Artigos de revistas sobre o tema "Cu foam"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Cu foam".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Wang, Jing, Zan Zhang, Jian Ding, Chuan Rong Qiu, Xing Chuan Xia e Wei Min Zhao. "Quasi-Static Compressive Characteristics of Cu-Containing Closed-Cell Aluminum Foams". Key Engineering Materials 748 (agosto de 2017): 173–80. http://dx.doi.org/10.4028/www.scientific.net/kem.748.173.
Texto completo da fonteDutta, Abhijit, Kiran Kiran, Motiar Rahaman, Ivan Zelocualtecatl Montiel, Pavel Moreno-Garcí, Soma Vesztergom, Jakub Drnec, Mehtap Oezaslan e Peter Broekmann. "Insights from Operando and Identical Location (IL) Techniques on the Activation of Electrocatalysts for the Conversion of CO2: A Mini-Review". CHIMIA International Journal for Chemistry 75, n.º 9 (15 de setembro de 2021): 733–43. http://dx.doi.org/10.2533/chimia.2021.733.
Texto completo da fonteYang, Haobo, Jichao Li, Hao Yu, Feng Peng e Hongjuan Wang. "Metal-Foam-Supported Pd/Al2O3 Catalysts for Catalytic Combustion of Methane: Effect of Interaction between Support and Catalyst". International Journal of Chemical Reactor Engineering 13, n.º 1 (1 de março de 2015): 83–93. http://dx.doi.org/10.1515/ijcre-2014-0009.
Texto completo da fonteSridaeng, Duangruthai, Benjatham Sukkaneewat, Nuttawut Chueasakol e Nuanphun Chantarasiri. "Copper-amine complex solution as a low-emission catalyst for flexible polyurethane foam preparation". e-Polymers 15, n.º 2 (1 de março de 2015): 119–26. http://dx.doi.org/10.1515/epoly-2014-0197.
Texto completo da fonteHuang, Yao, Zexin Li, Lucai Wang, Leilei Sun, Xiaohong You, Wenzhan Huang e Fang Wang. "Preparation and Heat Dissipation Properties Comparison of Al and Cu Foam". Metals 12, n.º 12 (30 de novembro de 2022): 2066. http://dx.doi.org/10.3390/met12122066.
Texto completo da fonteMirzaee, Majid, e Changiz Dehghanian. "Nanostructured Ni-Cu Foam Electrodeposited on a Copper Substrate Applied as Supercapacitor Electrode". Acta Metallurgica Slovaca 24, n.º 4 (11 de dezembro de 2018): 325. http://dx.doi.org/10.12776/ams.v24i4.1138.
Texto completo da fonteSridaeng, Duangruthai, Wannisa Jitaree, Preecha Thiampanya e Nuanphun Chantarasiri. "Preparation of rigid polyurethane foams using low-emission catalysts derived from metal acetates and ethanolamine". e-Polymers 16, n.º 4 (1 de julho de 2016): 265–75. http://dx.doi.org/10.1515/epoly-2016-0021.
Texto completo da fonteBalciunaite, Aldona, Žana Činčienė, Loreta Tamasiunaite, Jūratė Vaičiūnienė e Eugenijus Norkus. "3D Structured Pt(Cu-Ni)/Ti Catalysts for the Oxidation of Sodium Borohydride". ECS Meeting Abstracts MA2022-01, n.º 35 (7 de julho de 2022): 1523. http://dx.doi.org/10.1149/ma2022-01351523mtgabs.
Texto completo da fonteYe, Bora, e Sunjung Kim. "Formation of Nanocrystalline Surface of Cu–Sn Alloy Foam Electrochemically Produced for Li-Ion Battery Electrode". Journal of Nanoscience and Nanotechnology 15, n.º 10 (1 de outubro de 2015): 8217–21. http://dx.doi.org/10.1166/jnn.2015.11434.
Texto completo da fonteHou, Guang Ya, Ji Yu Li, Lian Kui Wu, Yi Ping Tang, Hua Zhen Cao e Guo Qu Zheng. "Effect of Dealloying Process on Microstructure and Electrochemical Properties of Ni Foam". Materials Science Forum 922 (maio de 2018): 3–7. http://dx.doi.org/10.4028/www.scientific.net/msf.922.3.
Texto completo da fonteWong, Pei-Chun, Sin-Mao Song, Pei-Hua Tsai, Muhammad Jauharul Maqnun, Wei-Ru Wang, Jia-Lin Wu e Shian-Ching (Jason) Jang. "Using Cu as a Spacer to Fabricate and Control the Porosity of Titanium Zirconium Based Bulk Metallic Glass Foams for Orthopedic Implant Applications". Materials 15, n.º 5 (3 de março de 2022): 1887. http://dx.doi.org/10.3390/ma15051887.
Texto completo da fonteMohd Zahri, Nur Amirah, Yukio Miyashita, Tadashi Ariga, A. S. M. Abdul Haseeb e Nazatul Liana Sukiman. "Brazing of Copper Foam Using Cu-4.0Sn-9.9Ni-7.8P Filler Foil: Effect of Brazing Temperature and Copper Foam Pore Density". Key Engineering Materials 982 (3 de julho de 2024): 67–76. http://dx.doi.org/10.4028/p-tb1zf5.
Texto completo da fonteFarhan, Israa S., Akeel A. Mohammed e Manar S. M. Al-Jethelah. "The Effect of Uneven Metal Foam Distribution on Solar Compound Parabolic Trough Collector Receiver Thermal Performance". Tikrit Journal of Engineering Sciences 31, n.º 1 (20 de março de 2024): 291–305. http://dx.doi.org/10.25130/tjes.31.1.24.
Texto completo da fonteBalela, Mary Donnabelle L., Reginald E. Masirag, Francis O. Pacariem Jr. e Juicel Marie D. Taguinod. "Electrochemical Fabrication of Porous Interconnected Copper Foam". Key Engineering Materials 902 (29 de outubro de 2021): 9–14. http://dx.doi.org/10.4028/www.scientific.net/kem.902.9.
Texto completo da fonteVainoris, Modestas, Henrikas Cesiulis e Natalia Tsyntsaru. "Metal Foam Electrode as a Cathode for Copper Electrowinning". Coatings 10, n.º 9 (25 de agosto de 2020): 822. http://dx.doi.org/10.3390/coatings10090822.
Texto completo da fonteChanda, Debabrata, Ramato Ashu Tufa, David Aili e Suddhasatwa Basu. "Electroreduction of CO2 to ethanol by electrochemically deposited Cu-lignin complexes on Ni foam electrodes". Nanotechnology 33, n.º 5 (12 de novembro de 2021): 055403. http://dx.doi.org/10.1088/1361-6528/ac302b.
Texto completo da fonteBalela, Mary Donnabelle L., Reginald E. Masirag, Francis O. Pacariem Jr. e Juicel Marie D. Taguinod. "Effect of NABr on the Pore Size and Surface Morphology of Cu Foam Prepared by Hydrogen Bubble Templating". Key Engineering Materials 880 (março de 2021): 83–88. http://dx.doi.org/10.4028/www.scientific.net/kem.880.83.
Texto completo da fonteCostanza, Girolamo, e Maria Elisa Tata. "Parameters Affecting Energy Absorption in Metal Foams". Materials Science Forum 941 (dezembro de 2018): 1552–57. http://dx.doi.org/10.4028/www.scientific.net/msf.941.1552.
Texto completo da fonteXia, Yuanyuan, Wang Hu, Yiyuan Yao, Shuhui Chen, Seongki Ahn, Tao Hang, Yunwen Wu e Ming Li. "Application of electrodeposited Cu-metal nanoflake structures as 3D current collector in lithium-metal batteries". Nanotechnology 33, n.º 24 (25 de março de 2022): 245406. http://dx.doi.org/10.1088/1361-6528/ac5b53.
Texto completo da fonteKim, Chang-Eun, Raheleh M. Rahimi, Nia Hightower, Ioannis Mastorakos e David F. Bahr. "Synthesis, microstructure, and mechanical properties of polycrystalline Cu nano-foam". MRS Advances 3, n.º 8-9 (2018): 469–75. http://dx.doi.org/10.1557/adv.2018.128.
Texto completo da fonteLi, Cong Bo, Wei Wei Chen e Lu Wang. "Preparation and Characterization of Amorphous Al-Based Metal Foams". Materials Science Forum 816 (abril de 2015): 682–87. http://dx.doi.org/10.4028/www.scientific.net/msf.816.682.
Texto completo da fonteSukkaneewat, Benjatham, Duangruthai Sridaeng e Nuanphun Chantarasiri. "Fully water-blown polyisocyanurate-polyurethane foams with improved mechanical properties prepared from aqueous solution of gelling/ blowing and trimerization catalysts". e-Polymers 19, n.º 1 (29 de maio de 2019): 277–89. http://dx.doi.org/10.1515/epoly-2019-0028.
Texto completo da fonteLv, Sa, Wenshi Shang, Huan Wang, Xuefeng Chu, Yaodan Chi, Chao Wang, Jia Yang, Peiyu Geng e Xiaotian Yang. "Design and Construction of Cu(OH)2/Ni3S2 Composite Electrode on Cu Foam by Two-Step Electrodeposition". Micromachines 13, n.º 2 (30 de janeiro de 2022): 237. http://dx.doi.org/10.3390/mi13020237.
Texto completo da fonteLaçaj, Endri, Pascal Jolly, Jean Bouyer e Pascal Doumalin. "Elastic and damping characterization of open-pore metal foams filled or not with an elastomer for vibration control in turbomachinery". Mechanics & Industry 25 (2024): 23. http://dx.doi.org/10.1051/meca/2024021.
Texto completo da fonteLee, Yuan-Gee, Hui-Hsuan Chiao, Yu-Ching Weng e Chyi-How Lay. "The Influence of the Cu Foam on the Electrochemical Reduction of Carbon Dioxide". Inorganics 12, n.º 2 (11 de fevereiro de 2024): 57. http://dx.doi.org/10.3390/inorganics12020057.
Texto completo da fonteZhao, Wei, Siyuan He, Chen Zhang, Yuxuan Li, Yi Zhang e Ge Dai. "Generation of a Strength Gradient in Al-Cu-Ca Alloy Foam via Graded Aging Treatment". Metals 12, n.º 3 (28 de fevereiro de 2022): 423. http://dx.doi.org/10.3390/met12030423.
Texto completo da fonteBie, Lili, Xue Luo, Qingqing He, Daiping He, Yan Liu e Ping Jiang. "Hierarchical Cu/Cu(OH)2 nanorod arrays grown on Cu foam as a high-performance 3D self-supported electrode for enzyme-free glucose sensing". RSC Advances 6, n.º 98 (2016): 95740–46. http://dx.doi.org/10.1039/c6ra19576h.
Texto completo da fonteFerraris, Sara, Graziano Ubertalli, Antonio Santostefano e Antonio Barbato. "Aluminum Foams as Permanent Cores in Casting". Materials Proceedings 3, n.º 1 (20 de fevereiro de 2021): 3. http://dx.doi.org/10.3390/iec2m-09253.
Texto completo da fonteLiu, Yangyang, Xue Teng, Yongli Mi e Zuofeng Chen. "A new architecture design of Ni–Co LDH-based pseudocapacitors". Journal of Materials Chemistry A 5, n.º 46 (2017): 24407–15. http://dx.doi.org/10.1039/c7ta07795e.
Texto completo da fonteMa, Xingxing, Yaqing Chang, Zhe Zhang e Jilin Tang. "Forest-like NiCoP@Cu3P supported on copper foam as a bifunctional catalyst for efficient water splitting". Journal of Materials Chemistry A 6, n.º 5 (2018): 2100–2106. http://dx.doi.org/10.1039/c7ta09619d.
Texto completo da fonteMatějová, Lenka, Ivana Troppová, Satu Pitkäaho, Kateřina Pacultová, Dagmar Fridrichová, Ondřej Kania e Riitta Laura Keiski. "Oxidation of Methanol and Dichloromethane on TiO2-CeO2-CuO, TiO2-CeO2 and TiO2-CuO@VUKOPOR®A Ceramic Foams". Nanomaterials 13, n.º 7 (23 de março de 2023): 1148. http://dx.doi.org/10.3390/nano13071148.
Texto completo da fonteKoblischka, Michael, Sugali Naik, Anjela Koblischka-Veneva, Masato Murakami, Denis Gokhfeld, Eddula Reddy e Georg Schmitz. "Superconducting YBCO Foams as Trapped Field Magnets". Materials 12, n.º 6 (13 de março de 2019): 853. http://dx.doi.org/10.3390/ma12060853.
Texto completo da fonteMeng, Fan-Lu, Hai-Xia Zhong, Qi Zhang, Kai-Hua Liu, Jun-Min Yan e Qing Jiang. "Integrated Cu3N porous nanowire array electrode for high-performance supercapacitors". Journal of Materials Chemistry A 5, n.º 36 (2017): 18972–76. http://dx.doi.org/10.1039/c7ta05439d.
Texto completo da fonteHasan, MD Anwarul. "An Improved Model for FE Modeling and Simulation of Closed Cell Al-Alloy Foams". Advances in Materials Science and Engineering 2010 (2010): 1–12. http://dx.doi.org/10.1155/2010/567390.
Texto completo da fonteMarkova, Ivania, Valentina Milanova, Tihomir Petrov, Ivan Denev e Olivier Chauvet. "New Porous Nanocomposite Materials for Electrochemical Power Sources". Key Engineering Materials 644 (maio de 2015): 129–32. http://dx.doi.org/10.4028/www.scientific.net/kem.644.129.
Texto completo da fonteXu, Panpan, Jijun Liu, Tong Liu, Ke Ye, Kui Cheng, Jinling Yin, Dianxue Cao, Guiling Wang e Qiang Li. "Preparation of binder-free CuO/Cu2O/Cu composites: a novel electrode material for supercapacitor applications". RSC Advances 6, n.º 34 (2016): 28270–78. http://dx.doi.org/10.1039/c6ra00004e.
Texto completo da fonteRen, Xiang, Xuqiang Ji, Yicheng Wei, Dan Wu, Yong Zhang, Min Ma, Zhiang Liu, Abdullah M. Asiri, Qin Wei e Xuping Sun. "In situ electrochemical development of copper oxide nanocatalysts within a TCNQ nanowire array: a highly conductive electrocatalyst for the oxygen evolution reaction". Chemical Communications 54, n.º 12 (2018): 1425–28. http://dx.doi.org/10.1039/c7cc08748a.
Texto completo da fonteSong, Yonggui, Baixi Shan, Bingwei Feng, Pengfei Xu, Qiang Zeng e Dan Su. "A novel biosensor based on ball-flower-like Cu-hemin MOF grown on elastic carbon foam for trichlorfon detection". RSC Advances 8, n.º 47 (2018): 27008–15. http://dx.doi.org/10.1039/c8ra04596h.
Texto completo da fonteZbib, Mohamad B., Matthew Howard, Michael R. Maughan, Nicolas J. Briot, T. John Balk e David F. Bahr. "The Mechanical Response of Arrays of Carbon Nanotubes Coated with Metallic Shells". MRS Advances 3, n.º 45-46 (2018): 2801–8. http://dx.doi.org/10.1557/adv.2018.562.
Texto completo da fonteHe, Xuefeng, Xin Chen, Rong Chen, Xun Zhu, Qiang Liao, Dingding Ye, Youxu Yu, Wei Zhang e Jinwang Li. "A 3D oriented CuS/Cu2O/Cu nanowire photocathode". Journal of Materials Chemistry A 9, n.º 11 (2021): 6971–80. http://dx.doi.org/10.1039/d0ta11020e.
Texto completo da fonteYuan, Jiongliang, Xuan Wang, Chunhui Gu, Jianjun Sun, Wenming Ding, Jianjun Wei, Xiaoyu Zuo e Cunjiang Hao. "Photoelectrocatalytic reduction of carbon dioxide to methanol at cuprous oxide foam cathode". RSC Advances 7, n.º 40 (2017): 24933–39. http://dx.doi.org/10.1039/c7ra03347h.
Texto completo da fonteLv, Sa, Huan Wang, Fan Yang, Jia Yang, Chao Wang, Yaodan Chi e Xiaotian Yang. "Direct Growth of Ag/Ni(OH)2 Composite on Cu Foam by a Modified Galvanic Displacement Reaction Followed by Electrodeposition". Nano 16, n.º 05 (28 de abril de 2021): 2150058. http://dx.doi.org/10.1142/s1793292021500582.
Texto completo da fonteWang, Qinghua, Chao Liu, Huixin Wang, Kai Yin, Zhongjie Yu, Taiyuan Wang, Mengqi Ye, Xianjun Pei e Xiaochao Liu. "Laser-Heat Surface Treatment of Superwetting Copper Foam for Efficient Oil–Water Separation". Nanomaterials 13, n.º 4 (15 de fevereiro de 2023): 736. http://dx.doi.org/10.3390/nano13040736.
Texto completo da fonteYadavalli, SIVA RAM PRASAD, Aravind Kumar Chandiran e Raghuram Chetty. "Electrochemically Deposited Tin on High Surface Area Copper Foam for Enhanced Electrochemical Reduction of CO2 to Formic Acid". ECS Meeting Abstracts MA2022-01, n.º 55 (7 de julho de 2022): 2306. http://dx.doi.org/10.1149/ma2022-01552306mtgabs.
Texto completo da fonteWang, Jiankang, Kui Chen, Rong Peng, Yajing Wang, Taiping Xie, Quanxi Zhu, Yuan Peng, Qunying Yang e Songli Liu. "Synergistically enhanced alkaline hydrogen evolution reaction by coupling CoFe layered double hydroxide with NiMoO4 prepared by two-step electrodeposition". New Journal of Chemistry 45, n.º 44 (2021): 20825–31. http://dx.doi.org/10.1039/d1nj02984c.
Texto completo da fonteRaju, Risha, Gomathi N., K. Prabhakaran, Kuruvilla Joseph e A. Salih. "Selective catalytic reduction of NO over hierarchical Cu ZSM-5 coated on an alumina foam support". Reaction Chemistry & Engineering 7, n.º 4 (2022): 929–42. http://dx.doi.org/10.1039/d1re00505g.
Texto completo da fonteJiang, Enjun, Jianhong Jiang, Guo Huang, Zhiyi Pan, Xiyong Chen, Guifang Wang, Shaojian Ma, Jinliang Zhu e Pei Kang Shen. "Porous nanosheets of Cu3P@N,P co-doped carbon hosted on copper foam as an efficient and ultrastable pH-universal hydrogen evolution electrocatalyst". Sustainable Energy & Fuels 5, n.º 9 (2021): 2451–57. http://dx.doi.org/10.1039/d1se00161b.
Texto completo da fonteWang, Zao, Huitong Du, Zhiang Liu, Hui Wang, Abdullah M. Asiri e Xuping Sun. "Interface engineering of a CeO2–Cu3P nanoarray for efficient alkaline hydrogen evolution". Nanoscale 10, n.º 5 (2018): 2213–17. http://dx.doi.org/10.1039/c7nr08472b.
Texto completo da fonteLi, Qianwen, Mei Li, Shengbo Zhang, Xiao Liu, Xinli Zhu, Qingfeng Ge e Hua Wang. "Tuning Sn-Cu Catalysis for Electrochemical Reduction of CO2 on Partially Reduced Oxides SnOx-CuOx-Modified Cu Electrodes". Catalysts 9, n.º 5 (22 de maio de 2019): 476. http://dx.doi.org/10.3390/catal9050476.
Texto completo da fonteChang, Bing, Xia-Guang Zhang, Zhaojun Min, Weiwei Lu, Zhiyong Li, Jikuan Qiu, Huiyong Wang, Jing Fan e Jianji Wang. "Efficient electrocatalytic conversion of CO2 to syngas for the Fischer–Tropsch process using a partially reduced Cu3P nanowire". Journal of Materials Chemistry A 9, n.º 33 (2021): 17876–84. http://dx.doi.org/10.1039/d1ta03854k.
Texto completo da fonte