Siga este link para ver outros tipos de publicações sobre o tema: Crop protection.

Artigos de revistas sobre o tema "Crop protection"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Crop protection".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

Matthews, G. A. "Crop production and crop protection". Crop Protection 14, n.º 8 (dezembro de 1995): 689–90. http://dx.doi.org/10.1016/0261-2194(95)90011-x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Shishatskiy, Oleg N. "Global Crop Protection Industry". Journal of Siberian Federal University. Biology 14, n.º 4 (dezembro de 2021): 541–49. http://dx.doi.org/10.17516/1997-1389-0371.

Texto completo da fonte
Resumo:
The problem of the steady food supply to the population is becoming particularly pressing in the face of a projected decrease in the specific area of agricultural land per resident. In an effort to increase crop yields, agriculture depends mainly on chemical plant protection agents (PPAs), which produce strong negative effects. The research activities need to be concentrated on developing the alternative plant protection technologies that will ensure a sufficient crop yield increase. Based on statistical data of the Food and Agriculture Organization of the United Nations (FAO) and studies and analytical reviews on protection of agricultural crops, the present work describes current market trends in the global crop protection industry: the volume and dynamics of the global PPA market, the regional distribution of this market, and the consolidation of key producers. Recent years have seen a decrease in the number of new chemical PPAs entering the market due to the greater research effort devoted to novel crop protection technologies, in particular genetically modified crops (GM crops), biological PPAs, and other alternative technologies, which are being developed and put on the market in response to increasingly stringent regulations in agrochemistry and ecology. Recommendations are made to producers of agrochemicals that will allow them to remain competitive and contribute to satisfaction of the growing demand for agricultural products
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Racke, Ken, Pieter Spanoghe, Nathan De Geyter e Bipul Saha. "Crop Protection Chemistry". Chemistry International 41, n.º 4 (1 de outubro de 2019): 53–55. http://dx.doi.org/10.1515/ci-2019-0429.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Jamison, Judy. "Crop fungal protection". Nature Biotechnology 18, n.º 12 (dezembro de 2000): 1233. http://dx.doi.org/10.1038/82314.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Aeschlimann, J. P. "Integrated crop protection". Agriculture, Ecosystems & Environment 13, n.º 1 (abril de 1985): 89–92. http://dx.doi.org/10.1016/0167-8809(85)90107-0.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Umaerus, Vilhelm. "Crop rotation in relation to crop protection". Netherlands Journal of Plant Pathology 98, S2 (março de 1992): 241–49. http://dx.doi.org/10.1007/bf01974491.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Hernández-Soto, Alejandro, e Randall Chacón-Cerdas. "RNAi Crop Protection Advances". International Journal of Molecular Sciences 22, n.º 22 (10 de novembro de 2021): 12148. http://dx.doi.org/10.3390/ijms222212148.

Texto completo da fonte
Resumo:
RNAi technology is a versatile, effective, safe, and eco-friendly alternative for crop protection. There is plenty of evidence of its use through host-induced gene silencing (HIGS) and emerging evidence that spray-induced gene silencing (SIGS) techniques can work as well to control viruses, bacteria, fungi, insects, and nematodes. For SIGS, its most significant challenge is achieving stability and avoiding premature degradation of RNAi in the environment or during its absorption by the target organism. One alternative is encapsulation in liposomes, virus-like particles, polyplex nanoparticles, and bioclay, which can be obtained through the recombinant production of RNAi in vectors, transgenesis, and micro/nanoencapsulation. The materials must be safe, biodegradable, and stable in multiple chemical environments, favoring the controlled release of RNAi. Most of the current research on encapsulated RNAi focuses primarily on oral delivery to control insects by silencing essential genes. The regulation of RNAi technology focuses on risk assessment using different approaches; however, this technology has positive economic, environmental, and human health implications for its use in agriculture. The emergence of alternatives combining RNAi gene silencing with the induction of resistance in crops by elicitation and metabolic control is expected, as well as multiple silencing and biotechnological optimization of its large-scale production.
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Hicks, Brian. "Future of crop protection". Pesticide Outlook 13, n.º 3 (5 de julho de 2002): 104. http://dx.doi.org/10.1039/b205182f.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Matthews, Graham. "Crop protection in Turkmenistan". Pesticide Outlook 12, n.º 4 (6 de novembro de 2001): 149. http://dx.doi.org/10.1039/b106291n.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Abelson, Philip H. "Uncertainties About Crop Protection". Weed Technology 11, n.º 3 (setembro de 1997): 629–32. http://dx.doi.org/10.1017/s0890037x00045553.

Texto completo da fonte
Resumo:
My remarks today will be largely devoted to assessing some of the effects of the Food Quality Protection Act of 1996. As introduced, the act had wide support among grower groups, the food industry, and the pesticide industry. Voting on the bill was unanimous in both House and Senate, and action was completed in 1 wk. The legislation was signed by the President on August 3, 1996. President Clinton wanted to be seen as a strong advocate of children's health. The Republican Congress wanted to show that it was pro-environment.
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

Wrest Park History Contributors. "Chapter 6 Crop protection". Biosystems Engineering 103 (janeiro de 2009): 70–78. http://dx.doi.org/10.1016/j.biosystemseng.2008.11.019.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Matthews, G. A. "Crop protection chemicals reference". Crop Protection 10, n.º 1 (fevereiro de 1991): 79. http://dx.doi.org/10.1016/0261-2194(91)90033-n.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

le Patourel, G. "Crop protection chemicals reference". Crop Protection 11, n.º 1 (fevereiro de 1992): 95. http://dx.doi.org/10.1016/0261-2194(92)90088-m.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Matthews, G. A. "Crop protection chemicals reference". Crop Protection 12, n.º 4 (junho de 1993): 319. http://dx.doi.org/10.1016/0261-2194(93)90056-o.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

Greenland, D. J. "Better crop protection information". Tropical Pest Management 36, n.º 3 (janeiro de 1990): 220–22. http://dx.doi.org/10.1080/09670879009371476.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Azoulay, Jean-Philippe. "European Crop Protection Association". Impact 2017, n.º 1 (9 de janeiro de 2017): 92–93. http://dx.doi.org/10.21820/23987073.2017.1.92.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

OHKAWA, Hideo. "Biotechnology and crop protection." Kagaku To Seibutsu 25, n.º 7 (1987): 454–61. http://dx.doi.org/10.1271/kagakutoseibutsu1962.25.454.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Flood, Julie. "Fungicides in Crop Protection." Plant Pathology 48, n.º 6 (dezembro de 1999): 837–38. http://dx.doi.org/10.1046/j.1365-3059.1999.0411d.x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Tombo, Gerardo M. Ramos, e Daniel Belluš. "Chirality and Crop Protection". Angewandte Chemie International Edition in English 30, n.º 10 (outubro de 1991): 1193–215. http://dx.doi.org/10.1002/anie.199111933.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

Spencer, E. Y. "Crop protection chemicals reference". Pesticide Biochemistry and Physiology 26, n.º 3 (dezembro de 1986): 382. http://dx.doi.org/10.1016/0048-3575(86)90079-9.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Doss, R. P. "Crop protection chemicals reference". Scientia Horticulturae 43, n.º 1-2 (junho de 1990): 179–80. http://dx.doi.org/10.1016/0304-4238(90)90049-k.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

Ramesh, Desikan, Mohanrangan Chandrasekaran, Raga Palanisamy Soundararajan, Paravaikkarasu Pillai Subramanian, Vijayakumar Palled e Deivasigamani Praveen Kumar. "Solar-Powered Plant Protection Equipment: Perspective and Prospects". Energies 15, n.º 19 (8 de outubro de 2022): 7379. http://dx.doi.org/10.3390/en15197379.

Texto completo da fonte
Resumo:
The major challenges in sustainable and profitable agriculture are developing high-yielding crop varieties and reducing crop losses. Presently, there are significant crop losses due to weed/bird/insect/animal attacks. Among the various renewable energy sources, solar energy is utilized for different agricultural operations, especially in plant protection applications. Solar photovoltaic (PV) devices present a positive approach to sustainable crop production by reducing crop loss in various ways. This might result in the extensive use of PV devices in the near future. PV-based plant protection equipment/devices are primarily utilized in protecting crops from birds, weeds, or insects. Solar-powered plant protection equipment such as light traps, bird scarers, sprayers, weeders, and fencing are gaining interest due to their lower operational costs, simple design, no fuel requirements, and zero carbon emissions. Most of these PV devices require 12 V rechargeable batteries with different currents to meet the load, which varies from 2 to 1500 W. This paper briefly discusses the applications of solar-powered plant protection devices in sustainable agriculture and their future prospects.
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

Hill, Catherine M. "Primate Crop Feeding Behavior, Crop Protection, and Conservation". International Journal of Primatology 38, n.º 2 (3 de fevereiro de 2017): 385–400. http://dx.doi.org/10.1007/s10764-017-9951-3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

Urech, P. "RISK MINIMISATION IN CROP PROTECTION". Acta Horticulturae, n.º 525 (março de 2000): 39–44. http://dx.doi.org/10.17660/actahortic.2000.525.2.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

Lamberth, Clemens. "Nucleoside Chemistry in Crop Protection". HETEROCYCLES 65, n.º 3 (2005): 667. http://dx.doi.org/10.3987/rev-04-591.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

Lamberth, Clemens. "Pyrimidine Chemistry in Crop Protection". HETEROCYCLES 68, n.º 3 (2006): 561. http://dx.doi.org/10.3987/rev-05-604.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

Lamberth, Clemens. "Pyrazole Chemistry in Crop Protection". HETEROCYCLES 71, n.º 7 (2007): 1467. http://dx.doi.org/10.3987/rev-07-613.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

Peteu, Serban F., Florin Oancea, Oana A. Sicuia, Florica Constantinescu e Sorina Dinu. "Responsive Polymers for Crop Protection". Polymers 2, n.º 3 (19 de agosto de 2010): 229–51. http://dx.doi.org/10.3390/polym2030229.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

Dimmock, Jim, e Gareth Edwards-Jones. "Crop protection in alternative crops". Outlooks on Pest Management 17, n.º 1 (1 de fevereiro de 2006): 24–27. http://dx.doi.org/10.1564/16feb08.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

Kidd, Hamish. "New chemistries in crop protection". Pesticide Outlook 11, n.º 4 (2000): 142–44. http://dx.doi.org/10.1039/b006241n.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

Lamberth, Clemens. "Sulfur chemistry in crop protection". Journal of Sulfur Chemistry 25, n.º 1 (fevereiro de 2004): 39–62. http://dx.doi.org/10.1080/17415990310001612290.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

Younie, David, e Audrey Litterick. "Crop protection in organic farming". Pesticide Outlook 13, n.º 4 (29 de agosto de 2002): 158–61. http://dx.doi.org/10.1039/b206511h.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

May, Mike. "Crop Protection in Sugar Beet". Pesticide Outlook 12, n.º 5 (7 de novembro de 2001): 188–91. http://dx.doi.org/10.1039/b108605g.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

Combellack, Harry. "Application technology for crop protection". Field Crops Research 54, n.º 1 (agosto de 1997): 77–79. http://dx.doi.org/10.1016/s0378-4290(97)00008-7.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

Gross, Michael. "New directions in crop protection". Current Biology 21, n.º 17 (setembro de 2011): R641—R643. http://dx.doi.org/10.1016/j.cub.2011.08.055.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

Newton, Michael. "3rd crop protection chemicals reference". Agriculture, Ecosystems & Environment 24, n.º 4 (dezembro de 1988): 461–62. http://dx.doi.org/10.1016/0167-8809(88)90127-2.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

Cammell, M. E. "Integrated crop protection in cereals". Agriculture, Ecosystems & Environment 32, n.º 3-4 (outubro de 1990): 342–43. http://dx.doi.org/10.1016/0167-8809(90)90175-d.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

Lamberth, Clemens. "Alkyne chemistry in crop protection". Bioorganic & Medicinal Chemistry 17, n.º 12 (junho de 2009): 4047–63. http://dx.doi.org/10.1016/j.bmc.2008.11.037.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

Dayan, Franck E., Charles L. Cantrell e Stephen O. Duke. "Natural products in crop protection". Bioorganic & Medicinal Chemistry 17, n.º 12 (junho de 2009): 4022–34. http://dx.doi.org/10.1016/j.bmc.2009.01.046.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

Baker, R., G. A. Matthews, J. R. Nechols e R. G. Turner. "Crop protection increases in frequency". Crop Protection 11, n.º 6 (dezembro de 1992): 491. http://dx.doi.org/10.1016/0261-2194(92)90164-z.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

Hatfield, P. L., e P. J. Pinter. "Remote sensing for crop protection". Crop Protection 12, n.º 6 (setembro de 1993): 403–13. http://dx.doi.org/10.1016/0261-2194(93)90001-y.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

Landers, Andrew. "Application technology for crop protection". Crop Protection 14, n.º 3 (maio de 1995): 261–62. http://dx.doi.org/10.1016/0261-2194(95)90007-1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

WHEATLEY, G. A. "Changing scenes of crop protection". Annals of Applied Biology 111, n.º 1 (agosto de 1987): 1–20. http://dx.doi.org/10.1111/j.1744-7348.1987.tb01428.x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

Waltz, Emily. "GM crop protection act fizzles". Nature Biotechnology 31, n.º 11 (novembro de 2013): 953. http://dx.doi.org/10.1038/nbt1113-953.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
45

Lamberth, Clemens. "Pyridazine Chemistry in Crop Protection". Journal of Heterocyclic Chemistry 54, n.º 6 (14 de julho de 2017): 2974–84. http://dx.doi.org/10.1002/jhet.2945.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
46

Schiller, Hildegard. "Crop protection and sustainable agriculture". Agriculture, Ecosystems & Environment 51, n.º 3 (dezembro de 1994): 349–51. http://dx.doi.org/10.1016/0167-8809(94)90146-5.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
47

Copping, Leonard G. "New chemistries for crop protection". Pest Management Science 57, n.º 2 (2001): 114. http://dx.doi.org/10.1002/1526-4998(200102)57:2<114::aid-ps293>3.0.co;2-c.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
48

Lamberth, Clemens. "Heterocyclic chemistry in crop protection". Pest Management Science 69, n.º 10 (29 de agosto de 2013): 1106–14. http://dx.doi.org/10.1002/ps.3615.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
49

Lamberth, Clemens. "ChemInform Abstract: Chemistry in Crop Protection. Part 6. Amino Acid Chemistry in Crop Protection". ChemInform 41, n.º 47 (28 de outubro de 2010): no. http://dx.doi.org/10.1002/chin.201047270.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
50

Neill, D. E., e G. B. Follas. "Use of crop sensing technology in crop protection research". New Zealand Plant Protection 64 (8 de janeiro de 2011): 287. http://dx.doi.org/10.30843/nzpp.2011.64.5993.

Texto completo da fonte
Resumo:
Crop sensing technology is a new tool being rapidly adopted by farmers as a key component of precision agriculture This technology uses sensors to calculate normalized difference vegetative index (NDVI) by emitting red and near infrared light towards the crop and measuring the crops reflectance NDVI is used to evaluate canopy greenness plant biomass and as an indicator of plant health and vigour The methodology relevance and benefits of using this technology in crop protection trials are currently unclear A handheld Greenseeker (Ntech Industries USA) was used to record NDVI on a range of trials from 20082011 to establish whether crop sensing could replace visual assessments for disease and enable yield prediction NDVI readings were compared against other parameters measured in the trials such as disease scores green leaf area percentage and yields In some trials the NDVI followed similar trends to disease green leaf retention and yields However in other cases where clear treatment effects were recorded through visual or yield assessments there were no differences in NDVI between the treatments As NDVI can be affected by a number of factors it was concluded that crop sensing technology can be used as an additional objective measurement in conjunction with standard assessment practice but without further investigation cannot replace traditional assessment methods
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia