Literatura científica selecionada sobre o tema "Cosmic rays Measurement"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Cosmic rays Measurement".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Cosmic rays Measurement"
Rossetto, L., S. Buitink, A. Corstanje, J. E. Enriquez, H. Falcke, J. R. Hörandel, A. Nelles et al. "Measurement of cosmic rays with LOFAR". Journal of Physics: Conference Series 718 (maio de 2016): 052035. http://dx.doi.org/10.1088/1742-6596/718/5/052035.
Texto completo da fonteMockler, Daniela. "Measurement of the cosmic ray spectrum with the Pierre Auger Observatory". EPJ Web of Conferences 209 (2019): 01029. http://dx.doi.org/10.1051/epjconf/201920901029.
Texto completo da fonteNorman, Colin A. "The Highest Energy Cosmic Rays". Symposium - International Astronomical Union 175 (1996): 291–96. http://dx.doi.org/10.1017/s0074180900080864.
Texto completo da fonteNozzoli, Francesco, e Cinzia Cernetti. "Beryllium Radioactive Isotopes as a Probe to Measure the Residence Time of Cosmic Rays in the Galaxy and Halo Thickness: A “Data-Driven” Approach". Universe 7, n.º 6 (4 de junho de 2021): 183. http://dx.doi.org/10.3390/universe7060183.
Texto completo da fonteHARARI, DIEGO. "MEASUREMENTS OF COSMIC RAYS AT THE HIGHEST ENERGIES WITH THE PIERRE AUGER OBSERVATORY". International Journal of Modern Physics D 20, n.º 05 (20 de maio de 2011): 685–96. http://dx.doi.org/10.1142/s0218271811019037.
Texto completo da fonteAn, Q., R. Asfandiyarov, P. Azzarello, P. Bernardini, X. J. Bi, M. S. Cai, J. Chang et al. "Measurement of the cosmic ray proton spectrum from 40 GeV to 100 TeV with the DAMPE satellite". Science Advances 5, n.º 9 (setembro de 2019): eaax3793. http://dx.doi.org/10.1126/sciadv.aax3793.
Texto completo da fonteKostunin, D., P. A. Bezyazeekov, N. M. Budnev, D. Chernykh, O. Fedorov, O. A. Gress, A. Haungs et al. "Present status and prospects of the Tunka Radio Extension". EPJ Web of Conferences 216 (2019): 01005. http://dx.doi.org/10.1051/epjconf/201921601005.
Texto completo da fonteMariazzi, Analisa. "Highest energy particle physics with the Pierre Auger Observatory". International Journal of Modern Physics: Conference Series 31 (janeiro de 2014): 1460301. http://dx.doi.org/10.1142/s2010194514603019.
Texto completo da fonteOschlies, K., R. Beaujean e W. Enge. "Measurement of low energy cosmic rays aboard Spacelab-1". International Journal of Radiation Applications and Instrumentation. Part D. Nuclear Tracks and Radiation Measurements 12, n.º 1-6 (janeiro de 1986): 407–9. http://dx.doi.org/10.1016/1359-0189(86)90620-5.
Texto completo da fonteDE MELLO NETO, J. R. T. "ULTRA HIGH ENERGY COSMIC RAYS WITH THE PIERRE AUGER OBSERVATORY". International Journal of Modern Physics: Conference Series 18 (janeiro de 2012): 221–29. http://dx.doi.org/10.1142/s2010194512008495.
Texto completo da fonteTeses / dissertações sobre o assunto "Cosmic rays Measurement"
Brobeck, Elina Stone Edward McKeown R. D. "Measurement of ultra-high energy cosmic rays with CHICOS /". Diss., Pasadena, Calif. : California Institute of Technology, 2009. http://resolver.caltech.edu/CaltechETD:etd-10192008-143041.
Texto completo da fonteMoats, Anne Rosalie Myers. "LEAP: A balloon-borne search for low energy cosmic ray antiprotons". Diss., The University of Arizona, 1989. http://hdl.handle.net/10150/184723.
Texto completo da fonte吳本韓 e Pun-hon Ng. "Measurement of PeV cosmic rays extensive air showers at mountain altitude". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1993. http://hub.hku.hk/bib/B31233156.
Texto completo da fonteNg, Pun-hon. "Measurement of PeV cosmic rays extensive air showers at mountain altitude /". [Hong Kong : University of Hong Kong], 1993. http://sunzi.lib.hku.hk/hkuto/record.jsp?B13781431.
Texto completo da fonteBehlmann, Matthew Daniel. "Measurement of helium isotopic composition in cosmic rays with AMS-02". Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/115695.
Texto completo da fonteCataloged from PDF version of thesis.
Includes bibliographical references (pages 137-145).
The isotopic composition of helium in cosmic ray fluxes provides valuable information about cosmic ray propagation through the Galaxy, which is of particular interest to indirect dark matter searches. Helium-3, mainly a secondary cosmic ray species, is primarily produced by spallation of heavier cosmic rays, such as primary helium-4, with interstellar matter. In six years of data taking, AMS has collected the largest available data set on fluxes of cosmic-ray helium. Events are selected to form a clean sample of galactic helium nuclei, for which velocity and rigidity give a measurement of particle mass that allows the measurement of relative isotope abundances. The resolution of measured mass is described in detail by template functions based on the underlying resolutions of the silicon tracker and ring-imaging Cerenkov detector measurements. This thesis presents a measurement of the cosmic ray helium isotope ratio 3 He/ 4He in the range 0.8-10 GeV/nucleon, as obtained through a template fitting approach on AMS data.
by Matthew Daniel Behlmann.
Ph. D.
Fleischhack, Henrike. "Measurement of the iron spectrum in cosmic rays with the VERITAS experiment". Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät, 2017. http://dx.doi.org/10.18452/17691.
Texto completo da fonteThe energy spectrum of cosmic rays can provide important clues as to their origin and propagation. Different experimental techniques have to be combined to cover the full energy range: Direct detection experiments at lower energies and indirect detection via air showers at higher energies. In addition to detecting cosmic rays at Earth, we can also study them via the electromagnetic radiation, in particular gamma rays, that they emit in interactions with gas, dust, and electromagnetic fields near the acceleration regions or in interstellar space. In the following I will present two studies, both using data taken by the imaging air Cherenkov telescope (IACT) VERITAS. First, I present a measurement of the cosmic ray iron energy spectrum. I use a novel template likelihood method to reconstruct the primary energy and arrival direction, which is for the first time adapted for the use with iron-induced showers. I further use the presence of direct Cherenkov light emitted by charged primary particles before the first interaction to identify iron-induced showers, and a multi-variate classifier to measure the remaining background contribution. The energy spectrum of iron nuclei is well described by a power law in the energy range of 20 to 500 TeV. Second, I present a search for gamma-ray emission above 100 GeV from the three star-forming galaxies Arp 220, IRAS 17208-0014, and IC342. Galaxies with high star formation rates contain many young and middle-aged supernova remnants, which accelerate cosmic rays. These cosmic rays are expected to interact with the dense interstellar medium in the star-forming regions to emit gamma-ray photons up to very high energies. No gamma-ray emission is detected from the studied objects and the resulting limits begin to constrain theoretical models of the cosmic ray acceleration and propagation in Arp 220.
Vasilas, Dragoş. "Measurement of light isotopes ratios in the cosmic rays with the IMAX balloon experiment". [S.l. : s.n.], 2004. http://deposit.ddb.de/cgi-bin/dokserv?idn=972319077.
Texto completo da fonteSun, Wei Ph D. Massachusetts Institute of Technology. "Precision measurement of the boron to carbon ratio in cosmic rays with AMS-02". Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/99244.
Texto completo da fonteThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 163-170).
A precision measurement of the Boron to Carbon ratio in cosmic rays is carried out in the range 1 GeV/n to 670 GeV/n using the first 30 months of flight data of AMS-02 located on the International Space Station. Above 20 GeV/n, it is the first accurate measurement. About 5 million clean Boron and Carbon nuclei are identified. The experimental and analysis challenges in achieving a high precision measurement are addressed. Boron is exclusively produced as a secondary particle by spallation from primary elements like Carbon in collisions with interstellar medium. The unprecedented precision and energy range of this measurement deepen the knowledge of cosmic ray propagation. Using this measurement, the diffusion coefficient in Gal-Prop model is determined to be (6.05 ± 0.05)10 28 cm2/s, and the Alfven velocity is (33.9 ± 1.0) km/s. This makes the prediction of secondary anti-proton background in dark matter search one order of magnitude more accurate.
by Wei Sun.
Ph. D.
Jia, Yi Ph D. Massachusetts Institute of Technology. "Measurement of secondary cosmic rays lithium, beryllium, and boron by the alpha magnetic spectrometer". Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/119902.
Texto completo da fonteThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from PDF version of thesis.
Includes bibliographical references (pages 113-122).
Secondary cosmic rays are mainly produced by the collisions of nuclei with the interstellar medium. The precise knowledge of secondary cosmic rays is important to understand the origin and propagation of cosmic rays in the Galaxy. In this thesis, my work on the precision measurement of secondary cosmic rays Li, Be, and B in the rigidity (momentum/charge) range 1.9 GV to 3.3 TV with a total of 5.4 million nuclei collected by AMS is presented. The total error on each of the fluxes is 3%-4% at 100 GV, which is an improvement of more than a factor of 10 compared to previous measurements. Unexpectedly, the results show above 30 GV, these three fluxes have identical rigidity dependence and harden identically above 200 GV. In addition, my work on a new method of the tracker charge measurement leads to significant improvements in the AMS charge resolution, thus paving the way for the unexplored flux measurements of high Z cosmic rays.
by Yi Jia.
Ph. D.
Tao, Li. "Measurement of the cosmic lepton and electron fluxes with the AMS detector on board of the International Space Station. Monitoring of the energy measurement in the calorimeter". Thesis, Université Grenoble Alpes (ComUE), 2015. http://www.theses.fr/2015GRENY016/document.
Texto completo da fonteThe Alpha Magnetic Spectrometer (AMS) is a particle detector installed on the International Space Station; it starts to record data since May 2011. The experiment aims to identify the nature of charged cosmic rays and photons and measure their fluxes in the energy range of GeV to TeV. These measurements enable us to refine the cosmic ray propagation models, to perform indirect research of dark matter and to search for primordial antimatter (anti-helium). In this context, the data of the first years have been utilized to measure the electron flux and lepton flux (electron + positron) in the energy range of 0.5 GeV to 700 GeV. Identification of electrons requires an electrons / protons separation power of the order of 104, which is acquired by combining the information from different sub-detectors of AMS, in particular the electromagnetic calorimeter (ECAL), the tracker and the transition radiation detector (TRD). In this analysis, the numbers of electrons and leptons are estimated by fitting the distribution of the ECAL estimator and are verified using the TRD estimator: 11 million leptons are selected and analyzed. The systematic uncertainties are determined by changing the selection cuts and the fit procedure. The geometric acceptance of the detector and the selection efficiency are estimated thanks to simulated data. The differences observed on the control samples from data allow to correct the simulation. The systematic uncertainty associated to this correction is estimated by varying the control samples. In total, at 100 GeV (resp. 700 GeV), the statistic uncertainty of the lepton flux is 2% (30%) and the systematic uncertainty is 3% (40%). As the flux generally follows a power law as a function of energy, it is important to control the energy calibration. We have controlled in-situ the measurement of energy in the ECAL by comparing the electrons from flight data and from test beams, using in particular the E/p variable where p is momentum measured by the tracker. A second method of absolute calibration at low energy, independent from the tracker, is developed based on the geomagnetic cutoff effect. Two models of geomagnetic cutoff prediction, the Störmer approximation and the IGRF model, have been tested and compared. These two methods allow to control the energy calibration to a precision of 2% and to verify the stability of the ECAL performance with time
Livros sobre o assunto "Cosmic rays Measurement"
Keane, Anthony J. Measurement of the charge spectrum of ultra heavy galactic cosmic rays with Z>70. Dublin: University College Dublin, 1997.
Encontre o texto completo da fonteWorkshop on Balloon-Borne Experiment With a Superconducting Magnet Spectrometer (6th 1996 KEK). Proceedings of the 6th Workshop on Balloon-Borne Experiment with a Superconducting Magnet Spectrometer: Held at National Laboratory for High Energy Physics (KEK), Jan., 29-31, 1996. Oho, Tsukuba-shi, Ibaraki-ken, Japan: Natinal Laboratory for High Energy Physics, 1996.
Encontre o texto completo da fonteZhou, Dazhuang. CR-39 plastic nuclear track detectors in physics research. Hauppauge, N.Y: Nova Science Publishers, 2011.
Encontre o texto completo da fonteBoscherini, Massimo. The Time-of-Flight counter for the PAMELA experiment in space: Design, development, construction and qualification. Münster: Verlagshaus Monsenstein und Vannerdat, 2004.
Encontre o texto completo da fonteservice), SpringerLink (Online, ed. A Search for Ultra-High Energy Neutrinos and Cosmic-Rays with ANITA-2. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.
Encontre o texto completo da fonteGregory, J. C. A measurement of the energy spectra of cosmic rays from 20 to 1000 GeV per amu: Semiannual report. [Huntsville, Ala.]: University of Alabama in Huntsville, 1991.
Encontre o texto completo da fonteHohlmann, Marcus. Test der Vorwärts-Spurkammern des H1 Detektors mit kosmischen Teilchen. Aachen: Physikalische Institute RWTH Aachen, 1992.
Encontre o texto completo da fonteAbunina, Maria, Rolf Bütikofer, Karl-Ludwig Klein, Olga Kryakunova, Monica Laurenza, David Ruffolo, Danislav Sapundjiev, Christian T. Steigies e Ilya Usoskin, eds. NMDB@Home 2020. Kiel: Universitätsverlag Kiel | Kiel University Publishing, 2021. http://dx.doi.org/10.38072/2748-3150/v1.
Texto completo da fonteNakamura, Takashi. Dosimetry and spectrometry of cosmic-ray neutrons in aircraft: DOSCONA experiment. Chiba: National Institute of Radiological Sciences, 2011.
Encontre o texto completo da fonteFlynn, George. "Trace element abundance measurements on cosmic dust particles": Final report. [Washington, DC: National Aeronautics and Space Administration, 1996.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Cosmic rays Measurement"
Hofmann, W., e J. A. Hinton. "Cosmic Particle Accelerators". In Particle Physics Reference Library, 827–63. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-34245-6_13.
Texto completo da fonteLesko, K. T., E. B. Norman, R. M. Larimer e S. G. Crane. "Measurements of Cross Sections Relevant to γ-Ray Line Astronomy". In Genesis and Propagation of Cosmic Rays, 375–79. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-4025-3_24.
Texto completo da fonteZilles, Anne. "Going to Extreme Precision Measurements: Detecting Cosmic Rays with SKA1-Low". In Emission of Radio Waves in Particle Showers, 89–127. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-63411-1_6.
Texto completo da fonteNey, E. P., e J. R. Winckler. "High Altitude Cosmic-Ray Measurements During the International Geophysical Year". In Geophysics and the IGY: Proceedings of the Symposium at the Opening of the International Geophysical Year, 81–91. Washington D. C.: American Geophysical Union, 2013. http://dx.doi.org/10.1029/gm002p0081.
Texto completo da fonteRoy, S., R. P. Adak, R. Biswas, D. Nag, D. Paul, S. Rudra, S. Biswas e S. Das. "Measurement of Angular Variation of Cosmic Ray Intensity with Plastic Scintillator Detector". In Springer Proceedings in Physics, 199–204. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-7665-7_20.
Texto completo da fonteNeher, H. V., e S. E. Forbush. "Correlation of cosmic-ray ionization measurements at high altitudes, at sea level, and neutron intensities at mountain tops". In Cosmic Rays, the Sun and Geomagnetism: The Works of Scott E. Forbush, 181–82. Washington, D. C.: American Geophysical Union, 1993. http://dx.doi.org/10.1029/sp037p0181.
Texto completo da fonteWiegel, B., T. Ohrndorf e W. Heinrich. "Measurements of Cosmic Ray LET-Spectra for the D1 Mission Using Plastic Nuclear Track Detectors". In Terrestrial Space Radiation and Its Biological Effects, 795–807. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4613-1567-4_52.
Texto completo da fonteSlayman, Charles. "JEDEC Standards on Measurement and Reporting of Alpha Particle and Terrestrial Cosmic Ray Induced Soft Errors". In Soft Errors in Modern Electronic Systems, 55–76. Boston, MA: Springer US, 2010. http://dx.doi.org/10.1007/978-1-4419-6993-4_3.
Texto completo da fonteDorman, Lev I. "Theory of Cosmic Ray Meteorological Effects for Measurements in the Atmosphere and Underground (One-Dimensional Approximation)". In Astrophysics and Space Science Library, 289–330. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/978-1-4020-2113-8_5.
Texto completo da fonteVenkatesan, D., R. B. Decker e S. M. Krimigis. "Measurement of Radial and Latitudinal Gradients of Cosmic Ray Intensity During the Decreasing Phase of Sunspot Cycle 21". In Astrophysics and Space Science Library, 389–94. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-4612-5_46.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Cosmic rays Measurement"
AbuZayyad, Tareq. "TALE FD Cosmic Rays Composition Measurement". In 36th International Cosmic Ray Conference. Trieste, Italy: Sissa Medialab, 2019. http://dx.doi.org/10.22323/1.358.0169.
Texto completo da fonteRidky, Jan. "Measurement of Cosmic Ray Energy with the Pierre Auger Observatory". In C2CR07: COLLIDERS TO COSMIC RAYS. AIP, 2007. http://dx.doi.org/10.1063/1.2775894.
Texto completo da fonteFleischhack, Henrike. "Measurement of the Iron Spectrum in Cosmic Rays with VERITAS". In 35th International Cosmic Ray Conference. Trieste, Italy: Sissa Medialab, 2017. http://dx.doi.org/10.22323/1.301.0500.
Texto completo da fonteMa, PengXiong, Margherita Di Santo, ZhiHui Xu e Yongjie Zhang. "Charge measurement of cosmic rays by Plastic Scintillantor Detector of DAMPE". In 37th International Cosmic Ray Conference. Trieste, Italy: Sissa Medialab, 2021. http://dx.doi.org/10.22323/1.395.0073.
Texto completo da fonteHuang, Jing, M. Amenomori, X. J. Bi, D. Chen, T. L. Chen, W. Y. Chen, S. W. Cui et al. "Measurement of high energy cosmic rays by the new Tibet hybrid experiment". In 35th International Cosmic Ray Conference. Trieste, Italy: Sissa Medialab, 2017. http://dx.doi.org/10.22323/1.301.0484.
Texto completo da fonteBongi, M. "PAMELA: a satellite experiment for antiparticles measurement in cosmic rays". In 2003 IEEE Nuclear Science Symposium. Conference Record (IEEE Cat. No.03CH37515). IEEE, 2003. http://dx.doi.org/10.1109/nssmic.2003.1351878.
Texto completo da fonteSmolek, Karel, Jakub Cermak, Peter Lichard, Michal Nyklicek, Stanislav Pospisil, Petr Pridal, Jaroslav Smejkal, Ivan Stekl, Vladimir Vicha e Martin Vojik. "Measurement of High Energy Cosmic Rays in the Experiment CZELTA". In 2008 IEEE Nuclear Science Symposium and Medical Imaging conference (2008 NSS/MIC). IEEE, 2008. http://dx.doi.org/10.1109/nssmic.2008.4774529.
Texto completo da fonteSalamon, M. H., P. B. Price e G. Tarle. "Measurement of ultra-heavy cosmic rays at a lunar base". In Physics and Astrophysics from a Lunar Base. AIP, 1990. http://dx.doi.org/10.1063/1.39118.
Texto completo da fonteLibo, WU, Mingyang Cui, Dimitrios Kyratzis, Andrea Parenti e Yifeng Wei. "Towards the measurement of carbon and oxygen spectra in cosmic rays with DAMPE". In 37th International Cosmic Ray Conference. Trieste, Italy: Sissa Medialab, 2021. http://dx.doi.org/10.22323/1.395.0128.
Texto completo da fonteDi Sciascio, Giuseppe. "Measurement of (p+He)-induced anisotropy in cosmic rays with ARGO-YBJ". In The 34th International Cosmic Ray Conference. Trieste, Italy: Sissa Medialab, 2016. http://dx.doi.org/10.22323/1.236.0290.
Texto completo da fonteRelatórios de organizações sobre o assunto "Cosmic rays Measurement"
Collica, Laura. Mass composition studies of Ultra High Energy cosmic rays through the measurement of the Muon Production Depths at the Pierre Auger Observatory. Office of Scientific and Technical Information (OSTI), janeiro de 2014. http://dx.doi.org/10.2172/1249492.
Texto completo da fonteEylander, John, Michael Lewis, Maria Stevens, John Green e Joshua Fairley. An investigation of the feasibility of assimilating COSMOS soil moisture into GeoWATCH. Engineer Research and Development Center (U.S.), setembro de 2021. http://dx.doi.org/10.21079/11681/41966.
Texto completo da fonteMcIntosh, Gordon. Cosmic Ray Measurements A Proposed, Collaborative, Balloon Based Experiment. Ames (Iowa): Iowa State University. Library. Digital Press, janeiro de 2012. http://dx.doi.org/10.31274/ahac.8340.
Texto completo da fonteCelmins, Aivars. Feasibility of Cosmic-Ray Muon Intensity Measurements for Tunnel Detection. Fort Belvoir, VA: Defense Technical Information Center, junho de 1990. http://dx.doi.org/10.21236/ada223355.
Texto completo da fonteVerbeke, J. M., N. J. Snyderman e L. F. Nakae. Comparison between Neutron Counting Experimental Measurements and Simulations: Cosmic Ray Contribution. Office of Scientific and Technical Information (OSTI), fevereiro de 2008. http://dx.doi.org/10.2172/1113922.
Texto completo da fonteHocker, Andy, Paul Rubinov, Doug Glenzinski, Sten Hansen, Julie Whitmore, Craig Dukes, Craig Group, Yuriy Oksuzian, Martin Frank e Ralf Ehrlich. T-1043: Measurements of Photoelectron Yields for Prototype Mu2e Cosmic Ray Veto Scintillation Counters. Office of Scientific and Technical Information (OSTI), agosto de 2013. http://dx.doi.org/10.2172/1128251.
Texto completo da fonte