Artigos de revistas sobre o tema "Couche de diffusion (GDL)"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Couche de diffusion (GDL)".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Ji, Sheng Zheng, Zhuang Song e Ying He. "Study on Diffusion Characteristics of Liquid Water in Gas Diffusion Layer by Lattice Boltzmann Method". International Journal of Engineering Research in Africa 71 (18 de setembro de 2024): 1–16. http://dx.doi.org/10.4028/p-3yl8ms.
Texto completo da fonteAlishahi, Marzieh, Claire McCague e Majid Bahrami. "Evaluation of Porous Media Gas Diffusion Models for PEMFC Applications". ECS Meeting Abstracts MA2022-01, n.º 39 (7 de julho de 2022): 1762. http://dx.doi.org/10.1149/ma2022-01391762mtgabs.
Texto completo da fonteRingström, Marcus, Rakel Wreland Lindström, Göran Lindbergh e Henrik Ekström. "Experimental Characterization of Anisotropic Mechanical and Thermal Properties of Gas Diffusion Layers". ECS Meeting Abstracts MA2022-01, n.º 37 (7 de julho de 2022): 1645. http://dx.doi.org/10.1149/ma2022-01371645mtgabs.
Texto completo da fonteBerger, Anne, Yen-Chun Chen, Jacqueline Gatzemeier, Felix N. Buechi e Hubert Andreas Gasteiger. "Importance of Directed Water Removal: Intruding Microporous Layer Material into the Gas Diffusion Layer Substrate". ECS Meeting Abstracts MA2023-02, n.º 37 (22 de dezembro de 2023): 1766. http://dx.doi.org/10.1149/ma2023-02371766mtgabs.
Texto completo da fonteYang, Mingyang, Aimin Du, Jinling Liu e Sichuan Xu. "Lattice Boltzmann Method Study on Liquid Water Dynamic inside Gas Diffusion Layer with Porosity Distribution". World Electric Vehicle Journal 12, n.º 3 (25 de agosto de 2021): 133. http://dx.doi.org/10.3390/wevj12030133.
Texto completo da fonteYilmaz, Abdurrahman, Siddharth Komini Babu, Ugur Pasaogullari, Jacob S. Spendelow e Rangachary Mukundan. "Optimization of the Cathode Gas Diffusion Layer Also Matters for Water Electrolyzers". ECS Meeting Abstracts MA2022-02, n.º 40 (9 de outubro de 2022): 1491. http://dx.doi.org/10.1149/ma2022-02401491mtgabs.
Texto completo da fonteYoshikawa, Makoto, Kotaro Yamamoto, Zhiyun Noda, Masahiro Yasutake, Tatsumi Kitahara, Yuya Tachikawa, Stephen Matthew Lyth, Akari Hayashi, Junko Matsuda e Kazunari Sasaki. "Self-Supporting Microporous Layer for Polymer Electrolyte Fuel Cells". ECS Transactions 112, n.º 4 (29 de setembro de 2023): 83–91. http://dx.doi.org/10.1149/11204.0083ecst.
Texto completo da fonteJung, Sung Yong, Jooyoung Park, Hanwook Park, Hwanyeong Oh e Jong Woon Moon. "Degradation Effect of Gas Diffusion Layer on Water Transport in Polymer Electrolyte Membrane Fuel Cell". ECS Meeting Abstracts MA2022-01, n.º 41 (7 de julho de 2022): 2426. http://dx.doi.org/10.1149/ma2022-01412426mtgabs.
Texto completo da fonteTruong, Van Men, Ngoc Bich Duong e Hsiharng Yang. "Effect of Gas Diffusion Layer Thickness on the Performance of Anion Exchange Membrane Fuel Cells". Processes 9, n.º 4 (19 de abril de 2021): 718. http://dx.doi.org/10.3390/pr9040718.
Texto completo da fonteSyarif, Nirwan, Dedi Rohendi, Ade Dwi Nanda, M. Try Sandi e Delima Sukma Wati Br Sihombing. "Gas diffusion layer from Binchotan carbon and its electrochemical properties for supporting electrocatalyst in fuel cell". AIMS Energy 10, n.º 2 (2022): 292–305. http://dx.doi.org/10.3934/energy.2022016.
Texto completo da fonteQitong, Shi, Qianqian Wang, Feng Cong e Pingwen Ming. "(Digital Presentation) A Constant Deformation Modulus for the Simulation of Gas Diffusion Layer". ECS Meeting Abstracts MA2022-01, n.º 41 (7 de julho de 2022): 2385. http://dx.doi.org/10.1149/ma2022-01412385mtgabs.
Texto completo da fonteQitong, Shi, Feng Cong e Pingwen Ming. "(Digital Presentation) A Constant Deformation Modulus for the Simulation of Gas Diffusion Layer". ECS Meeting Abstracts MA2022-02, n.º 40 (9 de outubro de 2022): 1494. http://dx.doi.org/10.1149/ma2022-02401494mtgabs.
Texto completo da fonteAtifi, A., K. El Bikri e M. Ettouhami. "Numerical simulation of Effect of Contact Pressure on Gas Diffusion Layers deformation of a PEM Fuel Cell". MATEC Web of Conferences 286 (2019): 09006. http://dx.doi.org/10.1051/matecconf/201928609006.
Texto completo da fonteOuerghemmi, Marwa, Christophe Carral e Patrice Mele. "Experimental study of gas diffusion layers nonlinear orthotropic behavior". E3S Web of Conferences 334 (2022): 04020. http://dx.doi.org/10.1051/e3sconf/202233404020.
Texto completo da fonteMunekata, Toshihisa, Takaji Inamuro e Shi-aki Hyodo. "Gas Transport Properties in Gas Diffusion Layers: A Lattice Boltzmann Study". Communications in Computational Physics 9, n.º 5 (maio de 2011): 1335–46. http://dx.doi.org/10.4208/cicp.301009.161210s.
Texto completo da fonteZhou, Ke, Tianya Li, Yufen Han, Jihao Wang, Jia Chen e Kejian Wang. "Optimizing the hydrophobicity of GDL to improve the fuel cell performance". RSC Advances 11, n.º 4 (2021): 2010–19. http://dx.doi.org/10.1039/d0ra09658j.
Texto completo da fonteMassaglia, Giulia, Eve Verpoorten, Candido F. Pirri e Marzia Quaglio. "Nanostructured gas diffusion layer to improve direct oxygen reduction reaction in Air-Cathode Single-Chamber Microbial Fuel Cells". E3S Web of Conferences 334 (2022): 04012. http://dx.doi.org/10.1051/e3sconf/202233404012.
Texto completo da fonteTateyama, Shota, Takahiro Suzuki, Mitsunori Nasu, Naoki Hirayama, Masahiro Watanabe, Makoto Uchida, Akihiro Iiyama e Shohji Tsushima. "Effect of GDL Structure and Operating Conditions on PEMFC Performance and Liquid Water Removal". ECS Transactions 114, n.º 5 (27 de setembro de 2024): 367–75. http://dx.doi.org/10.1149/11405.0367ecst.
Texto completo da fonteTateyama, Shota, Takahiro Suzuki, Mitsunori Nasu, Naoki Hirayama, Masahiro Watanabe, Makoto Uchida, Akihiro Iiyama e Shohji Tsushima. "Effect of GDL Structure and Operating Conditions on PEMFC Performance and Liquid Water Removal". ECS Transactions 114, n.º 5 (27 de setembro de 2024): 353–61. http://dx.doi.org/10.1149/11405.0353ecst.
Texto completo da fonteNishida, Kosuke. "Numerical Simulation of Local Entropy Generation of Oxygen Transport in Cathode Diffusion Media of PEFC". ECS Transactions 112, n.º 4 (29 de setembro de 2023): 43–48. http://dx.doi.org/10.1149/11204.0043ecst.
Texto completo da fonteEdjokola, Joel Mata, Viktor Hacker e Merit Bodner. "Investigation of Gas Diffusion Layer Degradation in Polymer Electrolyte Fuel Cell Via Chemical Oxidation". ECS Transactions 112, n.º 4 (29 de setembro de 2023): 265–71. http://dx.doi.org/10.1149/11204.0265ecst.
Texto completo da fonteRaciti, David, Trevor Michael Braun, Brian Tackett, Heng Xu, Mutya Cruz, Benjamin Wiley e Thomas P. Moffat. "Self-Supporting Ag Nanowire Mat Electrodes on PTFE Gas Diffusion Layers for Electrochemical Conversion of CO2 to CO". ECS Meeting Abstracts MA2022-02, n.º 40 (9 de outubro de 2022): 1489. http://dx.doi.org/10.1149/ma2022-02401489mtgabs.
Texto completo da fonteSaka, Kenan, Mehmet Fatih Orhan e Ahmed T. Hamada. "Design and Analysis of Gas Diffusion Layers in a Proton Exchange Membrane Fuel Cell". Coatings 13, n.º 1 (20 de dezembro de 2022): 2. http://dx.doi.org/10.3390/coatings13010002.
Texto completo da fonteIndayaningsih, Nanik, Dedi Priadi, Anne Zulfia e Suprapedi. "Analysis of Coconut Carbon Fibers for Gas Diffusion Layer Material". Key Engineering Materials 462-463 (janeiro de 2011): 937–42. http://dx.doi.org/10.4028/www.scientific.net/kem.462-463.937.
Texto completo da fonteHussain, Javid, Dae-Kyeom Kim, Sangmin Park, Muhammad Waqas Khalid, Sayed-Sajid Hussain, Ammad Ali, Bin Lee, Myungsuk Song e Taek-Soo Kim. "Experimental and Computational Study of Optimized Gas Diffusion Layer for Polymer Electrolyte Membrane Electrolyzer". Materials 16, n.º 13 (23 de junho de 2023): 4554. http://dx.doi.org/10.3390/ma16134554.
Texto completo da fonteLee, Haksung, Chan-Woong Choi, Ki-Weon Kang e Ji-Won Jin. "A Study on the Evaluation of Effective Properties of Randomly Distributed Gas Diffusion Layer (GDL) Tissues with Different Compression Ratios". Applied Sciences 10, n.º 21 (22 de outubro de 2020): 7407. http://dx.doi.org/10.3390/app10217407.
Texto completo da fonteZhu, Yingli, Xiaojian Zhang, Jianyu Li e Gary Qi. "Three-dimensional graphene as gas diffusion layer for micro direct methanol fuel cell". International Journal of Modern Physics B 32, n.º 12 (3 de maio de 2018): 1850145. http://dx.doi.org/10.1142/s021797921850145x.
Texto completo da fonteBerger, Anne, e Hubert Andreas Gasteiger. "Determination of the τ/ε-Ratio for Gas Diffusion Substrates and Microporous Layers in an Operating Fuel Cell". ECS Meeting Abstracts MA2022-01, n.º 35 (7 de julho de 2022): 1456. http://dx.doi.org/10.1149/ma2022-01351456mtgabs.
Texto completo da fonteYasin, Nor Hafizah Yasin, e Wan Zaireen Nisa Yahya. "IMMOBILISATION OF COPPER (I) OXIDE/ZINC OXIDE NANOPARTICLES ON THE GAS DIFFUSION LAYER FOR CO2 REDUCTION REACTION APPLICATION". Malaysian Journal of Science 43, sp1 (31 de julho de 2024): 8–14. http://dx.doi.org/10.22452/mjs.vol43sp1.2.
Texto completo da fonteYang, Danan, Himani Garg, Steven B. Beale e Martin Andersson. "Numerical Reconstruction of Proton Exchange Membrane Fuel Cell Gas Diffusion Layers". ECS Meeting Abstracts MA2023-02, n.º 37 (22 de dezembro de 2023): 1718. http://dx.doi.org/10.1149/ma2023-02371718mtgabs.
Texto completo da fontePeng, Ming, Enci Dong, Li Chen, Yu Wang e Wen-Quan Tao. "Effects of Cathode Gas Diffusion Layer Configuration on the Performance of Open Cathode Air-Cooled Polymer Electrolyte Membrane Fuel Cell". Energies 15, n.º 17 (28 de agosto de 2022): 6262. http://dx.doi.org/10.3390/en15176262.
Texto completo da fonteBerger, Anne, Yen-Chun Chen, Jacqueline Gatzemeier, Thomas J. Schmidt, Felix N. Büchi e Hubert A. Gasteiger. "Analysis of the MPL/GDL Interface: Impact of MPL Intrusion into the GDL Substrate". Journal of The Electrochemical Society 170, n.º 9 (1 de setembro de 2023): 094509. http://dx.doi.org/10.1149/1945-7111/acfa26.
Texto completo da fontePourrahmani, Hossein, Hamza Moussaoui, Milad Hosseini, Majid Siavashi, Lucie Navratilova, Mardit Matian e Jan Van herle. "Fluid Flow in the Gas Diffusion Layer Using Computational Fluid Dynamics and Microscopy Techniques". ECS Meeting Abstracts MA2023-01, n.º 24 (28 de agosto de 2023): 1595. http://dx.doi.org/10.1149/ma2023-01241595mtgabs.
Texto completo da fonteWang, Hao, Guogang Yang, Shian Li, Qiuwan Shen, Yue Li e Renjie Wang. "Pore-Scale Modeling of Liquid Water Transport in Compressed Gas Diffusion Layer of Proton Exchange Membrane Fuel Cells Considering Fiber Anisotropy". Membranes 13, n.º 6 (29 de maio de 2023): 559. http://dx.doi.org/10.3390/membranes13060559.
Texto completo da fonteGuo, Hui, Lubing Chen, Sara Adeeba Ismail, Lulu Jiang, Shihang Guo, Jie Gu, Xiaorong Zhang et al. "Gas Diffusion Layer for Proton Exchange Membrane Fuel Cells: A Review". Materials 15, n.º 24 (9 de dezembro de 2022): 8800. http://dx.doi.org/10.3390/ma15248800.
Texto completo da fonteYan, Song, Mingyang Yang, Chuanyu Sun e Sichuan Xu. "Liquid Water Characteristics in the Compressed Gradient Porosity Gas Diffusion Layer of Proton Exchange Membrane Fuel Cells Using the Lattice Boltzmann Method". Energies 16, n.º 16 (16 de agosto de 2023): 6010. http://dx.doi.org/10.3390/en16166010.
Texto completo da fonteZHENG, QIAN, JINTU FAN, XIANGPENG LI e CHAO XU. "FRACTAL ANALYSIS OF GAS FLOW THROUGH THE GAS DIFFUSION LAYER IN PROTON EXCHANGE MEMBRANE FUEL CELLS WITH ROUGHENED MICRO-CHANNELS". Fractals 26, n.º 06 (dezembro de 2018): 1850099. http://dx.doi.org/10.1142/s0218348x18500998.
Texto completo da fonteMoriyama, Koji, e Takaji Inamuro. "Lattice Boltzmann Simulations of Water Transport from the Gas Diffusion Layer to the Gas Channel in PEFC". Communications in Computational Physics 9, n.º 5 (maio de 2011): 1206–18. http://dx.doi.org/10.4208/cicp.311009.081110s.
Texto completo da fonteKulikovsky, Andrei. "Analytical Impedance of Oxygen Transport in the Channel and Gas Diffusion Layer of a PEM Fuel Cell". Journal of The Electrochemical Society 168, n.º 11 (1 de novembro de 2021): 114520. http://dx.doi.org/10.1149/1945-7111/ac3a2d.
Texto completo da fonteSeo, Sangwon, Kwangyeop Jang, Jongwoo Park e Dongjin Kim. "Synthesis of PTFE based Air Cathode for Metal Air Battery". E3S Web of Conferences 233 (2021): 01005. http://dx.doi.org/10.1051/e3sconf/202123301005.
Texto completo da fonteLee, So Yeon, Chi-Yeong Ahn e Hyungwon Shim. "An Experimental Study on the Correlation between Characteristics of Gas Diffusion Layer and Performance Depending on Relative Humidity Variation in Proton Exchange Membrane Fuel Cell". ECS Meeting Abstracts MA2023-02, n.º 38 (22 de dezembro de 2023): 1874. http://dx.doi.org/10.1149/ma2023-02381874mtgabs.
Texto completo da fonteHalter, Jonathan, John A. MacDonald, Fabusuyi Akindele Aroge, Olivia C. Lowe, Francesco P. Orfino, Esmaeil Navaei Alvar, Monica Dutta e Erik Kjeang. "The Role of Thermal Conductivity on Liquid Water Distribution in GDLs". ECS Meeting Abstracts MA2023-02, n.º 37 (22 de dezembro de 2023): 1786. http://dx.doi.org/10.1149/ma2023-02371786mtgabs.
Texto completo da fonteSun, Chao, Qing Du, Yan Yin e Bin Jia. "Numerical Simulation of Water Removal Process in the Microstructure of Gas Diffusion Layer with Mechanics Properties and Material Properties". Advanced Materials Research 625 (dezembro de 2012): 41–44. http://dx.doi.org/10.4028/www.scientific.net/amr.625.41.
Texto completo da fonteAnyanwu, Ikechukwu S., Zhiqiang Niu, Daokuan Jiao, Aezid-Ul-Hassan Najmi, Zhi Liu e Kui Jiao. "Liquid Water Transport Behavior at GDL-Channel Interface of a Wave-Like Channel". Energies 13, n.º 11 (28 de maio de 2020): 2726. http://dx.doi.org/10.3390/en13112726.
Texto completo da fonteVynnycky, M., e A. Gordon. "On the hydrophobicity and hydrophilicity of the cathode gas diffusion layer in a polymer electrolyte fuel cell". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 469, n.º 2154 (8 de junho de 2013): 20120695. http://dx.doi.org/10.1098/rspa.2012.0695.
Texto completo da fonteEdjokola, Joel Mata, Viktor Hacker e Merit Bodner. "Investigation of Gas Diffusion Layer Degradation in Polymer Electrolyte Fuel Cell Via Chemical Oxidation". ECS Meeting Abstracts MA2023-02, n.º 38 (22 de dezembro de 2023): 1871. http://dx.doi.org/10.1149/ma2023-02381871mtgabs.
Texto completo da fonteWang, Hao, Guogang Yang, Qiuwan Shen, Shian Li, Fengmin Su, Ziheng Jiang, Jiadong Liao, Guoling Zhang e Juncai Sun. "Effects of Compression and Porosity Gradients on Two-Phase Behavior in Gas Diffusion Layer of Proton Exchange Membrane Fuel Cells". Membranes 13, n.º 3 (4 de março de 2023): 303. http://dx.doi.org/10.3390/membranes13030303.
Texto completo da fonteHussain, Javid, Dae-Kyeom Kim, Sangmin Park, Muhammad-Waqas Khalid, Sayed-Sajid Hussain, Bin Lee, Myungsuk Song e Taek-Soo Kim. "Porous Material (Titanium Gas Diffusion Layer) in Proton Exchange Membrane Fuel Cell/Electrolyzer: Fabrication Methods & GeoDict: A Critical Review". Materials 16, n.º 13 (21 de junho de 2023): 4515. http://dx.doi.org/10.3390/ma16134515.
Texto completo da fonteLiu, Chang, e Shang Li. "Performance Enhancement of Proton Exchange Membrane Fuel Cell through Carbon Nanofibers Grown In Situ on Carbon Paper". Molecules 28, n.º 6 (20 de março de 2023): 2810. http://dx.doi.org/10.3390/molecules28062810.
Texto completo da fonteCremers, Carsten. "Relevance of GDL Properties Regarding GDL Quality Assurance". ECS Meeting Abstracts MA2023-02, n.º 38 (22 de dezembro de 2023): 1872. http://dx.doi.org/10.1149/ma2023-02381872mtgabs.
Texto completo da fonte