Artigos de revistas sobre o tema "Crosslinking mass spectrometry"

Siga este link para ver outros tipos de publicações sobre o tema: Crosslinking mass spectrometry.

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Crosslinking mass spectrometry".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

Sinz, Andrea. "Crosslinking Mass Spectrometry Goes In-Tissue". Cell Systems 6, n.º 1 (janeiro de 2018): 10–12. http://dx.doi.org/10.1016/j.cels.2018.01.005.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Schneider, Michael, Adam Belsom e Juri Rappsilber. "Protein Tertiary Structure by Crosslinking/Mass Spectrometry". Trends in Biochemical Sciences 43, n.º 3 (março de 2018): 157–69. http://dx.doi.org/10.1016/j.tibs.2017.12.006.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Chen, Zhuo Angel, e Juri Rappsilber. "Protein structure dynamics by crosslinking mass spectrometry". Current Opinion in Structural Biology 80 (junho de 2023): 102599. http://dx.doi.org/10.1016/j.sbi.2023.102599.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Xia, Yingzi. "Exploring misfolded proteins with crosslinking mass spectrometry". Biophysical Journal 123, n.º 3 (fevereiro de 2024): 206a. http://dx.doi.org/10.1016/j.bpj.2023.11.1301.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Petrotchenko, Evgeniy V., e Christoph H. Borchers. "Crosslinking combined with mass spectrometry for structural proteomics". Mass Spectrometry Reviews 29, n.º 6 (21 de agosto de 2010): 862–76. http://dx.doi.org/10.1002/mas.20293.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Dancy, Beverley M., Fan Liu, Philip Lössl, Albert J. R. Heck e Robert S. Balaban. "The mitochondrial interactome visualized by crosslinking mass spectrometry". Biochimica et Biophysica Acta (BBA) - Bioenergetics 1857 (agosto de 2016): e22. http://dx.doi.org/10.1016/j.bbabio.2016.04.045.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Singh, Arunima. "Crosslinking mass spectrometry data bolster protein structure prediction". Nature Methods 20, n.º 5 (maio de 2023): 633. http://dx.doi.org/10.1038/s41592-023-01890-3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Graziadei, Andrea, e Juri Rappsilber. "Leveraging crosslinking mass spectrometry in structural and cell biology". Structure 30, n.º 1 (janeiro de 2022): 37–54. http://dx.doi.org/10.1016/j.str.2021.11.007.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Chen, Zhuo A., e Juri Rappsilber. "Protein Dynamics in Solution by Quantitative Crosslinking/Mass Spectrometry". Trends in Biochemical Sciences 43, n.º 11 (novembro de 2018): 908–20. http://dx.doi.org/10.1016/j.tibs.2018.09.003.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Bullock, Joshua Matthew Allen, Neeladri Sen, Konstantinos Thalassinos e Maya Topf. "Modeling Protein Complexes Using Restraints from Crosslinking Mass Spectrometry". Structure 26, n.º 7 (julho de 2018): 1015–24. http://dx.doi.org/10.1016/j.str.2018.04.016.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

Kim, Samuel, Jae Kyoo Lee, Hong Gil Nam e Richard N. Zare. "Photo-Activated Crosslinking Mass Spectrometry for Studying Biomolecular Interactions". Biophysical Journal 106, n.º 2 (janeiro de 2014): 459a. http://dx.doi.org/10.1016/j.bpj.2013.11.2601.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Wang, Haodong, Min Zhang e Liang Ge. "Crosslinking and Mass Spectrometry to Identify Regulators in Unconventional Secretion". Trends in Biochemical Sciences 46, n.º 8 (agosto de 2021): 701–2. http://dx.doi.org/10.1016/j.tibs.2021.03.006.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

Xia, Yingzi, e Stephen D. Fried. "Studying the refoldability of the proteome using crosslinking mass spectrometry". Biophysical Journal 121, n.º 3 (fevereiro de 2022): 184a. http://dx.doi.org/10.1016/j.bpj.2021.11.1800.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Donelan, Chelsee A., Rathna Veeramachaneni, David J. Lapinsky e Michael Cascio. "Using Crosslinking and Mass Spectrometry to Study Glycine Receptor Allostery". Biophysical Journal 102, n.º 3 (janeiro de 2012): 612a. http://dx.doi.org/10.1016/j.bpj.2011.11.3336.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

Muizebelt, W. J., e M. W. F. Nielen. "Oxidative Crosslinking of Unsaturated Fatty Acids Studied with Mass Spectrometry". Journal of Mass Spectrometry 31, n.º 5 (maio de 1996): 545–54. http://dx.doi.org/10.1002/(sici)1096-9888(199605)31:5<545::aid-jms329>3.0.co;2-1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Makepeace, Karl A. T., Yassene Mohammed, Elena L. Rudashevskaya, Evgeniy V. Petrotchenko, F. Nora Vögtle, Chris Meisinger, Albert Sickmann e Christoph H. Borchers. "Improving Identification of In-organello Protein-Protein Interactions Using an Affinity-enrichable, Isotopically Coded, and Mass Spectrometry-cleavable Chemical Crosslinker". Molecular & Cellular Proteomics 19, n.º 4 (12 de fevereiro de 2020): 624–39. http://dx.doi.org/10.1074/mcp.ra119.001839.

Texto completo da fonte
Resumo:
An experimental and computational approach for identification of protein-protein interactions by ex vivo chemical crosslinking and mass spectrometry (CLMS) has been developed that takes advantage of the specific characteristics of cyanurbiotindipropionylsuccinimide (CBDPS), an affinity-tagged isotopically coded mass spectrometry (MS)-cleavable crosslinking reagent. Utilizing this reagent in combination with a crosslinker-specific data-dependent acquisition strategy based on MS2 scans, and a software pipeline designed for integrating crosslinker-specific mass spectral information led to demonstrated improvements in the application of the CLMS technique, in terms of the detection, acquisition, and identification of crosslinker-modified peptides. This approach was evaluated on intact yeast mitochondria, and the results showed that hundreds of unique protein-protein interactions could be identified on an organelle proteome-wide scale. Both known and previously unknown protein-protein interactions were identified. These interactions were assessed based on their known sub-compartmental localizations. Additionally, the identified crosslinking distance constraints are in good agreement with existing structural models of protein complexes involved in the mitochondrial electron transport chain.
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Hagen, Susan E., Kun Liu, Yafei Jin, Lolita Piersimoni, Philip C. Andrews e Hollis D. Showalter. "Synthesis of CID-cleavable protein crosslinking agents containing quaternary amines for structural mass spectrometry". Organic & Biomolecular Chemistry 16, n.º 37 (2018): 8245–48. http://dx.doi.org/10.1039/c8ob00329g.

Texto completo da fonte
Resumo:
Two novel cyclic quaternary amine crosslinking probes are synthesized for structural mass spectrometry of protein complexes in solution and for analysis of protein interactions in organellar and whole cell extracts.
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Tang, Xiaoting, Helisa H. Wippel, Juan D. Chavez e James E. Bruce. "Crosslinking mass spectrometry: A link between structural biology and systems biology". Protein Science 30, n.º 4 (6 de março de 2021): 773–84. http://dx.doi.org/10.1002/pro.4045.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Topf, Maya. "Modeling Protein Monomers and Complexes using Restraints from Crosslinking Mass Spectrometry". Biophysical Journal 116, n.º 3 (fevereiro de 2019): 330a. http://dx.doi.org/10.1016/j.bpj.2018.11.1790.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

Perdivara, Irina, Mitsuo Yamauchi e Kenneth B. Tomer. "Molecular Characterization of Collagen Hydroxylysine O-Glycosylation by Mass Spectrometry: Current Status". Australian Journal of Chemistry 66, n.º 7 (2013): 760. http://dx.doi.org/10.1071/ch13174.

Texto completo da fonte
Resumo:
The most abundant proteins in vertebrates – the collagen family proteins – play structural and biological roles in the body. The predominant member, type I collagen, provides tissues and organs with structure and connectivity. This protein has several unique post-translational modifications that take place intra- and extra-cellularly. With growing evidence of the relevance of such post-translational modifications in health and disease, the biological significance of O-linked collagen glycosylation has recently drawn increased attention. However, several aspects of this unique modification – the requirement for prior lysyl hydroxylation as a substrate, involvement of at least two distinct glycosyl transferases, its involvement in intermolecular crosslinking – have made its molecular mapping and quantitative characterization challenging. Such characterization is obviously crucial for understanding its biological significance. Recent progress in mass spectrometry has provided an unprecedented opportunity for this type of analysis. This review summarizes recent advances in the area of O-glycosylation of fibrillar collagens and their characterization using state-of-the-art liquid chromatography–mass spectrometry-based methodologies, and perspectives on future research. The analytical characterization of collagen crosslinking and advanced glycation end-products are not addressed here.
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

HAH, Sang Soo. "Determination of Protein-Ligand Interactions Using Accelerator Mass Spectrometry: Modified Crosslinking Assay". Analytical Sciences 25, n.º 5 (2009): 731–33. http://dx.doi.org/10.2116/analsci.25.731.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

Felker, Dana, Haoming Zhang, Zhiyuan Bo, Miranda Lau, Yoshihiro Morishima, Santiago Schnell e Yoichi Osawa. "Mapping protein-protein interactions in homodimeric CYP102A1 by crosslinking and mass spectrometry". Biophysical Chemistry 274 (julho de 2021): 106590. http://dx.doi.org/10.1016/j.bpc.2021.106590.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

Fasci, Domenico, Hugo van Ingen, Richard A. Scheltema e Albert J. R. Heck. "Histone Interaction Landscapes Visualized by Crosslinking Mass Spectrometry in Intact Cell Nuclei". Molecular & Cellular Proteomics 17, n.º 10 (18 de julho de 2018): 2018–33. http://dx.doi.org/10.1074/mcp.ra118.000924.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

Castellano, Elizabeth. "Identification of Fluoxetine-Serotonin Transporter Interactions using Crosslinking-Mass Spectrometry (CX-MS)". Biophysical Journal 112, n.º 3 (fevereiro de 2017): 343a. http://dx.doi.org/10.1016/j.bpj.2016.11.1861.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

Müller, Fränze, Andrea Graziadei e Juri Rappsilber. "Quantitative Photo-crosslinking Mass Spectrometry Revealing Protein Structure Response to Environmental Changes". Analytical Chemistry 91, n.º 14 (17 de junho de 2019): 9041–48. http://dx.doi.org/10.1021/acs.analchem.9b01339.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

Castellano, Elizabeth. "Mapping the Extracellular Loops of the Serotonin Transporter Using Crosslinking-Mass Spectrometry". Biophysical Journal 116, n.º 3 (fevereiro de 2019): 52a. http://dx.doi.org/10.1016/j.bpj.2018.11.327.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

Stevenson Keller, T. C., Brant E. Isakson e Linda Columbus. "Molecular Modeling of the Alpha Globin/eNOS Complex via Crosslinking Mass Spectrometry". Biophysical Journal 116, n.º 3 (fevereiro de 2019): 168a. http://dx.doi.org/10.1016/j.bpj.2018.11.933.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

Nagy, Lajos, Bence Vadkerti, Csilla Lakatos, Péter Pál Fehér, Miklós Zsuga e Sándor Kéki. "Kinetically Equivalent Functionality and Reactivity of Commonly Used Biocompatible Polyurethane Crosslinking Agents". International Journal of Molecular Sciences 22, n.º 8 (14 de abril de 2021): 4059. http://dx.doi.org/10.3390/ijms22084059.

Texto completo da fonte
Resumo:
In this paper, the kinetics of the reaction of phenyl isocyanate with crosslinking agents such as sucrose, sorbitol, and glycerol are reported. Crosslinking agents were used in high molar excess to isocyanate to obtain pseudo-first-order rate dependencies, and the reaction products were separated by high-performance liquid chromatography and detected by UV spectroscopy and mass spectrometry. It was found that the glycerol’s primary hydroxyl groups were approximately four times reactive than the secondary ones. However, in the case of sorbitol, the two primary OH groups were found to be the most reactive, and the reactivity of hydroxyl groups decreased in the order of kOH(6)(8.43) > kOH(1)(6.91) > kOH(5)(1.19) > kOH(2)(0.98) > kOH(3)(0.93) > kOH(4)(0.64), where the numbers in the subscript and in the brackets denote the position of OH groups and the pseudo-first-order rate constants, respectively. The Atomic Polar Tenzor (APT) charges of OH groups and dipole moments of monosubstituted sorbitol derivatives calculated by density functional theory (DFT) also confirmed the experimental results. On the other hand, the reactions of phenyl isocyanate with crosslinking agents were also performed using high excess isocyanate in order to determine the number of OH-groups participating effectively in the crosslinking process. However, due to the huge number of derivatives likely formed in these latter reactions, a simplified reaction scheme was introduced to describe the resulting product versus reaction time distributions detected by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-TOF MS). Based on the results, the kinetically equivalent functionality (fk) of each crosslinking agent was determined and found to be 2.26, 2.6, and 2.96 for glycerol, sorbitol, and sucrose, respectively.
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

Röth, Daniel, Jessica Molina-Franky, John C. Williams e Markus Kalkum. "Mass Spectrometric Detection of Formaldehyde-Crosslinked PBMC Proteins in Cell-Free DNA Blood Collection Tubes". Molecules 28, n.º 23 (30 de novembro de 2023): 7880. http://dx.doi.org/10.3390/molecules28237880.

Texto completo da fonte
Resumo:
Streck tubes are commonly used to collect blood samples to preserve cell-free circulating DNA. They contain imidazolidinyl urea as a formaldehyde-releasing agent to stabilize cells. We investigated whether the released formaldehyde leads to crosslinking of intracellular proteins. Therefore, we employed a shotgun proteomics experiment on human peripheral blood mononuclear cells (PBMCs) that were isolated from blood collected in Streck tubes, EDTA tubes, EDTA tubes containing formaldehyde, or EDTA tubes containing allantoin. The identified crosslinks were validated in parallel reaction monitoring LC/MS experiments. In total, we identified and validated 45 formaldehyde crosslinks in PBMCs from Streck tubes, which were also found in PBMCs from formaldehyde-treated blood, but not in EDTA- or allantoin-treated samples. Most were derived from cytoskeletal proteins and histones, indicating the ability of Streck tubes to fix cells. In addition, we confirm a previous observation that formaldehyde crosslinking of proteins induces a +24 Da mass shift more frequently than a +12 Da shift. The crosslinking capacity of Streck tubes needs to be considered when selecting blood-collection tubes for mass-spectrometry-based proteomics or metabolomic experiments.
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

Faustino, Anneliese M., e Stephen D. Fried. "Mapping Structural Intermediates during Co-Translational Folding of Hsp70 with Crosslinking Mass Spectrometry". Biophysical Journal 120, n.º 3 (fevereiro de 2021): 197a. http://dx.doi.org/10.1016/j.bpj.2020.11.1356.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

Livney, Y. D., A. L. Schwan e D. G. Dalgleish. "A Study of β-Casein Tertiary Structure by Intramolecular Crosslinking and Mass Spectrometry". Journal of Dairy Science 87, n.º 11 (novembro de 2004): 3638–47. http://dx.doi.org/10.3168/jds.s0022-0302(04)73502-x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

HAH, Sang Soo. "Retraction: Determination of Protein-Ligand Interactions Using Accelerator Mass Spectrometry: Modified Crosslinking Assay". Analytical Sciences 28, n.º 8 (2012): 827. http://dx.doi.org/10.2116/analsci.28.827.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

Bullock, Joshua M. A., Konstantinos Thalassinos e Maya Topf. "Jwalk and MNXL web server: model validation using restraints from crosslinking mass spectrometry". Bioinformatics 34, n.º 20 (7 de maio de 2018): 3584–85. http://dx.doi.org/10.1093/bioinformatics/bty366.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

Debelyy, Mykhaylo O., Patrice Waridel, Manfredo Quadroni, Roger Schneiter e Andreas Conzelmann. "Chemical crosslinking and mass spectrometry to elucidate the topology of integral membrane proteins". PLOS ONE 12, n.º 10 (26 de outubro de 2017): e0186840. http://dx.doi.org/10.1371/journal.pone.0186840.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

Fukumoto, Jutaro, Helena Hernández-Cuervo, Venkata Ramireddy Narala, Sahebgowda S. Patil, Ramani Soundararajan, Matthew Alleyn, Mason T. Breitzig, Richard F. Lockey e Narasaiah Kolliputi. "Identification of ALDH2 Interacting Proteins by Chemical Crosslinking, Co-Immunoprecipitation and Mass Spectrometry". Journal of Allergy and Clinical Immunology 141, n.º 2 (fevereiro de 2018): AB176. http://dx.doi.org/10.1016/j.jaci.2017.12.559.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

Chavez, Juan D., Chi Fung Lee, Arianne Caudal, Andrew Keller, Rong Tian e James E. Bruce. "Chemical Crosslinking Mass Spectrometry Analysis of Protein Conformations and Supercomplexes in Heart Tissue". Cell Systems 6, n.º 1 (janeiro de 2018): 136–41. http://dx.doi.org/10.1016/j.cels.2017.10.017.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

Zhou, Xiangzhe, Feng Liu, Nuomin Li e Yongqian Zhang. "Large-Scale Qualitative and Quantitative Assessment of Dityrosine Crosslinking Omics in Response to Endogenous and Exogenous Hydrogen Peroxide in Escherichia coli". Antioxidants 12, n.º 4 (23 de março de 2023): 786. http://dx.doi.org/10.3390/antiox12040786.

Texto completo da fonte
Resumo:
Excessive hydrogen peroxide causes oxidative stress in cells. The oxidation of two tyrosine residues in proteins can generate o,o′-dityrosine, a putative biomarker for protein oxidation, which plays critical roles in a variety of organisms. Thus far, few studies have investigated dityrosine crosslinking under endogenous or exogenous oxidative conditions at the proteome level, and its physiological function remains largely unknown. In this study, to investigate qualitative and quantitative dityrosine crosslinking, two mutant Escherichia coli strains and one mutant strain supplemented with H2O2 were used as models for endogenous and exogenous oxidative stress, respectively. By integrating high-resolution liquid chromatography—mass spectrometry and bioinformatic analysis, we created the largest dityrosine crosslinking dataset in E. coli to date, identifying 71 dityrosine crosslinks and 410 dityrosine loop links on 352 proteins. The dityrosine-linked proteins are mainly involved in taurine and hypotaurine metabolism, citrate cycle, glyoxylate, dicarboxylate metabolism, carbon metabolism, etc., suggesting that dityrosine crosslinking may play a critical role in regulating the metabolic pathways in response to oxidative stress. In conclusion, we have reported the most comprehensive dityrosine crosslinking in E. coli for the first time, which is of great significance in revealing its function in oxidative stress.
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

Endres, Kevin J., Rodger A. Dilla, Matthew L. Becker e Chrys Wesdemiotis. "Poly(ethylene glycol) Hydrogel Crosslinking Chemistries Identified via Atmospheric Solids Analysis Probe Mass Spectrometry". Macromolecules 54, n.º 17 (28 de agosto de 2021): 7754–64. http://dx.doi.org/10.1021/acs.macromol.1c00765.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

Sinz, Andrea. "Investigation of protein–protein interactions in living cells by chemical crosslinking and mass spectrometry". Analytical and Bioanalytical Chemistry 397, n.º 8 (15 de janeiro de 2010): 3433–40. http://dx.doi.org/10.1007/s00216-009-3405-5.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

Muizebelt, W. J., J. J. Donkerbroek, M. W. F. Nielen, J. B. Hussem, M. E. F. Biemond, R. P. Klaasen e K. H. Zabel. "Oxidative crosslinking of alkyd resins studied with mass spectrometry and NMR using model compounds". Journal of Coatings Technology 70, n.º 1 (janeiro de 1998): 83–93. http://dx.doi.org/10.1007/bf02720501.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

Cammarata, Michael B., e Jennifer S. Brodbelt. "Characterization of Intra- and Intermolecular Protein Crosslinking by Top Down Ultraviolet Photodissociation Mass Spectrometry". ChemistrySelect 1, n.º 3 (março de 2016): 590–93. http://dx.doi.org/10.1002/slct.201600140.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

Al-Eryani, Yusra, Morten Ib Rasmussen, Sven Kjellström, Peter Højrup, Cecilia Emanuelsson e Claes von Wachenfeldt. "Exploring structure and interactions of the bacterial adaptor protein YjbH by crosslinking mass spectrometry". Proteins: Structure, Function, and Bioinformatics 84, n.º 9 (15 de junho de 2016): 1234–45. http://dx.doi.org/10.1002/prot.25072.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

Faustino, Anneliese M., e Stephen D. Fried. "Progress toward proteome-wide photo-crosslinking mass spectrometry to interrogate protein networks in vivo". Biophysical Journal 123, n.º 3 (fevereiro de 2024): 347a—348a. http://dx.doi.org/10.1016/j.bpj.2023.11.2112.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

van Ooli, W. J., e M. Nahmias. "Surface Characterization of Rubber by Secondary Ion Mass Spectrometry". Rubber Chemistry and Technology 62, n.º 4 (1 de setembro de 1989): 656–82. http://dx.doi.org/10.5254/1.3536267.

Texto completo da fonte
Resumo:
Abstract It has been demonstrated that static SIMS is potentially a very useful technique for the characterization of rubber surfaces. Its major capability is to provide molecular structural information of the polymer in addition to elemental analysis, which would also be possible with other surface techniques such as XPS or AES. The SIMS spectra are in many cases highly characteristic, and they can be used to identify the type and structure of the hydrocarbon polymer. In addition, structural changes in the rubber surface can be detected, and very useful information on the types and amounts of sulfur crosslinks can be obtained as well, as has been published elsewhere. Therefore, the technique shows great promise as a tool for the study of surface-related rubber phenomena, such as oxidation, wear, tack, antiozonant and antioxidant performance and mechanisms, and also for the study of the adhesion between dissimilar rubbers or between rubbers and other materials, such as metals. Before SIMS can be routinely used in rubber laboratories, a considerable amount of basic and fundamental work will have to be done because the spectra of many materials are not known, and they cannot always be predicted either. Therefore, a rubber-related data base will have to be built up with well-characterized polymers but also using clean films of various rubber additives. Crosslinking studies will have to be confirmed with compounds of known crosslink structures, e.g., by using different polymers, different types of accelerators, and a series of model compounds of organic sulfides.
Estilos ABNT, Harvard, Vancouver, APA, etc.
45

Argo, Andrew S., Chunxiao Shi, Fan Liu e Michael B. Goshe. "Performing protein crosslinking using gas-phase cleavable chemical crosslinkers and liquid chromatography-tandem mass spectrometry". Methods 89 (novembro de 2015): 64–73. http://dx.doi.org/10.1016/j.ymeth.2015.06.011.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
46

Ferraro, Nicholas A., e Michael Cascio. "Differential State-Dependent Crosslinking of Azi-Cholesterol with Human A1 Glycine Receptor using Mass Spectrometry". Biophysical Journal 116, n.º 3 (fevereiro de 2019): 223a. http://dx.doi.org/10.1016/j.bpj.2018.11.1227.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
47

Tomcho, Kayce A., Hannah E. Gering, Rathna J. Veeramachaneni, David J. Lapinsky e Michael Cascio. "Targeted State Dependent Crosslinking Mass Spectrometry (CXMS) of the Human Alpha 1 Glycine Receptor (GLyR)". Biophysical Journal 116, n.º 3 (fevereiro de 2019): 392a. http://dx.doi.org/10.1016/j.bpj.2018.11.2120.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
48

Armony, Gad, Albert J. R. Heck e Wei Wu. "Extracellular crosslinking mass spectrometry reveals HLA class I – HLA class II interactions on the cell surface". Molecular Immunology 136 (agosto de 2021): 16–25. http://dx.doi.org/10.1016/j.molimm.2021.05.010.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
49

Davydov, Dmitri R., Bikash Dangi, Guihua Yue, Deepak S. Ahire, Bhagwat Prasad e Victor G. Zgoda. "Exploring the Interactome of Cytochrome P450 2E1 in Human Liver Microsomes with Chemical Crosslinking Mass Spectrometry". Biomolecules 12, n.º 2 (22 de janeiro de 2022): 185. http://dx.doi.org/10.3390/biom12020185.

Texto completo da fonte
Resumo:
Aiming to elucidate the system-wide effects of the alcohol-induced increase in the content of cytochrome P450 2E1 (CYP2E1) on drug metabolism, we explored the array of its protein-protein interactions (interactome) in human liver microsomes (HLM) with chemical crosslinking mass spectrometry (CXMS). Our strategy employs membrane incorporation of purified CYP2E1 modified with photoreactive crosslinkers benzophenone-4-maleimide and 4-(N-succinimidylcarboxy)benzophenone. Exposure of bait-incorporated HLM samples to light was followed by isolating the His-tagged bait protein and its crosslinked aggregates on Ni-NTA agarose. Analyzing the individual bands of SDS-PAGE slabs of thereby isolated protein with the toolset of untargeted proteomics, we detected the crosslinked dimeric and trimeric complexes of CYP2E1 with other drug-metabolizing enzymes. Among the most extensively crosslinked partners of CYP2E1 are the cytochromes P450 2A6, 2C8, 3A4, 4A11, and 4F2, UDP-glucuronosyltransferases (UGTs) 1A and 2B, fatty aldehyde dehydrogenase (ALDH3A2), epoxide hydrolase 1 (EPHX1), disulfide oxidase 1α (ERO1L), and ribophorin II (RPN2). These results demonstrate the exploratory power of the proposed CXMS strategy and corroborate the concept of tight functional integration in the human drug-metabolizing ensemble through protein-protein interactions of the constituting enzymes.
Estilos ABNT, Harvard, Vancouver, APA, etc.
50

Leitner, Alexander, Marco Faini, Florian Stengel e Ruedi Aebersold. "Crosslinking and Mass Spectrometry: An Integrated Technology to Understand the Structure and Function of Molecular Machines". Trends in Biochemical Sciences 41, n.º 1 (janeiro de 2016): 20–32. http://dx.doi.org/10.1016/j.tibs.2015.10.008.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia