Literatura científica selecionada sobre o tema "Couche de diffusion (GDL)"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Couche de diffusion (GDL)".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Couche de diffusion (GDL)"
Ji, Sheng Zheng, Zhuang Song e Ying He. "Study on Diffusion Characteristics of Liquid Water in Gas Diffusion Layer by Lattice Boltzmann Method". International Journal of Engineering Research in Africa 71 (18 de setembro de 2024): 1–16. http://dx.doi.org/10.4028/p-3yl8ms.
Texto completo da fonteAlishahi, Marzieh, Claire McCague e Majid Bahrami. "Evaluation of Porous Media Gas Diffusion Models for PEMFC Applications". ECS Meeting Abstracts MA2022-01, n.º 39 (7 de julho de 2022): 1762. http://dx.doi.org/10.1149/ma2022-01391762mtgabs.
Texto completo da fonteRingström, Marcus, Rakel Wreland Lindström, Göran Lindbergh e Henrik Ekström. "Experimental Characterization of Anisotropic Mechanical and Thermal Properties of Gas Diffusion Layers". ECS Meeting Abstracts MA2022-01, n.º 37 (7 de julho de 2022): 1645. http://dx.doi.org/10.1149/ma2022-01371645mtgabs.
Texto completo da fonteBerger, Anne, Yen-Chun Chen, Jacqueline Gatzemeier, Felix N. Buechi e Hubert Andreas Gasteiger. "Importance of Directed Water Removal: Intruding Microporous Layer Material into the Gas Diffusion Layer Substrate". ECS Meeting Abstracts MA2023-02, n.º 37 (22 de dezembro de 2023): 1766. http://dx.doi.org/10.1149/ma2023-02371766mtgabs.
Texto completo da fonteYang, Mingyang, Aimin Du, Jinling Liu e Sichuan Xu. "Lattice Boltzmann Method Study on Liquid Water Dynamic inside Gas Diffusion Layer with Porosity Distribution". World Electric Vehicle Journal 12, n.º 3 (25 de agosto de 2021): 133. http://dx.doi.org/10.3390/wevj12030133.
Texto completo da fonteYilmaz, Abdurrahman, Siddharth Komini Babu, Ugur Pasaogullari, Jacob S. Spendelow e Rangachary Mukundan. "Optimization of the Cathode Gas Diffusion Layer Also Matters for Water Electrolyzers". ECS Meeting Abstracts MA2022-02, n.º 40 (9 de outubro de 2022): 1491. http://dx.doi.org/10.1149/ma2022-02401491mtgabs.
Texto completo da fonteYoshikawa, Makoto, Kotaro Yamamoto, Zhiyun Noda, Masahiro Yasutake, Tatsumi Kitahara, Yuya Tachikawa, Stephen Matthew Lyth, Akari Hayashi, Junko Matsuda e Kazunari Sasaki. "Self-Supporting Microporous Layer for Polymer Electrolyte Fuel Cells". ECS Transactions 112, n.º 4 (29 de setembro de 2023): 83–91. http://dx.doi.org/10.1149/11204.0083ecst.
Texto completo da fonteJung, Sung Yong, Jooyoung Park, Hanwook Park, Hwanyeong Oh e Jong Woon Moon. "Degradation Effect of Gas Diffusion Layer on Water Transport in Polymer Electrolyte Membrane Fuel Cell". ECS Meeting Abstracts MA2022-01, n.º 41 (7 de julho de 2022): 2426. http://dx.doi.org/10.1149/ma2022-01412426mtgabs.
Texto completo da fonteTruong, Van Men, Ngoc Bich Duong e Hsiharng Yang. "Effect of Gas Diffusion Layer Thickness on the Performance of Anion Exchange Membrane Fuel Cells". Processes 9, n.º 4 (19 de abril de 2021): 718. http://dx.doi.org/10.3390/pr9040718.
Texto completo da fonteSyarif, Nirwan, Dedi Rohendi, Ade Dwi Nanda, M. Try Sandi e Delima Sukma Wati Br Sihombing. "Gas diffusion layer from Binchotan carbon and its electrochemical properties for supporting electrocatalyst in fuel cell". AIMS Energy 10, n.º 2 (2022): 292–305. http://dx.doi.org/10.3934/energy.2022016.
Texto completo da fonteTeses / dissertações sobre o assunto "Couche de diffusion (GDL)"
Roussillo, Bertrand. "Préparation, caractérisation et modélisation de fibres carbonnées par électrofilage comme couche de diffusion des gaz (GDL) pour pile à combustible PEMFC". Electronic Thesis or Diss., Université de Toulouse (2023-....), 2024. http://www.theses.fr/2024TLSEP081.
Texto completo da fontePEM fuel cells represent the future of heavy electric vehicles. Improving the performance, cost and durability of its components constitutes key objectives for this technology. The gas diffusion layer (GDL) plays a critical role in fuel cell performance. Indeed, it ensures fluid transport, provides electrical and thermal conductivities, and must prevent cathode flooding while keeping the membrane well hydrated [1].The manufacture and characterization of electrospun GDL (eGDL) is investigated. Electrospinning allows for the creation of carbon fibers and pores in the range of hundreds of nanometers. This is two orders of magnitude smaller than the fiber and pore sizes of commercial GDL. Electrospinning has recently been used to design tailored porous media for PEMFC [2], [3]. The versatility of this innovative technique is exploited to produce eGDL with controlled microstructures, varying porosity, fiber and pore sizes [4]. High resolution imaging (synchrotron X-Ray tomography, FIB-SEM) is employed to analyse the microstructure of electrospun and commercial GDL. An advanced segmentation method by machine learning is used to separate the different solid phases of commercial GDL (hydrophilic fiber phase and hydrophobic binder/PTFE phase). A detailed characterization of fluid transport properties (diffusion, tortuosity, gas and liquid permeability, capillary pressure) is investigated from segmented 3D structures [5]. Water intrusion simulations are carried out, taking into account the mixed wettability of the different phases. The dependence on simulated liquid water intrusion and of compression is explored. Relationships between transport properties and microstructural parameters are established, evaluating the applicability of classical models such as Bruggeman and Karman-Kozeny. Finally, the results are related to the actual electrochemical performance of GDL by performing fuel cell tests. The microstructure of eGDL is optimized by adjusting the manufacturing parameters for improved fluid transport properties and performance. Performance close to those of commercial GDL (<10% difference) are obtained with binder-free and PTFE-free eGDL, thus reducing the complexity of the GDL. This thesis provides a better understanding of the relationships between microstructure, fluid transport properties and GDL performance.[1] A. Ozden, S. Shahgaldi, X. Li, and F. Hamdullahpur, Progress in Energy and Combustion Science, vol. 74, pp. 50–102, Sep. 2019, doi: 10.1016/j.pecs.2019.05.002.[2] S. Chevalier, N. Lavielle, B. D. Hatton, and A. Bazylak, Journal of Power Sources, vol. 352, pp. 272–280, Jun. 2017, doi: 10.1016/j.jpowsour.2017.03.098.[3] G. Ren, Z. Qu, X. Wang, and G. Zhang, International Journal of Hydrogen Energy, p. S0360319923009254, Mar. 2023, doi: 10.1016/j.ijhydene.2023.02.093.[4] J. Xue, T. Wu, Y. Dai, and Y. Xia, Chem. Rev., vol. 119, no. 8, pp. 5298–5415, Apr. 2019, doi: 10.1021/acs.chemrev.8b00593.[5] J. Becker, R. Flückiger, M. Reum, F. N. Büchi, F. Marone, and M. Stampanoni, , J. Electrochem. Soc., vol. 156, no. 10, p. B1175, 2009, doi: 10.1149/1.3176876
Desplobain, Sébastien. "Étude et réalisation de couches de diffusion de gaz en silicium poreux appliquées à la fabrication de micropiles à hydrogène". Thesis, Tours, 2009. http://www.theses.fr/2009TOUR4030/document.
Texto completo da fonteThis thesis work deals with porous silicon gas diffusion layer (GDL) fabrication process. The aim was to integrate this GDL into proton exchange membrane micro fuel cells (PEMFC). Consequently, the GDL must be localized in specific wafer areas. We have also developed 2D and 3D structures. To produce a GDL, we have anodized low doped N type silicon subrates. thus, we have fabricated macroporous GDL and double layer structures made up of a mesaporous layer on a macroporous one. Patterning of the GDL has been obtained through a hard mask (polysilicon on top of a silicon oxide layer) or using a localized doping. We have concluded this work by achieving micro fuel cell prototypes with macroporous silicon gas diffusion layers. After validation of micro PEMFC active layer mechanical stacking, we have measured a maximum power density of about 250 mW/cm²
Lenormand, Pascal. "Etude de l'évolution microstructurale de précurseurs d'oxyde de zirconium à l'état de gel, xérogel, couche mince et aérosol par diffusion de rayons X". Limoges, 2001. http://www.theses.fr/2001LIMO0043.
Texto completo da fonteIn this work, we are interested in zirconia precursors synthesised by the sol gel method : gel, xerogel, thin film and aerogel. The objective is to precise the specific role of the various states of aggregation of the elementary particles constituting these precursors on the evolution of their microstructure during a low temperature thermal processing
Sole, Joshua David. "Investigation of Novel Gas Diffusion Media for Application in Pem Fuel Cell Ribbon Assemblies". Thesis, Virginia Tech, 2005. http://hdl.handle.net/10919/36392.
Texto completo da fonteMaster of Science
Denicourt, Normand. "La diffusion latérale des phospholipides en couche monomoléculaire". Thèse, Université du Québec à Trois-Rivières, 1990. http://depot-e.uqtr.ca/6782/1/000587544.pdf.
Texto completo da fonteMorgan, Jason. "Towards an Understanding of the Gas Diffusion Layer in Polymer Electrolyte Membrane Fuel Cells". Digital WPI, 2016. https://digitalcommons.wpi.edu/etd-dissertations/555.
Texto completo da fonteNeff, David N. "Integrated Bipolar Plate – Gas Diffusion Layer Design for Polymer Electrolyte Membrane Fuel Cells". Wright State University / OhioLINK, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=wright1261092610.
Texto completo da fonteCaston, Terry Brett. "Design of a gas diffusion layer for a polymer electrolyte membrane fuel cell with a graduated resistance to flow". Thesis, Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/34790.
Texto completo da fonteEl, Khoury Lara. "Diffusion Raman résonante des rayons X de molécules excitées en couche profonde". Paris 6, 2008. http://www.theses.fr/2008PA066305.
Texto completo da fonteDieudonne, Eva. "Diffusion électromagnétique par des objets inhomogènes : de la couche à la structure complexe". Thesis, Aix-Marseille, 2015. http://www.theses.fr/2015AIXM4304/document.
Texto completo da fonteElectromagnetic objects are designed by considering homogeneous materials properties (permittivity, permeability). However, during their realization real materials may present fluctuations of their properties. This work focuses on the development of tools able to estimate scattered fields produced by fluctuations. Three methods have been developed: EMFORS, ABE and RECY for the determination of the scattered field by fluctuations of permittivity and permeability. Taking into account permeability fluctuations is a significant advance. Indeed, there was no tool to estimate the scattered field by such a fluctuation, due to the absence of magnetic properties at optical frequencies.The RECY method is a method which allows to estimate the field in an object using the principle of reciprocity from the knowledge of the field in the object without defect and of the fluctuation function. This method allows, once the ideal field calculated by any method (analytic or digital), to obtain the scattered field from any structure.We applied RECY for structures such as elementary gratings, an industrial structure and photonic crystals
Capítulos de livros sobre o assunto "Couche de diffusion (GDL)"
Calay, Rajnish Kaur. "Gas Diffusion Layer (GDL)". In Encyclopedia of Membranes, 1. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-40872-4_1683-2.
Texto completo da fonteGallo Stampino, Paola, Giovanni Dotelli, Luca Omati, P. Fracas, D. Brivio e P. Grassini. "Carbon-Based Textiles as Gas Diffusion Layers (GDL) for Polymer Fuel Cells". In Smart Textiles, 128–33. Stafa: Trans Tech Publications Ltd., 2008. http://dx.doi.org/10.4028/3-908158-17-6.128.
Texto completo da fonteAmadane, Yassine, Hamid Mounir, Abdellatif El Marjani e Mohamed Karim Ettouhami. "The Effect of Gas Diffusion Layer (GDL) Porosity Variation on Oxygen Distribution Along the PEM Fuel Cell". In Lecture Notes in Electrical Engineering, 286–93. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-36475-5_27.
Texto completo da fonteBongaarts, John, e Dennis Hodgson. "Socio-Economic Determinants of Fertility". In Fertility Transition in the Developing World, 51–62. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-11840-1_4.
Texto completo da fonteWang, Yulin, e Haokai Xu. "Microstructure Reconstruction and Gas-Liquid Two-Phase Transport Mechanism within Porous Electrodes of PEM Fuel Cells". In Transport Perspectives for Porous Medium Applications [Working Title]. IntechOpen, 2023. http://dx.doi.org/10.5772/intechopen.1003240.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Couche de diffusion (GDL)"
Iwasaki, Daigo, Yoshio Utaka, Yutaka Tasaki e Shixue Wang. "Oxygen Diffusion Characteristics of Gas Diffusion Layers With Moisture". In ASME 2008 6th International Conference on Nanochannels, Microchannels, and Minichannels. ASMEDC, 2008. http://dx.doi.org/10.1115/icnmm2008-62106.
Texto completo da fonteFeser, J. P., A. K. Prasad e S. Advani. "In Plane Permeability Measurements for Gas Diffusion Layers". In ASME 2005 3rd International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2005. http://dx.doi.org/10.1115/fuelcell2005-74101.
Texto completo da fonteWu, R., X. Zhu, Q. Liao, H. Wang e Y. D. Ding. "Pore Network Modeling of Oxygen Diffusion in Gas Diffusion Layer of Proton Exchange Membrane Fuel Cells". In ASME 2009 Second International Conference on Micro/Nanoscale Heat and Mass Transfer. ASMEDC, 2009. http://dx.doi.org/10.1115/mnhmt2009-18433.
Texto completo da fonteGan, Mingfei, e Lea-Der Chen. "Analytical Solution for Two-Phase Flow in PEMFC Gas Diffusion Layer". In ASME 2006 4th International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2006. http://dx.doi.org/10.1115/fuelcell2006-97104.
Texto completo da fonteMeng, Hua, e Chao-Yang Wang. "Electron Transport in Gas Diffusion Layer of Polymer Electrolyte Fuel Cells". In ASME 2003 International Mechanical Engineering Congress and Exposition. ASMEDC, 2003. http://dx.doi.org/10.1115/imece2003-55175.
Texto completo da fonteIto, Kohei, Kensuke Ashikaga, Tomohiko Miyazaki, Hiroki Ohshima, Yasushi Kakimoto, Hiromitsu Masuda, Yoshiyuki Oie e Kazunari Sasaki. "Estimation of Flooding in PEMFC Gas Diffusion Layer by Differential Pressure Measurement". In ASME 2006 4th International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2006. http://dx.doi.org/10.1115/fuelcell2006-97251.
Texto completo da fonteWang, Yun, Xuhui Feng, Ralf Thiedmann, Volker Schmidt e Werner Lehnert. "Micro-Scale Transport in the Diffusion Media of Polymer Electrolyte Fuel Cells". In ASME 2009 Second International Conference on Micro/Nanoscale Heat and Mass Transfer. ASMEDC, 2009. http://dx.doi.org/10.1115/mnhmt2009-18201.
Texto completo da fonteMiyamoto, Jun-ichi, Junpei Ooyama e Yoshiaki Yamamoto. "Thermal Conductivity Measurements of Gas Diffusion Layer Under Controlled Temperature, Humidity and Stress". In ASME 2009 7th International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2009. http://dx.doi.org/10.1115/fuelcell2009-85111.
Texto completo da fonteSchulz, Volker P., Partha P. Mukherjee e Heiko Andra¨. "Compression Modeling and Transport Characterization of the PEM Fuel Cell Diffusion Medium". In ASME 2011 9th International Conference on Fuel Cell Science, Engineering and Technology collocated with ASME 2011 5th International Conference on Energy Sustainability. ASMEDC, 2011. http://dx.doi.org/10.1115/fuelcell2011-54298.
Texto completo da fonteKudo, Kazuhiko, Akiyoshi Kuroda, Shougo Takeoka e Yosuke Shimazu. "Modeling of Flooding Phenomena in Hydrophobic Gas Diffusion Layer of PEFC". In ASME/JSME 2007 Thermal Engineering Heat Transfer Summer Conference collocated with the ASME 2007 InterPACK Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/ht2007-32110.
Texto completo da fonteRelatórios de organizações sobre o assunto "Couche de diffusion (GDL)"
Monetary Policy Report - January 2023. Banco de la República, junho de 2023. http://dx.doi.org/10.32468/inf-pol-mont-eng.tr1-2023.
Texto completo da fonte