meir. "Upregulation of Interleukin 8 by Oxygen-deprived Cells in Glioblastoma Suggests a Role in Leukocyte Activation, Chemotaxis, and Angiogenesis". Journal of Experimental Medicine 186, n.º 8 (20 de outubro de 1997): 1201–12. http://dx.doi.org/10.1084/jem.186.8.1201.
Texto completo da fonteGovindaraju, Vasanthi, Marie-Claire Michoud, Mustafa Al-Chalabi, Pasquale Ferraro, William S. Powell e James G. Martin. "Interleukin-8: novel roles in human airway smooth muscle cell contraction and migration". American Journal of Physiology-Cell Physiology 291, n.º 5 (novembro de 2006): C957—C965. http://dx.doi.org/10.1152/ajpcell.00451.2005.
Texto completo da fonteWeisel, Katja C., Frank Bautz, Gabriele Seitz, Sedat Yildirim, Lothar Kanz e Robert Möhle. "Modulation of CXC Chemokine Receptor Expression and Function in Human Neutrophils during Aging In Vitro Suggests a Role in Their Clearance from Circulation". Mediators of Inflammation 2009 (2009): 1–8. http://dx.doi.org/10.1155/2009/790174.
Texto completo da fonteSemple, Bridgette D., Thomas Kossmann e Maria Cristina Morganti-Kossmann. "Role of Chemokines in CNS Health and Pathology: A Focus on the CCL2/CCR2 and CXCL8/CXCR2 Networks". Journal of Cerebral Blood Flow & Metabolism 30, n.º 3 (11 de novembro de 2009): 459–73. http://dx.doi.org/10.1038/jcbfm.2009.240.
Texto completo da fonteSobolik, Tammy, Ying-jun Su, Sam Wells, Gregory D. Ayers, Rebecca S. Cook e Ann Richmond. "CXCR4 drives the metastatic phenotype in breast cancer through induction of CXCR2 and activation of MEK and PI3K pathways". Molecular Biology of the Cell 25, n.º 5 (março de 2014): 566–82. http://dx.doi.org/10.1091/mbc.e13-07-0360.
Texto completo da fonteTakahashi, Masafumi, Takatoshi Ishiko, Hidenobu Kamohara, Hideaki Hidaka, Osamu Ikeda, Michio Ogawa e Hideo Baba. "Curcumin (1,7-bis(4-hydroxy-3-methoxyphenyl)-1, 6-heptadiene-3,5-dione) Blocks the Chemotaxis of Neutrophils by Inhibiting Signal Transduction through IL-8 Receptors". Mediators of Inflammation 2007 (2007): 1–11. http://dx.doi.org/10.1155/2007/10767.
Texto completo da fonteParenty, Geraldine, Shirley Appelbe e Graeme Milligan. "CXCR2 chemokine receptor antagonism enhances DOP opioid receptor function via allosteric regulation of the CXCR2–DOP receptor heterodimer". Biochemical Journal 412, n.º 2 (14 de maio de 2008): 245–56. http://dx.doi.org/10.1042/bj20071689.
Texto completo da fonteAdekoya, Timothy O., Nikia Smith, Parag Kothari, Monique A. Dacanay, Yahui Li e Ricardo M. Richardson. "CXCR1 Expression in MDA-PCa-2b Cell Upregulates ITM2A to Inhibit Tumor Growth". Cancers 16, n.º 24 (11 de dezembro de 2024): 4138. https://doi.org/10.3390/cancers16244138.
Texto completo da fontePiotrowska, Anna, Katarzyna Ciapała, Katarzyna Pawlik, Klaudia Kwiatkowski, Ewelina Rojewska e Joanna Mika. "Comparison of the Effects of Chemokine Receptors CXCR2 and CXCR3 Pharmacological Modulation in Neuropathic Pain Model—In Vivo and In Vitro Study". International Journal of Molecular Sciences 22, n.º 20 (14 de outubro de 2021): 11074. http://dx.doi.org/10.3390/ijms222011074.
Texto completo da fonteAntas, Paulo, Steven Holland e Timothy Sterling. "Abnormal spontaneous interleukin 8 receptor expression: a brief report of two cases". Revista da Sociedade Brasileira de Medicina Tropical 45, n.º 1 (fevereiro de 2012): 134–37. http://dx.doi.org/10.1590/s0037-86822012000100029.
Texto completo da fonteMurashka, D. I., A. D. Tahanovich, M. M. Kauhanka, O. V. Gotko e V. I. Prokhorova. "On the issue of diagnostic value of determining the level of receptors and their ligands in blood in non-small cell lung cancer". Russian Clinical Laboratory Diagnostics 67, n.º 5 (21 de maio de 2022): 277–85. http://dx.doi.org/10.51620/0869-2084-2022-67-5-277-285.
Texto completo da fonte