Literatura científica selecionada sobre o tema "Critical stress intensity factor"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Critical stress intensity factor".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Critical stress intensity factor"
Dharmarajan, N., e C. Vipulanandan. "Critical stress intensity factor of epoxy mortar". Polymer Engineering and Science 28, n.º 18 (setembro de 1988): 1182–91. http://dx.doi.org/10.1002/pen.760281808.
Texto completo da fonteDaud, M. A. M., Zainuddin Sajuri, Mohd Zaidi Omar e Junaidi Syarif. "Critical Stress Intensity Factor Determination for AZ61 Magnesium Alloy". Key Engineering Materials 462-463 (janeiro de 2011): 1121–26. http://dx.doi.org/10.4028/www.scientific.net/kem.462-463.1121.
Texto completo da fonteZarzycki, J. "Critical stress intensity factors of wet gels". Journal of Non-Crystalline Solids 100, n.º 1-3 (março de 1988): 359–63. http://dx.doi.org/10.1016/0022-3093(88)90046-4.
Texto completo da fonteZheng, Heng Xiang, e Cai Ying Chen. "Research on Interface Critical Fracture of Different Materials Based on Critical Fracture Curve". Applied Mechanics and Materials 204-208 (outubro de 2012): 3090–93. http://dx.doi.org/10.4028/www.scientific.net/amm.204-208.3090.
Texto completo da fonteSATO, Kiyoshi, Hisato YAMAMOTO, Atsushi TAYA e Hiroyuki OKUYAMA. "Influence of Moisture Content on Critical Stress Intensity Factor of Wood." Journal of the Society of Materials Science, Japan 49, n.º 4 (2000): 365–67. http://dx.doi.org/10.2472/jsms.49.365.
Texto completo da fonteMeriem-Benziane, Madjid, Gadi Ibrahim, Zahloul Hamou e BelAbbes Bachir-Bouiadjra. "Stress intensity factor investigation of critical surface crack in a cylinder". Advances in Materials and Processing Technologies 1, n.º 1-2 (3 de abril de 2015): 36–42. http://dx.doi.org/10.1080/2374068x.2015.1111702.
Texto completo da fonteYoshihara, Hiroshi. "Simple estimation of critical stress intensity factors of wood by tests with double cantilever beam and three-point end-notched flexure". Holzforschung 61, n.º 2 (1 de março de 2007): 182–89. http://dx.doi.org/10.1515/hf.2007.032.
Texto completo da fonteAnam, Khairul, e Chih Kuang Lin. "Thermal Stress Intensity Factors of Crack in Solid Oxide Fuel Cells". Applied Mechanics and Materials 493 (janeiro de 2014): 331–36. http://dx.doi.org/10.4028/www.scientific.net/amm.493.331.
Texto completo da fonteAbuzaid, Ahmed, Meftah Hrairi e Mohd Sultan Dawood. "Mode I Stress Intensity Factor for a Cracked Plate with an Integrated Piezoelectric Actuator". Advanced Materials Research 1115 (julho de 2015): 517–22. http://dx.doi.org/10.4028/www.scientific.net/amr.1115.517.
Texto completo da fonteToribio, J., F. J. Ayaso, B. González, J. C. Matos, D. Vergara e M. Lorenzo. "Critical stress intensity factors in steel cracked wires". Materials & Design 32, n.º 8-9 (setembro de 2011): 4424–29. http://dx.doi.org/10.1016/j.matdes.2011.03.064.
Texto completo da fonteTeses / dissertações sobre o assunto "Critical stress intensity factor"
Alkoles, Omar M. S. "Mechanical behaviour and fracture toughness of unfilled and short fibre filled polypropylene both drawn and undrawn. Experimental investigation the effect of fibre content and draw ratio on the mechanical properties of unfilled and short glass fibre filled polypropylene". Thesis, University of Bradford, 2011. http://hdl.handle.net/10454/5510.
Texto completo da fonteAlkoles, Omar M. "Mechanical behaviour and fracture toughness of unfilled and short fibre filled polypropylene both drawn and undrawn : experimental investigation of the effect of fibre content and draw ratio on the mechanical properties of unfilled and short glass fibre filled polypropylene". Thesis, University of Bradford, 2011. http://hdl.handle.net/10454/5510.
Texto completo da fonteLammens, Bastien. "Caractérisation de la décohésion dynamique des matériaux composites à matrice organique (CMO)". Electronic Thesis or Diss., Ecole centrale de Nantes, 2024. http://www.theses.fr/2024ECDN0007.
Texto completo da fonteOrganic matrix laminated composites are increasingly used in the aeronautical field to reduce the weight of structures. However, during an impact on this type of material, various damage mechanism can occur, such as delamination. This is a process of macroscopic decohesion of the interlaminar environment, which can be characterised by GIC (or KIC ). The literature shows a wide disparity in measurements due to incomplete decoupling of the effects of resin confinement by fibers, nonlinearitiesbehaviour and/or velocity effects. This work proposes to develop an experimental protocol to characterise pure resin usingfullfields measurements to methodically study these couplings. The goal is to evaluate the impact of the crack propagation speed and the structural effects on the fracture behaviour and in particular to extend Griffith's theory to laminated composites. Different specimen geometries are used to reproduce structural effects. Crack propagation speeds ranging from quasi-static to dynamic are studied and all the tests are analysed using linear elastic fracture mechanics and the fracture surfaces. Finally, this work proposes a model to describe the evolution of KIC for the resin HexplyM21 used in aeronautics field, from the non-singularterms of the stress field T-stress, B-stress and also the speed ȧ in the ranges [0 - 15] MPa, [- 200 - 10] MPa.m-0.5 et [10-6, 600] m.s-1 respectively
Keller, Scott. "Stress Intensity Factor Dependence of HG-AL Liquid Metal Embrittlement". Master's thesis, University of Central Florida, 2009. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/2220.
Texto completo da fonteM.S.M.E.
Department of Mechanical, Materials and Aerospace Engineering;
Engineering and Computer Science
Mechanical Engineering MSME
Teh, Lay Seong. "Library of geometric influences for stress intensity factor weight functions". Thesis, University College London (University of London), 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.566060.
Texto completo da fonteArli, Sirisha Divya. "An Investigation on the Stress Intensity Factor of Surface Micro-cracks". Wright State University / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=wright1495620917553525.
Texto completo da fonteFinlayson, Eric F. "Stress Intensity Factor Distributions in Bimaterial Systems - A Three Dimensional Photoelastic Investigation". Thesis, Virginia Tech, 1998. http://hdl.handle.net/10919/36504.
Texto completo da fonteMaster of Science
Ventura, Antunes Fernando Jorge. "Influence of frequency, stress ratio and stress state on fatigue crack growth in nickel base superalloys at elevated temperature". Thesis, University of Portsmouth, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.285929.
Texto completo da fonteGarrido, F. A. DiÌaz. "Development of a methodology for thermoelastic investigation of the effective stress intensity factor". Thesis, University of Sheffield, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.412241.
Texto completo da fonteAzeez, Ahmed. "Effect of dwell time on stress intensity factor of ferritic steel for steam turbine applications". Thesis, Linköpings universitet, Mekanik och hållfasthetslära, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-148283.
Texto completo da fonteLivros sobre o assunto "Critical stress intensity factor"
United States. National Aeronautics and Space Administration., ed. Determination of stress intensity factor distributions for "interface" cracks in incompressible, dissimilar materials: Summary report : reporting period - 8/15/94 - 12/31/97 : grant no. NAG-1-1622-Supl. 1-5*. [Washington, DC: National Aeronautics and Space Administration, 1997.
Encontre o texto completo da fonte1932-, Carlsson Janne, ed. Weight functions and stress intensity factor solutions. Oxford: Pergamon Press, 1991.
Encontre o texto completo da fonteS, Raju I., Newman J. C e Langley Research Center, eds. Stress-intensity factor calculations using the boundary force method. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1987.
Encontre o texto completo da fonteS, Raju I., Newman J. C e Langley Research Center, eds. Stress-intensity factor calculations using the boundary force method. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1987.
Encontre o texto completo da fonteS, Raju I., Newman J. C e Langley Research Center, eds. Stress-intensity factor calculations using the boundary force method. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1987.
Encontre o texto completo da fonteHeppler, G. R. Stress intensity factor calculation for designing with fiber-reinforced composite materials. [S.l.]: [s.n.], 1985.
Encontre o texto completo da fontePook, L. P. Keyword scheme for a proposed computer-based bibliography of stress intensity factor solutions. Glasgow: National Engineering Laboratory, 1986.
Encontre o texto completo da fonteNoblett, J. E. A stress intensity factor solution for root defects in fillet and partial penetration welds. Cambridge: TWI, 1996.
Encontre o texto completo da fontePang, H. L. J. A literature review of stress intensity factor solutions fora weld toe crack in a fillet welded joint. East Kilbride: National Engineering Laboratory, 1991.
Encontre o texto completo da fontek, Kokula Krishna Hari, ed. FEA Analysis for Investigation of Stress Intensity Factor (SIF) for a Plate with Hole and Patches: ICIEMS 2014. India: Association of Scientists, Developers and Faculties, 2014.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Critical stress intensity factor"
Gdoutos, Emmanuel E. "Critical Stress Intensity Factor Fracture Criterion". In Fracture Mechanics, 131–65. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-35098-7_5.
Texto completo da fonteGdoutos, Emmanuel E. "Critical Stress Intensity Factor Fracture Criterion". In Fracture Mechanics, 117–51. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-015-8158-5_5.
Texto completo da fonteGdoutos, E. E. "Experimental Determination of Critical Stress Intensity Factor KI". In Problems of Fracture Mechanics and Fatigue, 155–60. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-017-2774-7_34.
Texto completo da fonteSglavo, Vincenzo M., David J. Green, Steven W. Martz e Richard E. Tressler. "Determination of Threshold Stress Intensity Factor for Sub-Critical Crack Growth in Ceramic Materials by Interrupted Static Fatigue Test". In Fracture Mechanics of Ceramics, 167–77. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4615-5853-8_13.
Texto completo da fonteGooch, Jan W. "Stress-Intensity Factor". In Encyclopedic Dictionary of Polymers, 705. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_11281.
Texto completo da fonteGdoutos, E. E. "Dynamic Stress Intensity Factor". In Problems of Fracture Mechanics and Fatigue, 359–63. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-017-2774-7_78.
Texto completo da fonteRadaj, Dieter. "Extended Stress Intensity Factor Concepts". In Advanced Methods of Fatigue Assessment, 101–265. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-30740-9_2.
Texto completo da fonteGdoutos, E. E. "Photoelastic Determination of Stress Intensity Factor KI". In Problems of Fracture Mechanics and Fatigue, 63–64. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-017-2774-7_14.
Texto completo da fonteKobayashi, A. S., e K. H. Yang. "Dynamic Stress Intensity Factor versus Crack Velocity Relation". In Advanced Materials for Severe Service Applications, 51–60. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3445-0_4.
Texto completo da fonteLu, Xi. "Stochastic Boundary Element Analysis of Stress Intensity Factor". In Computational Mechanics ’88, 1401–2. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-61381-4_370.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Critical stress intensity factor"
JUN, HYUNKYU. "STRESS INTENSITY FACTOR CALCULATION ON CRITICAL POINTS OF RAILWAY BOGIE FRAME". In Proceedings of the International Conference on ANDE 2007. World Scientific Publishing Company, 2008. http://dx.doi.org/10.1142/9789812793034_0089.
Texto completo da fonteLal, Achchhe, e Rakesh K. Kapania. "Stochastic Critical Stress Intensity Factor Response of Single Edge Notched Laminated Composite Plate". In 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2013. http://dx.doi.org/10.2514/6.2013-1615.
Texto completo da fonteSun, Rui, Zongwen An, Hong-Zhong Huang e Qiming Ma. "Stress Intensity Factor Calculation Using a Weight Function Method". In ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/detc2007-34736.
Texto completo da fonteVaziri, A., e H. Nayeb-Hashemi. "Effective Stress Intensity Factor in Mode III Crack Growth in Round Shafts". In ASME 2003 International Mechanical Engineering Congress and Exposition. ASMEDC, 2003. http://dx.doi.org/10.1115/imece2003-43478.
Texto completo da fonteFaidy, Claude. "Stress Intensity Factor Handbook: Comparison of RSEM and ASME XI Codes". In ASME 2015 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/pvp2015-45199.
Texto completo da fonteKlingbeil, Nathan W., e Jack L. Beuth. "Free-Edge Stress Intensity Factors for Edge-Loaded Bimaterial Layers". In ASME 1997 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1997. http://dx.doi.org/10.1115/imece1997-0511.
Texto completo da fonteJohnston, Carol, e Tyler London. "Development of a Stress Intensity Factor Solution for Mechanically Lined Pipe". In ASME 2022 41st International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/omae2022-78559.
Texto completo da fonteBrückner-Foit, A., P. Hülsmeier, M. Sckuhr e H. Riesch-Oppermann. "Limitations of the Weibull Theory in Stress Fields With Pronounced Stress Gradients". In ASME Turbo Expo 2000: Power for Land, Sea, and Air. American Society of Mechanical Engineers, 2000. http://dx.doi.org/10.1115/2000-gt-0663.
Texto completo da fonteKeller, Scott G., e Ali P. Gordon. "Stress Intensity Incubation Periods for the Al-Hg Coupled Subjected to LME". In ASME 2010 International Mechanical Engineering Congress and Exposition. ASMEDC, 2010. http://dx.doi.org/10.1115/imece2010-38921.
Texto completo da fonteCheng, Wing, e Shigeru Itoh. "Stress Intensity Factors for Defects in Two Common Weld Joints". In ASME 2006 Pressure Vessels and Piping/ICPVT-11 Conference. ASMEDC, 2006. http://dx.doi.org/10.1115/pvp2006-icpvt-11-93348.
Texto completo da fonteRelatórios de organizações sobre o assunto "Critical stress intensity factor"
Semiga, Vlad. PR-214-174517-WEB Sleeve End Fillet Weld Stress Intensity Factor Solutions. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), agosto de 2019. http://dx.doi.org/10.55274/r0011612.
Texto completo da fonteDinovitzer, Aaron. PR-214-114504-R01 Development of Sleeve End Fillet Weld Fitness for Service Assessment. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), abril de 2020. http://dx.doi.org/10.55274/r0010989.
Texto completo da fonteTurnbull, A., e L. Crocker. Finite element calculation of stress intensity factor for cracks developing from corrosion pit. National Physical Laboratory, janeiro de 2021. http://dx.doi.org/10.47120/npl.mat95.
Texto completo da fonteUnderwood, John H. Stress Intensity Factor and Load-Line Displacement Expressions for the Round Bar Bend Specimen. Fort Belvoir, VA: Defense Technical Information Center, junho de 1994. http://dx.doi.org/10.21236/ada285669.
Texto completo da fonteDinovitzer, Aaron. PR-214-174517-Z01 Development of Sleeve End Fillet Weld Stress Intensity Factor Calculator. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), maio de 2019. http://dx.doi.org/10.55274/r0011588.
Texto completo da fonteKapp, J. A. Wide Range Stress Intensity Factor and Crack-Mouth-Opening Displacement Expressions Suitable for Short Crack Fracture Testing with Arc Bend-Chord Suppport Samples. Fort Belvoir, VA: Defense Technical Information Center, janeiro de 1990. http://dx.doi.org/10.21236/ada218395.
Texto completo da fonteDinovitzer, Aaron. PR-214-114504-R02 Development of Sleeve End Fillet Weld Fitness for Service Assessment Tools. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), maio de 2016. http://dx.doi.org/10.55274/r0010890.
Texto completo da fonteGould, Melissa, Bill Bruce e Vince Arnett. PR-186-113600-R01 Grinding Limits for Repair of SCC on Operating Pipelines. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), março de 2018. http://dx.doi.org/10.55274/r0011473.
Texto completo da fonteCialone, H., D. N. Williams e T. P. Groeneveld. L51621 Hydrogen-Related Failures at Mechanically Damaged Regions. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), setembro de 1991. http://dx.doi.org/10.55274/r0010313.
Texto completo da fonteHorwitz, Benjamin A., e Barbara Gillian Turgeon. Fungal Iron Acquisition, Oxidative Stress and Virulence in the Cochliobolus-maize Interaction. United States Department of Agriculture, março de 2012. http://dx.doi.org/10.32747/2012.7709885.bard.
Texto completo da fonte