Artigos de revistas sobre o tema "Critical stress intensity factor"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Critical stress intensity factor".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Dharmarajan, N., e C. Vipulanandan. "Critical stress intensity factor of epoxy mortar". Polymer Engineering and Science 28, n.º 18 (setembro de 1988): 1182–91. http://dx.doi.org/10.1002/pen.760281808.
Texto completo da fonteDaud, M. A. M., Zainuddin Sajuri, Mohd Zaidi Omar e Junaidi Syarif. "Critical Stress Intensity Factor Determination for AZ61 Magnesium Alloy". Key Engineering Materials 462-463 (janeiro de 2011): 1121–26. http://dx.doi.org/10.4028/www.scientific.net/kem.462-463.1121.
Texto completo da fonteZarzycki, J. "Critical stress intensity factors of wet gels". Journal of Non-Crystalline Solids 100, n.º 1-3 (março de 1988): 359–63. http://dx.doi.org/10.1016/0022-3093(88)90046-4.
Texto completo da fonteZheng, Heng Xiang, e Cai Ying Chen. "Research on Interface Critical Fracture of Different Materials Based on Critical Fracture Curve". Applied Mechanics and Materials 204-208 (outubro de 2012): 3090–93. http://dx.doi.org/10.4028/www.scientific.net/amm.204-208.3090.
Texto completo da fonteSATO, Kiyoshi, Hisato YAMAMOTO, Atsushi TAYA e Hiroyuki OKUYAMA. "Influence of Moisture Content on Critical Stress Intensity Factor of Wood." Journal of the Society of Materials Science, Japan 49, n.º 4 (2000): 365–67. http://dx.doi.org/10.2472/jsms.49.365.
Texto completo da fonteMeriem-Benziane, Madjid, Gadi Ibrahim, Zahloul Hamou e BelAbbes Bachir-Bouiadjra. "Stress intensity factor investigation of critical surface crack in a cylinder". Advances in Materials and Processing Technologies 1, n.º 1-2 (3 de abril de 2015): 36–42. http://dx.doi.org/10.1080/2374068x.2015.1111702.
Texto completo da fonteYoshihara, Hiroshi. "Simple estimation of critical stress intensity factors of wood by tests with double cantilever beam and three-point end-notched flexure". Holzforschung 61, n.º 2 (1 de março de 2007): 182–89. http://dx.doi.org/10.1515/hf.2007.032.
Texto completo da fonteAnam, Khairul, e Chih Kuang Lin. "Thermal Stress Intensity Factors of Crack in Solid Oxide Fuel Cells". Applied Mechanics and Materials 493 (janeiro de 2014): 331–36. http://dx.doi.org/10.4028/www.scientific.net/amm.493.331.
Texto completo da fonteAbuzaid, Ahmed, Meftah Hrairi e Mohd Sultan Dawood. "Mode I Stress Intensity Factor for a Cracked Plate with an Integrated Piezoelectric Actuator". Advanced Materials Research 1115 (julho de 2015): 517–22. http://dx.doi.org/10.4028/www.scientific.net/amr.1115.517.
Texto completo da fonteToribio, J., F. J. Ayaso, B. González, J. C. Matos, D. Vergara e M. Lorenzo. "Critical stress intensity factors in steel cracked wires". Materials & Design 32, n.º 8-9 (setembro de 2011): 4424–29. http://dx.doi.org/10.1016/j.matdes.2011.03.064.
Texto completo da fonteAdams, George G. "Critical value of the generalized stress intensity factor for a crack perpendicular to an interface". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 471, n.º 2183 (novembro de 2015): 20150571. http://dx.doi.org/10.1098/rspa.2015.0571.
Texto completo da fonteMitchell, DMR, e ER Abril. "The Influence of Initial Crack Length on Critical Stress Intensity Factor K1". Journal of Testing and Evaluation 34, n.º 5 (2006): 12660. http://dx.doi.org/10.1520/jte12660.
Texto completo da fonteNazmus Sakib, A. R., e Ashfaq Adnan. "On the size-dependent critical stress intensity factor of confined brittle nanofilms". Engineering Fracture Mechanics 86 (maio de 2012): 13–22. http://dx.doi.org/10.1016/j.engfracmech.2012.02.003.
Texto completo da fonteStupishin, Leonid, Victor Kabanov e Aleksander Masalov. "Fracture Resistance of Bended Glued Timber Elements with Flaws". Advanced Materials Research 988 (julho de 2014): 363–66. http://dx.doi.org/10.4028/www.scientific.net/amr.988.363.
Texto completo da fonteVasovic, Ivana, Stevan Maksimovic, Katarina Maksimovic, Slobodan Stupar, Gordana Bakic e Mirko Maksimovic. "Determination of Stress Intensity Factors in Low Pressure Turbine Rotor Discs". Mathematical Problems in Engineering 2014 (2014): 1–9. http://dx.doi.org/10.1155/2014/304638.
Texto completo da fonteVAKULENKO, Igor, Svetlana PROYDAK e Hangardas ASKEROV. "The calculation of stress intensity factor steel of railway wheels". Scientific Journal of Silesian University of Technology. Series Transport 109 (1 de dezembro de 2020): 187–93. http://dx.doi.org/10.20858/sjsutst.2020.109.17.
Texto completo da fonteSundaresan, S., e B. Nageswara Rao. "Stress Intensity at the Initiation of Instability by R Curve". Applied Mechanics and Materials 592-594 (julho de 2014): 1160–64. http://dx.doi.org/10.4028/www.scientific.net/amm.592-594.1160.
Texto completo da fonteChen, Teng Hui. "Fracture Analysis for Attaching Fiber Reinforced Composite on V-Notch Wedge Structure". Materials Science Forum 909 (novembro de 2017): 133–42. http://dx.doi.org/10.4028/www.scientific.net/msf.909.133.
Texto completo da fonteTumanov, A. V., e N. V. Boychenko. "Interpretation of the generalized parameter of the probability of failure through the plastic stress intensity factor". PNRPU Mechanics Bulletin, n.º 1 (15 de dezembro de 2021): 86–94. http://dx.doi.org/10.15593/perm.mech/2021.1.09.
Texto completo da fonteZebri, O., H. El Minor e A. Bendarma. "Evolution of Tenacity in Mixed Mode Fracture – Volumetric Approach". Mechanics and Mechanical Engineering 22, n.º 4 (2 de setembro de 2020): 931–38. http://dx.doi.org/10.2478/mme-2018-0073.
Texto completo da fonteFang, Qiang. "A Comparative Study of Delayed Hydride Cracking in Zr-3.5Sn-0.8Nb-0.8Mo and Zr-2.5Nb". Materials Science Forum 917 (março de 2018): 207–11. http://dx.doi.org/10.4028/www.scientific.net/msf.917.207.
Texto completo da fonteChasiotis, I., S. W. Cho e K. Jonnalagadda. "Fracture Toughness and Subcritical Crack Growth in Polycrystalline Silicon". Journal of Applied Mechanics 73, n.º 5 (10 de dezembro de 2005): 714–22. http://dx.doi.org/10.1115/1.2172268.
Texto completo da fonteAMAGAI, Masazumi. "The Effect of Polyimide Surface Chemistry and Morphology on Critical Stress Intensity Factor." Journal of Japan Institute of Electronics Packaging 3, n.º 7 (2000): 569–77. http://dx.doi.org/10.5104/jiep.3.569.
Texto completo da fonteYew, C. H., e G. H. Liu. "The Fracture Tip and Critical Stress Intensity Factor of a Hydraulically Induced Fracture". SPE Production & Facilities 8, n.º 03 (1 de agosto de 1993): 171–77. http://dx.doi.org/10.2118/22875-pa.
Texto completo da fonteVINCENT, J. F. V., D. E. J. SAUNDERS e P. BEYTS. "THE USE OF CRITICAL STRESS INTENSITY FACTOR TO QUANTIFY "HARDNESS" AND "CRUNCHINESS" OBJECTIVELY". Journal of Texture Studies 33, n.º 2 (julho de 2002): 149–59. http://dx.doi.org/10.1111/j.1745-4603.2002.tb01341.x.
Texto completo da fonteAmagai, Masazumi. "The effect of polyimide surface chemistry and morphology on critical stress intensity factor". Microelectronics Reliability 40, n.º 12 (dezembro de 2000): 2077–86. http://dx.doi.org/10.1016/s0026-2714(00)00024-x.
Texto completo da fonteBrandt, A. M., e G. Prokopski. "Critical values of stress intensity factor in mode II fracture of cementitious composites". Journal of Materials Science 25, n.º 8 (agosto de 1990): 3605–10. http://dx.doi.org/10.1007/bf00575395.
Texto completo da fonteSARACOGLU, Goksel. "Using the Stress Concentration Factor in Determining the Fracture Toughness". Mechanics 28, n.º 5 (21 de outubro de 2022): 358–63. http://dx.doi.org/10.5755/j02.mech.31226.
Texto completo da fontePurba, Muhammad Rafi, Tulus Tulus, M. R. Syahputra e Sawaluddin Sawaluddin. "IMPLEMENTATION OF EXTENDED FINITE ELEMENT METHOD IN CRACK PROPAGATION OF CONCRETE". Journal of Fundamental Mathematics and Applications (JFMA) 5, n.º 1 (1 de julho de 2022): 1–8. http://dx.doi.org/10.14710/jfma.v5i1.14454.
Texto completo da fonteOsaretin, Meshach, Sylvester Onyemaechi Edelugo, Patrick Udeme Akpan, Cornelius Ogbodo Anayo Agbo, Paul Amaechi Ozor e Nita Inderlal Sukdeo. "Stress Intensity Factor of E-Glass Fiber Reinforced Polyester Composites". Materials Science Forum 1115 (29 de fevereiro de 2024): 9–19. http://dx.doi.org/10.4028/p-nld6we.
Texto completo da fonteKravchuk, Andriy, e Ievgen Kondriakov. "Determination of fracture toughness for steel 22k from the results of tests of different types specimens". Bulletin of the National Technical University «KhPI» Series: New solutions in modern technologies, n.º 3(9) (18 de outubro de 2021): 20–25. http://dx.doi.org/10.20998/2413-4295.2021.03.03.
Texto completo da fonteNáhlík, Luboš, Kateřina Štegnerová, Pavel Hutař e Zdeněk Majer. "Critical Value for Crack Propagation from Sharp V-Notch". Key Engineering Materials 592-593 (novembro de 2013): 177–80. http://dx.doi.org/10.4028/www.scientific.net/kem.592-593.177.
Texto completo da fonteYoung, A., D. P. Rooke e D. J. Cartwright. "Numerical study of balanced patch repairs to cracked sheets". Aeronautical Journal 93, n.º 929 (novembro de 1989): 327–34. http://dx.doi.org/10.1017/s0001924000017255.
Texto completo da fonteKiciak, A., G. Glinka e D. J. Burns. "Calculation of Stress Intensity Factors and Crack Opening Displacements for Cracks Subjected to Complex Stress Fields". Journal of Pressure Vessel Technology 125, n.º 3 (1 de agosto de 2003): 260–66. http://dx.doi.org/10.1115/1.1593080.
Texto completo da fonteŠtegnerová, Kateřina, Luboš Náhlík e Pavel Hutař. "Influence of the V-Notch Opening Angle on Critical Applied Force Values for the Crack Initiation from the Sharp V-Notch". Key Engineering Materials 627 (setembro de 2014): 165–68. http://dx.doi.org/10.4028/www.scientific.net/kem.627.165.
Texto completo da fonteHeidarvand, Majid, Naser Soltani e Farshid Hajializadeh. "Experimental and numerical determination of critical stress intensity factor of aluminum curved thin sheets under tensile stress". Journal of Mechanical Science and Technology 31, n.º 5 (maio de 2017): 2185–95. http://dx.doi.org/10.1007/s12206-017-0414-8.
Texto completo da fonteZhang, Feng, Xin Wang, Rumin Teng, Xiaoguang Guo e Yuanyou Wang. "Study on Stress Intensity Factor of the Pit-Crack Model for Portal Crane Girders". Sustainability 15, n.º 9 (6 de maio de 2023): 7621. http://dx.doi.org/10.3390/su15097621.
Texto completo da fonteSevcik, Martin, Pavel Hutar, Lubos Nahlik, Ralf Lach, Zdenek Knesl e Wolfgang Grellmann. "Crack propagation in a welded polyolefin pipe". International Journal of Structural Integrity 3, n.º 2 (25 de maio de 2012): 148–57. http://dx.doi.org/10.1108/17579861211235174.
Texto completo da fonteAhmed Nassar, Ameen. "Evaluation of Critical Stress Intensity Factor (Kic) for Plates Using New Crack Extension Technique". Engineering and Technology Journal 31, n.º 4A (1 de abril de 2013): 730–40. http://dx.doi.org/10.30684/etj.31.4a.11.
Texto completo da fonteJi, Chenlong, Zhongliang Zheng, Ziming Qin e Hao Xue. "Investigation of Multi-Factor Stress Corrosion Cracking Failure of Safe-End Feedwater Lines of Submarine Power System". Materials 17, n.º 6 (18 de março de 2024): 1381. http://dx.doi.org/10.3390/ma17061381.
Texto completo da fonteDing, Jun, Xia Huang, Wen Zhong Li e Xiang Guo Zeng. "Molecular Dynamics Simulation for Crack Propagation in Magnesium Alloy". Advanced Materials Research 472-475 (fevereiro de 2012): 2211–16. http://dx.doi.org/10.4028/www.scientific.net/amr.472-475.2211.
Texto completo da fonteHua, Wen, Jigang Xu, Shiming Dong, Jizhou Song e Qingyuan Wang. "Effect of Confining Pressure on Stress Intensity Factors for Cracked Brazilian Disk". International Journal of Applied Mechanics 07, n.º 03 (junho de 2015): 1550051. http://dx.doi.org/10.1142/s1758825115500519.
Texto completo da fonteKim, Hyung Jin, Sung Wi Koh, Jae Dong Kim e Byung Tak Kim. "Effect of the Size of the Reinforcement Phased on the Properties of Silica-Filled Composites". Materials Science Forum 544-545 (maio de 2007): 267–70. http://dx.doi.org/10.4028/www.scientific.net/msf.544-545.267.
Texto completo da fonteIkeda, Toru, Isao Arase, Yuya Ueno, Noriyuki Miyazaki, Nobutaka Ito, Mami Nagatake e Mitsuru Sato. "Strength Evaluation of Plastic Packages During Solder Reflow Process Using Stress Intensity Factors of V-Notch". Journal of Electronic Packaging 125, n.º 1 (1 de março de 2003): 31–38. http://dx.doi.org/10.1115/1.1525244.
Texto completo da fonteSADOVSKAYA, E., e S. LEONOVICH. "RELATIONSHIP OF THE STRESS-INTENSITY COEFFICIENT AT NORMAL SEPARATION AND THE STRENGTH IN TENSION". Herald of Polotsk State University. Series F. Civil engineering. Applied sciences 31, n.º 8 (29 de junho de 2022): 27–31. http://dx.doi.org/10.52928/2070-1683-2022-31-8-27-31.
Texto completo da fonteZhao, Rui-Huan, e J. C. M. Li. "Dynamic Emission of Dislocations From a Moving Crack". Journal of Engineering Materials and Technology 107, n.º 4 (1 de outubro de 1985): 277–81. http://dx.doi.org/10.1115/1.3225819.
Texto completo da fonteErdogan, F. "Slow Crack Growth in Glasses and Ceramics Under Residual and Applied Stresses". Journal of Electronic Packaging 111, n.º 1 (1 de março de 1989): 61–67. http://dx.doi.org/10.1115/1.3226510.
Texto completo da fonteChoi, Dong Ho, Hang Yong Choi, Sang Hwan Chung e Hoon Yoo. "Mixed-Mode Fatigue Crack Growth in Orthotropic Steel Decks". Key Engineering Materials 321-323 (outubro de 2006): 733–38. http://dx.doi.org/10.4028/www.scientific.net/kem.321-323.733.
Texto completo da fonteAndrianopoulos, N. P., e V. C. Boulougouris. "On an intrinsic relationship between plane stress and plane strain critical stress intensity factors". International Journal of Fracture 67, n.º 1 (maio de 1994): R9—R12. http://dx.doi.org/10.1007/bf00032369.
Texto completo da fonteLe, Minh-Quy. "Fracture of monolayer germanene: A molecular dynamics study". International Journal of Modern Physics B 32, n.º 22 (20 de agosto de 2018): 1850241. http://dx.doi.org/10.1142/s0217979218502417.
Texto completo da fonte