Artigos de revistas sobre o tema "Cryogenic air separation"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Cryogenic air separation".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Cornelissen, R. L., e G. G. Hirs. "Exergy analysis of cryogenic air separation". Energy Conversion and Management 39, n.º 16-18 (novembro de 1998): 1821–26. http://dx.doi.org/10.1016/s0196-8904(98)00062-4.
Texto completo da fonteCheung, Harry. "Moderate-pressure cryogenic air separation process". Gas Separation & Purification 5, n.º 1 (março de 1991): 25–28. http://dx.doi.org/10.1016/0950-4214(91)80045-7.
Texto completo da fonteIonita, Claudia, Elena-Eugenia Vasilescu, Camelia Stanciu, Horatiu Pop e Lucretia Popa. "Optimization of the air separation process in single stage cryogenic units". Technium: Romanian Journal of Applied Sciences and Technology 14 (9 de outubro de 2023): 14–17. http://dx.doi.org/10.47577/technium.v14i.9666.
Texto completo da fonteXiong, Yong Qiang, e Ben Hua. "Simulation and Analysis of Cryogenic Air Separation Process with LNG Cold Energy Utilization". Advanced Materials Research 881-883 (janeiro de 2014): 653–58. http://dx.doi.org/10.4028/www.scientific.net/amr.881-883.653.
Texto completo da fonteParulekar, Prasad J. "Chemical Plant Utility – Nitrogen System Design". International Journal for Research in Applied Science and Engineering Technology 9, n.º 11 (30 de novembro de 2021): 1560–67. http://dx.doi.org/10.22214/ijraset.2021.39047.
Texto completo da fonteDutta, T., K. P. Sinhamahapatra e S. S. Bandyopadhyay. "CFD Analysis of Energy Separation in Ranque-Hilsch Vortex Tube at Cryogenic Temperature". Journal of Fluids 2013 (14 de novembro de 2013): 1–14. http://dx.doi.org/10.1155/2013/562027.
Texto completo da fonteKhalel, Zeinab A. M., Ali A. Rabah e Taj Alasfia M. Barakat. "A New Cryogenic Air Separation Process with Flash Separator". ISRN Thermodynamics 2013 (27 de junho de 2013): 1–4. http://dx.doi.org/10.1155/2013/253437.
Texto completo da fonteMiller, Jason, William L. Luyben, Paul Belanger, Stephane Blouin e Larry Megan. "Improving Agility of Cryogenic Air Separation Plants". Industrial & Engineering Chemistry Research 47, n.º 2 (janeiro de 2008): 394–404. http://dx.doi.org/10.1021/ie070975t.
Texto completo da fonteHamayun, Muhammad Haris, Naveed Ramzan, Murid Hussain e Muhammad Faheem. "Evaluation of Two-Column Air Separation Processes Based on Exergy Analysis". Energies 13, n.º 23 (2 de dezembro de 2020): 6361. http://dx.doi.org/10.3390/en13236361.
Texto completo da fonteBucsa, Sorin, Alexandru Serban, Mugur C. Balan, Claudia Ionita, Gabriel Nastase, Catalina Dobre e Alexandru Dobrovicescu. "Exergetic Analysis of a Cryogenic Air Separation Unit". Entropy 24, n.º 2 (13 de fevereiro de 2022): 272. http://dx.doi.org/10.3390/e24020272.
Texto completo da fonteYe, Pengcheng, Erik Sjöberg e Jonas Hedlund. "Air separation at cryogenic temperature using MFI membranes". Microporous and Mesoporous Materials 192 (julho de 2014): 14–17. http://dx.doi.org/10.1016/j.micromeso.2013.09.016.
Texto completo da fontevan der Ham, L. V., e S. Kjelstrup. "Exergy analysis of two cryogenic air separation processes". Energy 35, n.º 12 (dezembro de 2010): 4731–39. http://dx.doi.org/10.1016/j.energy.2010.09.019.
Texto completo da fonteSchoofs, Gregory R., e P. Petit. "Repressurization of adsorption purifiers for cryogenic air separation". Chemical Engineering Science 48, n.º 4 (fevereiro de 1993): 753–60. http://dx.doi.org/10.1016/0009-2509(93)80141-c.
Texto completo da fonteCao, Yanan, Christopher L. E. Swartz e Jesus Flores‐Cerrillo. "Preemptive dynamic operation of cryogenic air separation units". AIChE Journal 63, n.º 9 (2 de maio de 2017): 3845–59. http://dx.doi.org/10.1002/aic.15753.
Texto completo da fonteRinker, Garrett. "Minimum work associated with separating nitrogen from air: An exergy analysis". F1000Research 13 (1 de março de 2024): 158. http://dx.doi.org/10.12688/f1000research.145337.1.
Texto completo da fonteVoronetskiy, A. V. "Comparative analysis of operational indicators of air separation plants". Glavnyj mekhanik (Chief Mechanic), n.º 3 (25 de fevereiro de 2022): 188–202. http://dx.doi.org/10.33920/pro-2-2203-03.
Texto completo da fonteWojcieszak, Paweł. "Exergy Analysis of Liquid Nitrogen Power Cycles". EPJ Web of Conferences 201 (2019): 01004. http://dx.doi.org/10.1051/epjconf/201920101004.
Texto completo da fonteBerdowska, Sylwia, e Anna Skorek-Osikowska. "Technology of oxygen production in the membranecryogenic air separation system for a 600 MW oxy-type pulverized bed boiler". Archives of Thermodynamics 33, n.º 3 (1 de setembro de 2012): 61–72. http://dx.doi.org/10.2478/v10173-012-0018-8.
Texto completo da fonteXu, Zuhua, Jun Zhao, Xi Chen, Zhijiang Shao, Jixin Qian, Lingyu Zhu, Zhiyong Zhou e Haizhong Qin. "Automatic load change system of cryogenic air separation process". Separation and Purification Technology 81, n.º 3 (outubro de 2011): 451–65. http://dx.doi.org/10.1016/j.seppur.2011.08.024.
Texto completo da fonteYe, Pengcheng, Danil Korelskiy, Mattias Grahn e Jonas Hedlund. "Cryogenic air separation at low pressure using MFI membranes". Journal of Membrane Science 487 (agosto de 2015): 135–40. http://dx.doi.org/10.1016/j.memsci.2015.03.063.
Texto completo da fonteMandler, J. A., D. R. Vinson e N. Chatterjee. "Dynamic Modelling and Control of Cryogenic AIR Separation Plants". IFAC Proceedings Volumes 22, n.º 8 (agosto de 1989): 267–73. http://dx.doi.org/10.1016/s1474-6670(17)53367-4.
Texto completo da fonteAgrawal, Rakesh, e Robert M. Thorogood. "Production of medium pressure nitrogen by cryogenic air separation". Gas Separation & Purification 5, n.º 4 (dezembro de 1991): 203–9. http://dx.doi.org/10.1016/0950-4214(91)80025-z.
Texto completo da fonteZhu, Yu, Sean Legg e Carl D. Laird. "Optimal design of cryogenic air separation columns under uncertainty". Computers & Chemical Engineering 34, n.º 9 (setembro de 2010): 1377–84. http://dx.doi.org/10.1016/j.compchemeng.2010.02.007.
Texto completo da fonteDarling, Robert M., e Zhiwei Yang. "Electrochemical Air Separation and Emergency Power Fuel Cell for Aircraft". ECS Meeting Abstracts MA2022-02, n.º 50 (9 de outubro de 2022): 2561. http://dx.doi.org/10.1149/ma2022-02502561mtgabs.
Texto completo da fonteAlyaseen, Nazar Oudah Mousa, Salem Mehrzad e Mohammad Reza Saffarian. "Modeling and Design of a Multistream Plate-Fin Heat Exchanger in the Air Separation Units by Pinch Technology". International Journal of Chemical Engineering 2023 (30 de novembro de 2023): 1–16. http://dx.doi.org/10.1155/2023/9204268.
Texto completo da fonteKhalel, Zeinab A. M. "Proposed Transformation Flow Sheet of a Single Column Cryogenic Air Separation Process Utilizing LNG Cold Energy". East African Scholars Journal of Engineering and Computer Sciences 5, n.º 3 (19 de junho de 2022): 32–40. http://dx.doi.org/10.36349/easjecs.2022.v05i03.001.
Texto completo da fonteMisra, Shamik, Mangesh Kapadi, Ravindra D. Gudi e R. Srihari. "Energy-Efficient Production Scheduling of a Cryogenic Air Separation Plant". Industrial & Engineering Chemistry Research 56, n.º 15 (10 de abril de 2017): 4399–414. http://dx.doi.org/10.1021/acs.iecr.6b04585.
Texto completo da fonteVorob'ev, P. V., O. V. Miller e A. P. Cherepanov. "Sibkriotekhnika's cryogenic equipment in technologies that use air-separation products". Chemical and Petroleum Engineering 31, n.º 7 (julho de 1995): 343–45. http://dx.doi.org/10.1007/bf01150272.
Texto completo da fonteWankat, Phillip C., e Kyle P. Kostroski. "Hybrid Membrane-Cryogenic Distillation Air Separation Process for Oxygen Production". Separation Science and Technology 46, n.º 10 (junho de 2011): 1539–45. http://dx.doi.org/10.1080/01496395.2011.577497.
Texto completo da fonteFu, Chao, e Truls Gundersen. "Recuperative vapor recompression heat pumps in cryogenic air separation processes". Energy 59 (setembro de 2013): 708–18. http://dx.doi.org/10.1016/j.energy.2013.06.055.
Texto completo da fonteSchmidt, William P., Karen S. Winegardner, Martin Dennehy e Howard Castle-Smith. "Safe design and operation of a cryogenic air separation unit". Process Safety Progress 20, n.º 4 (dezembro de 2001): 269–79. http://dx.doi.org/10.1002/prs.680200409.
Texto completo da fonteQuarshie, Anthony W. K., José Matias e Christopher L. E. Swartz. "Economic Model Predictive Control for Cryogenic Air Separation Unit Startup". IFAC-PapersOnLine 58, n.º 14 (2024): 761–66. http://dx.doi.org/10.1016/j.ifacol.2024.08.429.
Texto completo da fonteLeiva, C. A., D. A. Poblete, T. L. Aguilera, C. A. Acuña e F. J. Quintero. "Air Separation Units (ASUs) Simulation Using Aspen Hysys® at Oxinor I of Air Liquid Chile S.A Plant". Polish Journal of Chemical Technology 22, n.º 1 (1 de março de 2020): 10–17. http://dx.doi.org/10.2478/pjct-2020-0003.
Texto completo da fonteFu, Qian, Yasuki kansha, Chunfeng Song, Yuping Liu, Masanori Ishizuka e Atsushi Tsutsumi. "An Advanced Cryogenic Air Separation Process Based on Self-heat Recuperation for CO2 Separation". Energy Procedia 61 (2014): 1673–76. http://dx.doi.org/10.1016/j.egypro.2014.12.189.
Texto completo da fonteYe, Bicui, Shufei Sun e Zheng Wang. "Potential for Energy Utilization of Air Compression Section Using an Open Absorption Refrigeration System". Applied Sciences 12, n.º 13 (23 de junho de 2022): 6373. http://dx.doi.org/10.3390/app12136373.
Texto completo da fonteMitovski, Milance, e Aleksandra Mitovski. "Efficiency of the process of cryogenic air separation into the components". Chemical Industry 63, n.º 5 (2009): 397–405. http://dx.doi.org/10.2298/hemind0905397m.
Texto completo da fonteZhang, Xiao-bin, Jian-ye Chen, Lei Yao, Yong-hua Huang, Xue-jun Zhang e Li-min Qiu. "Research and development of large-scale cryogenic air separation in China". Journal of Zhejiang University SCIENCE A 15, n.º 5 (maio de 2014): 309–22. http://dx.doi.org/10.1631/jzus.a1400063.
Texto completo da fonteKansha, Yasuki, Akira Kishimoto, Tsuguhiko Nakagawa e Atsushi Tsutsumi. "A novel cryogenic air separation process based on self-heat recuperation". Separation and Purification Technology 77, n.º 3 (4 de março de 2011): 389–96. http://dx.doi.org/10.1016/j.seppur.2011.01.012.
Texto completo da fonteAcharya, D., F. Fitch e R. Jain. "Some Issues in Operating Adsorption Prepurification Systems for Cryogenic Air Separation". Separation Science and Technology 31, n.º 16 (setembro de 1996): 2171–82. http://dx.doi.org/10.1080/01496399608001038.
Texto completo da fontePintilie, M., A. Șerban, V. Popa e C. L. Popa. "Design analysis of low pressure distillation column for cryogenic air separation". IOP Conference Series: Materials Science and Engineering 595 (20 de setembro de 2019): 012023. http://dx.doi.org/10.1088/1757-899x/595/1/012023.
Texto completo da fonteWimer, John G., Dale Keairns, Edward L. Parsons e John A. Ruether. "Integration of Gas Turbines Adapted for Syngas Fuel With Cryogenic and Membrane-Based Air Separation Units: Issues to Consider for System Studies". Journal of Engineering for Gas Turbines and Power 128, n.º 2 (13 de janeiro de 2005): 271–80. http://dx.doi.org/10.1115/1.2056535.
Texto completo da fonteChong, Kok Chung, Soon Onn Lai, Hui San Thiam e Woei Jye Lau. "The Progress of Polymeric Membrane Separation Technique in O2/N2 Separation". Key Engineering Materials 701 (julho de 2016): 255–59. http://dx.doi.org/10.4028/www.scientific.net/kem.701.255.
Texto completo da fonteBucanovic, Ljubisa, Mihailo Lazarevic e Srecko Batalov. "The fractional PID controllers tuned by genetic algorithms for expansion turbine in the cryogenic air separation process". Chemical Industry 68, n.º 5 (2014): 519–28. http://dx.doi.org/10.2298/hemind130717078b.
Texto completo da fonteVariny, Miroslav, Dominika Jediná, Miroslav Rimár, Ján Kizek e Marianna Kšiňanová. "Cutting Oxygen Production-Related Greenhouse Gas Emissions by Improved Compression Heat Management in a Cryogenic Air Separation Unit". International Journal of Environmental Research and Public Health 18, n.º 19 (1 de outubro de 2021): 10370. http://dx.doi.org/10.3390/ijerph181910370.
Texto completo da fonteHaseli, Y., e N. S. Sifat. "Performance modeling of Allam cycle integrated with a cryogenic air separation process". Computers & Chemical Engineering 148 (maio de 2021): 107263. http://dx.doi.org/10.1016/j.compchemeng.2021.107263.
Texto completo da fonteRizk, J., M. Nemer e D. Clodic. "A real column design exergy optimization of a cryogenic air separation unit". Energy 37, n.º 1 (janeiro de 2012): 417–29. http://dx.doi.org/10.1016/j.energy.2011.11.012.
Texto completo da fonteCao, Yanan, Christopher L. E. Swartz, Jesus Flores-Cerrillo e Jingran Ma. "Dynamic modeling and collocation-based model reduction of cryogenic air separation units". AIChE Journal 62, n.º 5 (26 de janeiro de 2016): 1602–15. http://dx.doi.org/10.1002/aic.15164.
Texto completo da fonteBelikov, Dmitry, Satoshi Sugawara, Shigeyuki Ishidoya, Fumio Hasebe, Shamil Maksyutov, Shuji Aoki, Shinji Morimoto e Takakiyo Nakazawa. "Three-dimensional simulation of stratospheric gravitational separation using the NIES global atmospheric tracer transport model". Atmospheric Chemistry and Physics 19, n.º 8 (18 de abril de 2019): 5349–61. http://dx.doi.org/10.5194/acp-19-5349-2019.
Texto completo da fonteChorowski, Maciej, e Wojciech Gizicki. "Technical and economic aspects of oxygen separation for oxy-fuel purposes". Archives of Thermodynamics 36, n.º 1 (1 de março de 2015): 157–70. http://dx.doi.org/10.1515/aoter-2015-0011.
Texto completo da fonteCormos, Calin-Cristian. "Techno-Economic Evaluations of Copper-Based Chemical Looping Air Separation System for Oxy-Combustion and Gasification Power Plants with Carbon Capture". Energies 11, n.º 11 (9 de novembro de 2018): 3095. http://dx.doi.org/10.3390/en11113095.
Texto completo da fonte