Siga este link para ver outros tipos de publicações sobre o tema: Coupled system.

Artigos de revistas sobre o tema "Coupled system"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Coupled system".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

Peng, Wei, Yunfei Zhang, Yi Wang, Li Chen e Kewei Liu. "A Global Coupled Atmosphere-Wave Model System Based on C-Coupler2. Part I: Model Description". Journal of Physics: Conference Series 2718, n.º 1 (1 de março de 2024): 012025. http://dx.doi.org/10.1088/1742-6596/2718/1/012025.

Texto completo da fonte
Resumo:
Abstract This study presents a global coupled atmosphere-wave model system (MPAS-NWW3) and its verification. The Community Coupler2 (C-Coupler2), a developed coupler, is used to couple the global wave configuration of the NWW3 (WAVEWATHCH III) with the global atmosphere configuration of the MPAS-Atmosphere model. Surface wind at 10 meters above sea level, temperature and specific humidity at 2 meters above sea level are the coupled variables for atmospheric component model, and significant wave height, average wave length and peak frequency are for wave component model. Some codes are added to the surface layer scheme and the effect of momentum flux induced by sea waves is taken into consideration in this paper. All the coupled variables, input or output the coupler are demonstrated their consistency in the MPAS-NWW3 coupled model.
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Liu, L., G. Yang, B. Wang, C. Zhang, R. Li, Z. Zhang, Y. Ji e L. Wang. "C-Coupler1: a Chinese community coupler for Earth system modeling". Geoscientific Model Development 7, n.º 5 (9 de outubro de 2014): 2281–302. http://dx.doi.org/10.5194/gmd-7-2281-2014.

Texto completo da fonte
Resumo:
Abstract. A coupler is a fundamental software tool for Earth system modeling. Targeting the requirements of 3-D coupling, high-level sharing, common model software platform and better parallel performance, we started to design and develop a community coupler (C-Coupler) from 2010 in China, and finished the first version (C-Coupler1) recently. C-Coupler1 is a parallel 3-D coupler that achieves the same (bitwise-identical) results with any number of processes. Guided by the general design of C-Coupler, C-Coupler1 enables various component models and various coupled models to be integrated on the same common model software platform to achieve a higher-level sharing, where the component models and the coupler can keep the same code version in various model configurations for simulation. Moreover, it provides the C-Coupler platform, a uniform runtime environment for operating various kinds of model simulations in the same manner. C-Coupler1 is ready for Earth system modeling, and it is publicly available. In China, there are more and more modeling groups using C-Coupler1 for the development and application of models.
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Liu, L., G. Yang, B. Wang, C. Zhang, R. Li, Z. Zhang, Y. Ji e L. Wang. "C-Coupler1: a Chinese community coupler for Earth System Modelling". Geoscientific Model Development Discussions 7, n.º 3 (11 de junho de 2014): 3889–936. http://dx.doi.org/10.5194/gmdd-7-3889-2014.

Texto completo da fonte
Resumo:
Abstract. Coupler is a fundamental software tool for Earth System Modelling. Targeting the requirements of 3-D coupling, high-level sharing, common model software platform and better parallel performance, we started to design and develop a community coupler (C-Coupler) from 2010 in China, and finished the first version (C-Coupler1) recently. The C-Coupler1 is a parallel 3-D coupler that achieves the same (bit-identical) result with any number of processes. Guided by the general design of the C-Coupler, the C-Coupler1 enables various component models and various coupled model versions to be integrated on the same common model software platform to achieve a~higher-level sharing, where the component models and the coupler can keep the same code version in various model versions for simulation. Moreover, it provides the C-Coupler platform, a uniform runtime environment for operating various kinds of model simulations in the same manner. Now the C-Coupler1 is ready for Earth System Modelling, and it is publicly available. In China, there are more and more model groups using the C-Coupler1 for the development and application of models.
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Adomian, G., e R. Rach. "A coupled nonlinear system". Journal of Mathematical Analysis and Applications 113, n.º 2 (fevereiro de 1986): 510–13. http://dx.doi.org/10.1016/0022-247x(86)90322-7.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Hoffman, Ross N., e Robert Atlas. "Future Observing System Simulation Experiments". Bulletin of the American Meteorological Society 97, n.º 9 (1 de setembro de 2016): 1601–16. http://dx.doi.org/10.1175/bams-d-15-00200.1.

Texto completo da fonte
Resumo:
Abstract As operational forecast and data assimilation (DA) systems evolve, observing system simulation experiment (OSSE) systems must evolve in parallel. Expected development of operational systems—especially the use of data that are currently not used or are just beginning to be used, such as all-sky and surface-affected microwave radiances—will greatly challenge our ability to construct realistic OSSE systems. An additional set of challenges will arise when future DA systems strongly couple the different Earth system components. In response, future OSSE systems will require coupled models to simulate nature and coupled observation simulators. The requirements for future evolving OSSE systems and potential solutions to satisfy these requirements are discussed. It is anticipated that in the future the OSSE technique will be applied to diverse and coupled domains with the use of increasingly advanced and sophisticated simulations of nature and observations.
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Wysochin, Viktor, e Аnna Golovatyuk. "Structural factors of solar system cluster ground coupled storage rationalization". Odes’kyi Politechnichnyi Universytet. Pratsi, n.º 3 (23 de dezembro de 2015): 26–30. http://dx.doi.org/10.15276/opu.3.47.2015.08.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

He, Zelong, Jiyuan Bai e Cheng Ma. "Conductance through a parallel-coupled double quantum dot with a side-coupled quantum dot system". Modern Physics Letters B 31, n.º 09 (30 de março de 2017): 1750095. http://dx.doi.org/10.1142/s0217984917500956.

Texto completo da fonte
Resumo:
Using the non-equilibrium Green’s function technique, conductance through a parallel-coupled double quantum dot (PCDQD) with a side-coupled quantum dot system is investigated. The evolution of the conductance strongly depends on the coupling between the side-coupled quantum dot and PCDQD. Moreover, the conductance as a function of the level of side-couple quantum dot is investigated. Numerical results indicate the lineshape of Fano resonance can be modulated by adjusting the interdot coupling strength.
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Vavilala, Sateesh Kumar, e Vinopraba T. "Fractional State Feedback Controller for a Non-Interacting Coupled Tank System". Journal of Advanced Research in Dynamical and Control Systems 11, n.º 0009-SPECIAL ISSUE (25 de setembro de 2019): 257–65. http://dx.doi.org/10.5373/jardcs/v11/20192565.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Peng, Wei, Xiang Li, Sai Hao e Xiaoyan Liu. "A Global Coupled Atmosphere-Wave Model System Based on C-Coupler2. Part II: Preliminary Results". Journal of Physics: Conference Series 2718, n.º 1 (1 de março de 2024): 012026. http://dx.doi.org/10.1088/1742-6596/2718/1/012026.

Texto completo da fonte
Resumo:
Abstract A global coupled atmosphere-wave model system (MPAS-NWW3) that consists of MPAS-A (Model for Prediction Across Scales-Atmosphere) and NWW3 (the Third Generation Wave Model, WAVEWATHCH III) with C-Coupler2 (the Community Coupler2) is demonstrated with a focus on the atmospheric results in global and the specific marine area in the year 2020. Results from the two-way coupled MPAS-NWW3 model and standalone MPAS-A are compared with reanalysis products. The coupled model performs better in terms of high wind speeds and long valid hours. This indicates that the coupled model has an obvious inhibitory effect on surface wind in areas with strong winds.
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Amster, P., e M. C. Mariani. "A system of coupled pendulii". Nonlinear Analysis: Theory, Methods & Applications 64, n.º 8 (abril de 2006): 1647–53. http://dx.doi.org/10.1016/j.na.2005.07.009.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

Qi, Wang, Liu Qin-yu e Li Li. "A coupled interannual oscillation system". Chinese Journal of Oceanology and Limnology 18, n.º 3 (setembro de 2000): 216–20. http://dx.doi.org/10.1007/bf02842666.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Liu, Li, Chao Sun, Xinzhu Yu, Hao Yu, Qingu Jiang, Xingliang Li, Ruizhe Li, Bin Wang, Xueshun Shen e Guangwen Yang. "C-Coupler3.0: an integrated coupler infrastructure for Earth system modelling". Geoscientific Model Development 16, n.º 10 (25 de maio de 2023): 2833–50. http://dx.doi.org/10.5194/gmd-16-2833-2023.

Texto completo da fonte
Resumo:
Abstract. The community coupler (C-Coupler) for Earth system modelling is a coupler family that was developed in China in 2010. C-Coupler3.0, the latest version, is fully compatible with the previous version, C-Coupler2, and is an integrated infrastructure with new features, i.e. a series of parallel-optimization technologies for accelerating coupling initialization and reducing memory usage, a common halo-exchange library for developing a parallel version of a model, a common module-integration framework for integrating a software module (e.g. a flux algorithm, a parameterization scheme, and a data assimilation method), a common framework for conveniently developing a weakly coupled ensemble data assimilation system, and a common framework for flexibly inputting and outputting fields in parallel. Specifically, C-Coupler3.0 is able to handle coupling under much finer resolutions (e.g. more than 100 million horizontal grid cells) with fast coupling initialization and successful generation of remapping-weight files.
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

Sjövall, Per, e Thomas Abrahamsson. "Substructure system identification from coupled system test data". Mechanical Systems and Signal Processing 22, n.º 1 (janeiro de 2008): 15–33. http://dx.doi.org/10.1016/j.ymssp.2007.06.003.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Yan, Fa Suo, Peng Fei Shen, Hong Wei Wang e Jun Zhang. "A Coupled Method for Dynamic Analysis of Offshore Floating Wind Turbine System". Applied Mechanics and Materials 220-223 (novembro de 2012): 841–44. http://dx.doi.org/10.4028/www.scientific.net/amm.220-223.841.

Texto completo da fonte
Resumo:
A coupled dynamic analysis method is introduced for numerical simulation of floating wind turbine systems in this paper. A numerical code,which has been developed to perform couple hydrodynamic analysis of floating body together with its mooring system, is extended to collaborate with wind turbine simulator to evaluate the interactions between wind turbine and its floating base. To verify the coupled method, a dynamic response analysis of a spar type floating wind turbine system (NREL offshore-5MW baseline wind turbine) is carried out separately by the coupled Morison method and radiation-diffraction theory. Numerical results and comparison are presented. It turns out that this coupled method is competent enough to predict hydrodynamic performance of floating wind turbine system. The numerical results derived in this study may provide crucial information for the design of a floating wind turbine in the near future.
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

Ping, Liu, Jia Man e Lou Sen-Yue. "A Discrete Lax-Integrable Coupled System Related to Coupled KdV and Coupled mKdV Equations". Chinese Physics Letters 24, n.º 10 (28 de setembro de 2007): 2717–19. http://dx.doi.org/10.1088/0256-307x/24/10/001.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Ciotti, M., F. Panza, A. Cardinali, R. Gatto, G. Ramogida, G. Lomonaco, G. Ricco, M. Ripani e M. Osipenko. "NOVEL HYBRID PILOT EXPERIMENT PROPOSAL FOR A FUSION-FISSION SUBCRITICAL COUPLED SYSTEM". Problems of Atomic Science and Technology, Ser. Thermonuclear Fusion 44, n.º 2 (2021): 57–64. http://dx.doi.org/10.21517/0202-3822-2021-44-2-57-64.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Saeed, Rostam K., e Rebwar S. Muhammad. "Solving Coupled Hirota System by Using Homotopy Perturbation and Homotopy Analysis Methods". Journal of Zankoy Sulaimani - Part A 17, n.º 2 (22 de fevereiro de 2015): 201–18. http://dx.doi.org/10.17656/jzs.10394.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Hao-Qiang Xu, Hao-Qiang Xu, e Jian-Dong Liu Hao-Qiang Xu. "Research on Video Encryption Technology Based on Cross Coupled Map Lattices System". 電腦學刊 34, n.º 2 (abril de 2023): 175–89. http://dx.doi.org/10.53106/199115992023043402013.

Texto completo da fonte
Resumo:
<p>The traditional video encryption algorithm only encrypts video images, which has the problems of an extended time-consuming algorithm and poor format retention. To improve the efficiency of video encryption, this paper proposes a multi-link selective video encryption algorithm based on the Cross Coupled Map Lattices system by combining H.264/AVC video coding structure. The algorithm reduces the amount of encrypted data while ensuring encryption security to satisfy the needs of video encryption security and real-time performance. The encryption algorithm’s security and visual encryption effect are analyzed subjectively and objectively. The experimental results show that the encryption scheme has an excellent visual encryption effect and strong attack resistance, the encryption time consumption is low, and the video format remains unchanged. It can be applied to real-time video encryption occasions such as video conferences.</p> <p>&nbsp;</p>
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

AGIZA, H. N. "CHAOS SYNCHRONIZATION OF TWO COUPLED DYNAMOS SYSTEMS WITH UNKNOWN SYSTEM PARAMETERS". International Journal of Modern Physics C 15, n.º 06 (julho de 2004): 873–83. http://dx.doi.org/10.1142/s0129183104006303.

Texto completo da fonte
Resumo:
This paper addresses the synchronization problem of two coupled dynamos systems in the presence of unknown system parameters. Based on Lyapunov stability theory, an active control law is derived and activated to achieve the state synchronization of two identical coupled dynamos systems. By using Gerschgorin theorem, a simple generic criterion is derived for global synchronization of two coupled dynamos systems with a unidirectional linear error feedback coupling. This simple criterion is applicable to a large class of chaotic systems, where only a few algebraic inequalities are involved. Numerical simulations results are used to demonstrate the effectiveness of the proposed control methods.
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

Zhu, Zhihui, Wei Gong, Lidong Wang, Issam E. Harik e Yu Bai. "A hybrid solution for studying vibrations of coupled train–track–bridge system". Advances in Structural Engineering 20, n.º 11 (9 de março de 2017): 1699–711. http://dx.doi.org/10.1177/1369433217691775.

Texto completo da fonte
Resumo:
This article develops a hybrid model to analyse the dynamic interactions between a train, tracks and a bridge. The model couples the train and track subsystems to form an integrated time-dependent subsystem through a vertically interacting wheel–rail model. In turn, this time-dependent subsystem is coupled with the bridge subsystem by enforcing the compatibility of forces at the contact points between the track and the bridge. A new hybrid solution algorithm is proposed which combines the strongly coupled method and the loosely coupled method to numerically solve the equation of motion of the coupled train–track–bridge system in the time domain. The integrated time-dependent equation of motion of the train–track subsystem is solved by applying the strongly coupled method. The equilibrium equations of the train–track subsystem and bridge subsystem are then solved via the loosely coupled method using the Newmark integration scheme. Significantly faster convergence can be achieved by avoiding the iterative equilibrium calculations between the wheel and the rail, and the total computational efficiency increases significantly because of the considerably smaller size of the time-dependent equations of motion and larger integration time step. The accuracy and computational cost of the proposed method are validated and compared to the existing models using a case study on the vibration of a cable-stayed bridge.
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Zhu, Xiu Mei. "Vibration Analysis of Coupled Faults Diagnosis in a Rotor System Using Wavelet De-Noising and KPCA Data Fusion". Applied Mechanics and Materials 192 (julho de 2012): 233–36. http://dx.doi.org/10.4028/www.scientific.net/amm.192.233.

Texto completo da fonte
Resumo:
In a rotor system, simultaneous existence of coupled faults, i.e. a crack couples with a misalignment, is very common. However, the single fault diagnosis has been investigated extensively in previous work while the issue of coupled faults diagnosis (i.e. considering two or more than two faults at a time) has been addressed insufficiently. In order to detect the existence of coupled faults and to prevent a fatigue crack in the rotor shaft, a new method is proposed to analyze the vibration signals using the Wavelet de-nosing and kernel principal component analysis (KPCA) in this work. The Wavelet was firstly used to de-noise the original vibration signals, and then the KPCA was adopted to extract useful fault features for the coupled faults detection. A case study on the coupled fault diagnosis of the rotor system has been implemented. The diagnosis results demonstrate that the proposed method is feasible for the coupled fault diagnosis of rotor systems. The fault detection rate is 91.0%.
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

Naz, R. "Conservation laws for a complexly coupled KdV system, coupled Burgers’ system and Drinfeld–Sokolov–Wilson system via multiplier approach". Communications in Nonlinear Science and Numerical Simulation 15, n.º 5 (maio de 2010): 1177–82. http://dx.doi.org/10.1016/j.cnsns.2009.05.071.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

Li, Qiang, Tao Wang, Yikai Su, Min Yan e Min Qiu. "Coupled mode theory analysis of mode-splitting in coupled cavity system". Optics Express 18, n.º 8 (6 de abril de 2010): 8367. http://dx.doi.org/10.1364/oe.18.008367.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

Chin Soon Teoh e L. E. Davis. "A coupled pendula system as an analogy to coupled transmission lines". IEEE Transactions on Education 39, n.º 4 (1996): 548–57. http://dx.doi.org/10.1109/13.544810.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

Lu, Fei, Hua Zhang, Heath Hofmann, Wencong Su e Chunting Chris Mi. "A Dual-Coupled LCC-Compensated IPT System With a Compact Magnetic Coupler". IEEE Transactions on Power Electronics 33, n.º 7 (julho de 2018): 6391–402. http://dx.doi.org/10.1109/tpel.2017.2748391.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

HEYDEMAN, M. THOMAS. "Redox enzymes: a model coupled system". Biochemical Society Transactions 19, n.º 4 (1 de novembro de 1991): 401S. http://dx.doi.org/10.1042/bst019401s.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

Stefanovska, Aneta, Maja Bracic Lotric, Saso Strle e Hermann Haken. "The cardiovascular system as coupled oscillators?" Physiological Measurement 22, n.º 3 (1 de agosto de 2001): 535–50. http://dx.doi.org/10.1088/0967-3334/22/3/311.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

WATANABE, Tetsuya. "Equivalent Damping Ratio of Coupled System". Transactions of the Japan Society of Mechanical Engineers Series C 73, n.º 725 (2007): 90–97. http://dx.doi.org/10.1299/kikaic.73.90.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

Belyaev, R. V., É. V. Kal’yanov, V. Ya Kislov, B. E. Kyarginskii e M. N. Lebedev. "Autostochastic system of coupled microwave generators". Technical Physics Letters 25, n.º 4 (abril de 1999): 307–9. http://dx.doi.org/10.1134/1.1262461.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

Guha-Roy, C., e D. K. Sinha. "On a coupled water wave system". Physica Scripta 42, n.º 6 (1 de dezembro de 1990): 643–45. http://dx.doi.org/10.1088/0031-8949/42/6/002.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

Gerbeau, J. F., e C. Le Bris. "A coupled system arising in magnetohydrodynamics". Applied Mathematics Letters 12, n.º 3 (maio de 1999): 53–57. http://dx.doi.org/10.1016/s0893-9659(98)00172-4.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

Chacón, Edgar, Gisela De Sarrazin e Yanira Khodr. "Coupled dynamics for industrial complex system". Nonlinear Analysis: Theory, Methods & Applications 47, n.º 3 (agosto de 2001): 1561–70. http://dx.doi.org/10.1016/s0362-546x(01)00290-5.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

Ueng, Jin-Min, Chi-Chang Lin e Pao-Lung Lin. "System identification of torsionally coupled buildings". Computers & Structures 74, n.º 6 (fevereiro de 2000): 667–86. http://dx.doi.org/10.1016/s0045-7949(99)00073-5.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

Agarwal, Ravi P., e Donal O'Regan. "A coupled system of difference equations". Applied Mathematics and Computation 114, n.º 1 (agosto de 2000): 39–49. http://dx.doi.org/10.1016/s0096-3003(99)00073-9.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

Abdel-Aziz, H. s. "Geometric Phase of a Coupled System". Communications in Theoretical Physics 42, n.º 5 (15 de novembro de 2004): 672–74. http://dx.doi.org/10.1088/0253-6102/42/5/672.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

Psiuk, Rafael, Alisa Artizada, Daniel Cichon, Hartmut Brauer, Hannes Toepfer e Albert Heuberger. "Modeling of an inductively coupled system". COMPEL - The international journal for computation and mathematics in electrical and electronic engineering 37, n.º 4 (2 de julho de 2018): 1500–1514. http://dx.doi.org/10.1108/compel-08-2017-0351.

Texto completo da fonte
Resumo:
Purpose This paper aims to provide a flexible model for a system of inductively coupled loops in a quasi-static magnetic field. The outlined model is used for theoretical analyses on the magnetic field-based football goal detection system called as GoalRef, where a primary loop generates a magnetic field around the goal. The passive loops are integrated in the football, and a goal is deduced from induced voltages in loop antennas mounted on the goal frame. Design/methodology/approach Based on the law of Biot–Savart, the magnetic vector potential of a primary current loop is calculated. The induced voltages in secondary loops are derived by Faraday’s Law. Expressions to calculate induced voltages in elliptically shaped loops and their magnetic field are also presented. Findings The induced voltages in secondary loops close to the primary loop are derived by either numerically integrating the primary magnetic flux density over the area of the secondary loop or by integrating the primary magnetic vector potential over the boundary of that loop. Both approaches are examined and compared with respect to accuracy and calculation time. It is shown that using the magnetic vector potential instead of the magnetic flux density can decrease the processing time by a factor of around 100. Research limitations/implications Environmental influences like conductive or permeable obstacles are not considered in the model. Practical implications The model can be used to investigate the theoretical behavior of inductively coupled systems. Originality/value The proposed model provides a flexible, fast and accurate tool for calculations of inductively coupled systems, where the loops can have arbitrary shape, position and orientation.
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

Lourêdo, Aldo T., Alexandro M. Oliveira e Marcondes R. Clark. "Boundary stabilization for a coupled system". Nonlinear Analysis: Theory, Methods & Applications 74, n.º 18 (dezembro de 2011): 6988–7004. http://dx.doi.org/10.1016/j.na.2011.07.019.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

Kawala, A. M. "Numerical Solutions for Ito Coupled System". Acta Applicandae Mathematicae 106, n.º 3 (10 de outubro de 2008): 325–35. http://dx.doi.org/10.1007/s10440-008-9300-9.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

Li, Gang, Hui Wang e Jiang Zhu. "On a nonstationary nonlinear coupled system". Computational & Applied Mathematics 30, n.º 3 (2011): 517–42. http://dx.doi.org/10.1590/s1807-03022011000300003.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

Ma, Yu-Han, Lan-Qing Huang, Chu-Min Sun e Xiao-Wen Li. "Experimental system of coupled map lattices". Frontiers of Physics 10, n.º 3 (25 de março de 2015): 339–42. http://dx.doi.org/10.1007/s11467-015-0466-0.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

Yang, Li-Xin, Yan-Dong Chu, Jian-Gang Zhang e Xian-Feng Li. "Chaos synchronization of coupled hyperchaotic system". Chaos, Solitons & Fractals 42, n.º 2 (30 de outubro de 2009): 724–30. http://dx.doi.org/10.1016/j.chaos.2009.01.043.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

Wu, Jiankang, e Lijun Lu. "Liquid-solid coupled system of micropump". Acta Mechanica Solida Sinica 19, n.º 1 (março de 2006): 40–49. http://dx.doi.org/10.1007/s10338-006-0605-9.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

Belyaev, Rostislav, Erast Kal'yanov, Vladimir Kislov, Boris Kyarginskii e Mikhail Lebedev. "Autostochastic system of coupled microwave oscillators". Izvestiya VUZ. Applied Nonlinear Dynamics 7, n.º 2-3 (1999): 69–80. http://dx.doi.org/10.18500/0869-6632-1999-7-2-69-80.

Texto completo da fonte
Resumo:
The equations of coupled oscillation system taking into account each partial oscillator inertion and delay in backward are given. Delay in connecting clements between oscillators is also considered. The results of numerical analysis of one and two oscillators with capacity coupling are given. It is demonstrated that chaotisation of oscillations is appearing more easy is а system of two coupled oscillators that in а system of only one oscillator. These results are supported by experiments with microwave transistor oscillators. The experiments fulfilled оп autostochastic systems consisting of two oscillators has shown that system of two coupled tramsistor oscillators permits to obtain chaotic noise—like oscillations in S—frequency band.
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

Green, Jeremy, e Troy Swanson. "Tightening the System: Reference as a Loosely Coupled System". Journal of Library Administration 51, n.º 4 (22 de abril de 2011): 375–88. http://dx.doi.org/10.1080/01930826.2011.556960.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
45

Xie, Long, Masaru Yamasaki, Toshiyuki Ajima, Junnosuke Nakatsugawa e Yoshitaka Sugiyama. "A Coupled System Simulator for Electric Power Steering System". SAE International Journal of Passenger Cars - Electronic and Electrical Systems 6, n.º 2 (8 de abril de 2013): 389–96. http://dx.doi.org/10.4271/2013-01-0423.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
46

Yu-Feng, Zhang, e Zhang Hong-Qing. "Solitary Wave Solutions for the Coupled Ito System and a Generalized Hirota–Satsuma Coupled KdV System". Communications in Theoretical Physics 36, n.º 6 (15 de dezembro de 2001): 657–60. http://dx.doi.org/10.1088/0253-6102/36/6/657.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
47

Yi, Chang K., e William L. Luyben. "Design and control of coupled reactor/column systems—Part 1. A binary coupled reactor/rectifier system". Computers & Chemical Engineering 21, n.º 1 (setembro de 1997): 25–46. http://dx.doi.org/10.1016/0098-1354(95)00253-7.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
48

Ouannas, Adel, Mouna Abdelli, Zaid Odibat, Xiong Wang, Viet-Thanh Pham, Giuseppe Grassi e Ahmed Alsaedi. "Synchronization Control in Reaction-Diffusion Systems: Application to Lengyel-Epstein System". Complexity 2019 (24 de fevereiro de 2019): 1–8. http://dx.doi.org/10.1155/2019/2832781.

Texto completo da fonte
Resumo:
Synchronization and control in high dimensional spatial-temporal systems have received increasing interest in recent years. In this paper, the problem of complete synchronization for reaction-diffusion systems is investigated. Linear and nonlinear synchronization control schemes have been proposed to exhibit synchronization between coupled reaction-diffusion systems. Synchronization behaviors of coupled Lengyel-Epstein systems are obtained to demonstrate the effectiveness and feasibility of the proposed control techniques.
Estilos ABNT, Harvard, Vancouver, APA, etc.
49

Sun Zhong-Kui, Lu Peng-Ju e Xu Wei. "System size stochastic resonance in asymmetric bistable coupled network systems". Acta Physica Sinica 63, n.º 22 (2014): 220503. http://dx.doi.org/10.7498/aps.63.220503.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
50

Doroshenko, V. M., V. P. Kruglov e S. P. Kuznetsov. "Smale – Williams Solenoids in a System of Coupled Bonhoeffer – van der Pol Oscillators". Nelineinaya Dinamika 14, n.º 4 (2018): 435–51. http://dx.doi.org/10.20537/nd180402.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia