Artigos de revistas sobre o tema "Coordination chemitry"

Siga este link para ver outros tipos de publicações sobre o tema: Coordination chemitry.

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Coordination chemitry".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

Salzer, A. "Nomenclature of Organometallic Compounds of the Transition Elements (IUPAC Recommendations 1999)". Pure and Applied Chemistry 71, n.º 8 (30 de agosto de 1999): 1557–85. http://dx.doi.org/10.1351/pac199971081557.

Texto completo da fonte
Resumo:
Organometallic compounds are defined as containing at least one metal-carbon bond between an organic molecule, ion, or radical and a metal. Organometallic nomenclature therefore usually combines the nomenclature of organic chemisty and that of coordination chemistry. Provisional rules outlining nomenclature for such compounds are found both in Nomenclature of Organic Chemistry, 1979 and in Nomenclature of Inorganic Chemistry, 1990This document describes the nomenclature for organometallic compounds of the transition elements, that is compounds with metal-carbon single bonds, metal-carbon multiple bonds as well as complexes with unsaturated molecules (metal-p-complexes).Organometallic compounds are considered to be produced by addition reactions and so they are named on an addition principle. The name therefore is built around the central metal atom name. Organic ligand names are derived according to the rules of organic chemistry with appropriate endings to indicate the different bonding modes. To designate the points of attachment of ligands in more complicated structures, the h, k, and m-notations are used. The final section deals with the abbreviated nomenclature for metallocenes and their derivatives.ContentsIntroduction Systems of Nomenclature2.1 Binary type nomenclature 2.2 Substitutive nomenlcature 2.3 Coordination nomenclature Coordination Nomenclature3.1 General definitions of coordination chemistry 3.2 Oxidation numbers and net charges 3.3 Formulae and names for coordination compounds Nomenclature for Organometallic Compounds of Transition Metals 4.1 Valence-electron-numbers and the 18-valence-electron-rule 4.2 Ligand names 4.2.1 Ligands coordinating by one metal-carbon single bond 4.2.2 Ligands coordinating by several metal-carbon single bonds 4.2.3 Ligands coordinating by metal-carbon multiple bonds 4.2.4 Complexes with unsaturated molecules or groups 4.3 Metallocene nomenclature
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Wenger, Marc, e Thomas Armbruster. "Crystal chemistry of lithium: oxygen coordination and bonding". European Journal of Mineralogy 3, n.º 2 (18 de abril de 1991): 387–400. http://dx.doi.org/10.1127/ejm/3/2/0387.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Porras Gutiérrez, Ana Gabriela, Joceline Zeitouny, Antoine Gomila, Bénédicte Douziech, Nathalie Cosquer, Françoise Conan, Olivia Reinaud et al. "Insights into water coordination associated with the CuII/CuI electron transfer at a biomimetic Cu centre". Dalton Trans. 43, n.º 17 (2014): 6436–45. http://dx.doi.org/10.1039/c3dt53548g.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Hindson, Karen. "Coordination Chemistry". European Journal of Inorganic Chemistry 2012, n.º 29 (outubro de 2012): 4519. http://dx.doi.org/10.1002/ejic.201290090.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Delanoue, Renald, e Nuria M. Romero. "Growth and Maturation in Development: A Fly’s Perspective". International Journal of Molecular Sciences 21, n.º 4 (13 de fevereiro de 2020): 1260. http://dx.doi.org/10.3390/ijms21041260.

Texto completo da fonte
Resumo:
In mammals like humans, adult fitness is improved due to resource allocation, investing energy in the developmental growth process during the juvenile period, and in reproduction at the adult stage. Therefore, the attainment of their target body height/size co-occurs with the acquisition of maturation, implying a need for coordination between mechanisms that regulate organismal growth and maturation timing. Insects like Drosophila melanogaster also define their adult body size by the end of the juvenile larval period. Recent studies in the fly have shown evolutionary conservation of the regulatory pathways controlling growth and maturation, suggesting the existence of common coordinator mechanisms between them. In this review, we will present an overview of the significant advancements in the coordination mechanisms ensuring developmental robustness in Drosophila. We will include (i) the characterization of feedback mechanisms between maturation and growth hormones, (ii) the recognition of a relaxin-like peptide Dilp8 as a central processor coordinating juvenile regeneration and time of maturation, and (iii) the identification of a novel coordinator mechanism involving the AstA/KISS system.
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Krezel, A., e W. Bal. "Coordination chemistry of glutathione." Acta Biochimica Polonica 46, n.º 3 (30 de setembro de 1999): 567–80. http://dx.doi.org/10.18388/abp.1999_4129.

Texto completo da fonte
Resumo:
The metal ion coordination abilities of reduced and oxidized glutathione are reviewed. Reduced glutathione (GSH) is a very versatile ligand, forming stable complexes with both hard and soft metal ions. Several general binding modes of GSH are described. Soft metal ions coordinate exclusively or primarily through thiol sulfur. Hard ones prefer the amino acid-like moiety of the glutamic acid residue. Several transition metal ions can additionally coordinate to the peptide nitrogen of the gamma-Glu-Cys bond. Oxidized glutathione lacks the thiol function. Nevertheless, it proves to be a surprisingly efficient ligand for a range of metal ions, coordinating them primarily through the donors of the glutamic acid residue.
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Herberhold, Max, e Anthony F. Hill. "The coordination chemistry of iminooxosulphuranes VII. Coordinative activation of tolyliminooxosulphurane towards electrophiles". Journal of Organometallic Chemistry 395, n.º 2 (setembro de 1990): 207–18. http://dx.doi.org/10.1016/0022-328x(90)85278-7.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Zheng, Heping, Mahendra Chordia, David Cooper, Ivan Shabalin, Maksymilian Chruszcz, Peter Müller, George Sheldrick e Wladek Minor. "Check your metal - not every density blob is a water molecule". Acta Crystallographica Section A Foundations and Advances 70, a1 (5 de agosto de 2014): C1483. http://dx.doi.org/10.1107/s2053273314085167.

Texto completo da fonte
Resumo:
Metals play vital roles in both the mechanism and architecture of biological macromolecules, and are the most frequently encountered ligands (i.e. non-solvent heterogeneous chemical atoms) in the determination of macromolecular crystal structures. However, metal coordinating environments in protein structures are not always easy to check in routine validation procedures, resulting in an abundance of misidentified and/or suboptimally modeled metal ions in the Protein Data Bank (PDB). We present a solution to identify these problems in three distinct yet related aspects: (1) coordination chemistry; (2) agreement of experimental B-factors and occupancy; and (3) the composition and motif of the metal binding environment. Due to additional strain introduced by macromolecular backbones, the patterns of coordination of metal binding sites in metal-containing macromolecules are more complex and diverse than those found in inorganic or organometallic chemistry. These complications make a comprehensive library of "permitted" coordination chemistry in protein structures less feasible, and the usage of global parameters such as the bond valence method more practical, in the determination and validation of metal binding environments. Although they are relatively infrequent, there are also cases where the experimental B-factor or occupancy of a metal ion suggests careful examination. We have developed a web-based tool called CheckMyMetal [1](http://csgid.org/csgid/metal_sites/) for the quick validation of metal binding sites. Moreover, the acquired knowledge of the composition and spatial arrangement (motif) of the coordinating atoms around the metal ion may also help in the modeling of metal binding sites in macromolecular structures. All of the studies described herein were performed using the NEIGHBORHOOD SQL database [2], which connects information about all modeled non-solvent heterogeneous chemical motifs in PDB structure by vectors describing all contacts to neighboring residues and atoms. NEIGHBORHOOD has broad applications for the validation and data mining of ligand binding environments in the PDB.
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Taakili, Rachid, e Yves Canac. "NHC Core Pincer Ligands Exhibiting Two Anionic Coordinating Extremities". Molecules 25, n.º 9 (9 de maio de 2020): 2231. http://dx.doi.org/10.3390/molecules25092231.

Texto completo da fonte
Resumo:
The chemistry of NHC core pincer ligands of LX2 type bearing two pending arms, identical or not, whose coordinating center is anionic in nature, is here reviewed. In this family, the negative charge of the coordinating atoms can be brought either by a carbon atom via a phosphonium ylide (R3P+–CR2−) or by a heteroatom through amide (R2N−), oxide (RO−), or thio(seleno)oxide (RS−, RSe−) donor functionalities. Through selected examples, the synthetic methods, coordination properties, and applications of such tridentate systems are described. Particular emphasis is placed on the role of the donor ends in the chemical behavior of these species.
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Lusby, Paul J. "Supramolecular coordination chemistry". Annual Reports Section "A" (Inorganic Chemistry) 108 (2012): 292. http://dx.doi.org/10.1039/c2ic90030k.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

Archibald, Stephen J. "Macrocyclic coordination chemistry". Annual Reports Section "A" (Inorganic Chemistry) 108 (2012): 271. http://dx.doi.org/10.1039/c2ic90035a.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Lusby, Paul J. "Supramolecular coordination chemistry". Annual Reports Section "A" (Inorganic Chemistry) 105 (2009): 323. http://dx.doi.org/10.1039/b818282p.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

Archibald, Stephen J. "Macrocyclic coordination chemistry". Annual Reports Section "A" (Inorganic Chemistry) 102 (2006): 332. http://dx.doi.org/10.1039/b514842c.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Cronin, Leroy. "Supramolecular coordination chemistry". Annual Reports Section "A" (Inorganic Chemistry) 102 (2006): 353. http://dx.doi.org/10.1039/b514843j.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

Kostakis, George E., e Sally Brooker. "Modern coordination chemistry". Dalton Transactions 48, n.º 41 (2019): 15318–20. http://dx.doi.org/10.1039/c9dt90209k.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Archibald, Stephen J. "Macrocyclic coordination chemistry". Annual Reports Section "A" (Inorganic Chemistry) 106 (2010): 295. http://dx.doi.org/10.1039/b918391b.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Lusby, Paul J. "Supramolecular coordination chemistry". Annual Reports Section "A" (Inorganic Chemistry) 106 (2010): 319. http://dx.doi.org/10.1039/b918392m.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Archibald, Stephen J. "Macrocyclic coordination chemistry". Annual Reports Section "A" (Inorganic Chemistry) 103 (2007): 264. http://dx.doi.org/10.1039/b612865n.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Pradeep, Chullikkattil P., e Leroy Cronin. "Supramolecular coordination chemistry". Annual Reports Section "A" (Inorganic Chemistry) 103 (2007): 287. http://dx.doi.org/10.1039/b612867j.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

Archibald, Stephen J. "Macrocyclic coordination chemistry". Annual Reports Section "A" (Inorganic Chemistry) 104 (2008): 272. http://dx.doi.org/10.1039/b716584f.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Lusby, Paul J. "Supramolecular coordination chemistry". Annual Reports Section "A" (Inorganic Chemistry) 104 (2008): 297. http://dx.doi.org/10.1039/b716586m.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

Lusby, Paul J. "Supramolecular coordination chemistry". Annual Reports Section "A" (Inorganic Chemistry) 109 (2013): 254. http://dx.doi.org/10.1039/c3ic90025h.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

Burke, Benjamin P., e Stephen J. Archibald. "Macrocyclic coordination chemistry". Annual Reports Section "A" (Inorganic Chemistry) 109 (2013): 232. http://dx.doi.org/10.1039/c3ic90032k.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

Lusby, Paul J. "Supramolecular coordination chemistry". Annual Reports Section "A" (Inorganic Chemistry) 107 (2011): 297. http://dx.doi.org/10.1039/c1ic90026a.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

Archibald, Stephen J. "Macrocyclic coordination chemistry". Annual Reports Section "A" (Inorganic Chemistry) 107 (2011): 274. http://dx.doi.org/10.1039/c1ic90033a.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

Seddon, K. R. "Coordination Chemistry reviews". Coordination Chemistry Reviews 89 (setembro de 1988): vii. http://dx.doi.org/10.1016/0010-8545(88)80035-3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

Wong, Chih Y., e J. D. Woollins. "Beryllium coordination chemistry". Coordination Chemistry Reviews 130, n.º 1-2 (fevereiro de 1994): 243–73. http://dx.doi.org/10.1016/0010-8545(94)80006-5.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

Eaborn, Colin. "Comprehensive Coordination Chemistry". Journal of Organometallic Chemistry 356, n.º 2 (novembro de 1988): C65. http://dx.doi.org/10.1016/0022-328x(88)83103-6.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

Keep, Ann K. "Expanded Coordination Chemistry". Platinum Metals Review 48, n.º 2 (1 de abril de 2004): 64–65. http://dx.doi.org/10.1595/003214004x4826465.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

Meyer, Michel, Claude P. Gros e Laurent Plasseraud. "Equilibrium solution coordination chemistry". New Journal of Chemistry 42, n.º 10 (2018): 7514–15. http://dx.doi.org/10.1039/c8nj90042f.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

Kanaoujiya, Rahul, e Shekhar Srivastava. "Coordination Chemistry of Ruthenium". Research Journal of Chemistry and Environment 25, n.º 9 (25 de agosto de 2021): 103–6. http://dx.doi.org/10.25303/259rjce103106.

Texto completo da fonte
Resumo:
Ruthenium is one of the rare elements that belongs to the platinum group metals. Ruthenium is very effective hardener for platinum and palladium. Well studied coordination and organometallic chemistry of ruthenium results in a various varieties of compounds. There are various features of ruthenium such as oxidation states, coordination numbers and geometries. Ruthenium compounds have various applications and also have low toxicity and they are ideal for the catalytic synthesis of drugs. The field of ruthenium chemistry is very broad and is extremely diverse in the field of catalysis and medicinal chemistry. This review article shows a classical general chemistry of ruthenium compounds.
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

Irby, Stefan M., Andy L. Phu, Emily J. Borda, Todd R. Haskell, Nicole Steed e Zachary Meyer. "Use of a card sort task to assess students' ability to coordinate three levels of representation in chemistry". Chemistry Education Research and Practice 17, n.º 2 (2016): 337–52. http://dx.doi.org/10.1039/c5rp00150a.

Texto completo da fonte
Resumo:
There is much agreement among chemical education researchers that expertise in chemistry depends in part on the ability to coordinate understanding of phenomena on three levels: macroscopic (observable), sub-microscopic (atoms, molecules, and ions) and symbolic (chemical equations, graphs, etc.). We hypothesize this “level-coordination ability” is related to the formation and use of principle-based, vs. context-bound, internal representations or schemas. Here we describe the development, initial validation, and use of a card sort task to measure the level-coordinating ability of individuals with varying degrees of preparation in chemistry. We have also developed a novel method for generating two-dimensional sorting coordinates which were used to arrange participants along a hypothetical progression of level-coordination ability. Our findings suggest the card sort task shows promise as a tool to assess level-coordination ability. With the exception of graduate students, participant groups on average progressed from sorting by level of representation toward sorting by underlying principle. Graduate students unexpectedly sorted primarily by level of representation. We use these data to form initial hypotheses about a typical process for the development of level-coordination ability and schema formation. In doing so, we demonstrate the usefulness of our task paired with sorting coordinate analysis as a tool to explore the space between novice and expert behavior. Finally, we suggest potential uses for the task as a formative assessment tool at the classroom and program levels.
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

Lipunova, G. N., T. G. Fedorchenko e O. N. Chupakhin. "Verdazyls in Coordination Chemistry". Russian Journal of Coordination Chemistry 48, n.º 7 (julho de 2022): 397–411. http://dx.doi.org/10.1134/s1070328422070065.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

Ward, M. D. "18 Supramolecular coordination chemistry". Annual Reports Section "A" (Inorganic Chemistry) 96 (2000): 345–85. http://dx.doi.org/10.1039/b002989k.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

Carter, Timothy G., W. Jake Vickaryous, Virginia M. Cangelosi e Darren W. Johnson. "SUPRAMOLECULAR ARSENIC COORDINATION CHEMISTRY". Comments on Inorganic Chemistry 28, n.º 3-4 (11 de setembro de 2007): 97–122. http://dx.doi.org/10.1080/02603590701560994.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

Gubin, S. P., e N. A. Kataeva. "Coordination chemistry of nanoparticles". Russian Journal of Coordination Chemistry 32, n.º 12 (dezembro de 2006): 849–57. http://dx.doi.org/10.1134/s1070328406120013.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

Ward, M. D. "18 Supramolecular coordination chemistry". Annu. Rep. Prog. Chem., Sect. A: Inorg. Chem. 98 (2002): 285–320. http://dx.doi.org/10.1039/b109632j.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

Sachdev, Hermann, Christian Wagner, Cordula Preis, Volker Huch e Michael Veith. "Coordination chemistry of furfurylsilylamides". Journal of the Chemical Society, Dalton Transactions, n.º 24 (22 de novembro de 2002): 4709–13. http://dx.doi.org/10.1039/b205350k.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

Inoue, Shigeyoshi. "Coordination Chemistry of Silicon". Inorganics 7, n.º 1 (14 de janeiro de 2019): 7. http://dx.doi.org/10.3390/inorganics7010007.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

BRESSAN, M., R. ETTORRE, F. MARCHIORI e G. VALLE. "Coordination chemistry of peptides". International Journal of Peptide and Protein Research 19, n.º 4 (12 de janeiro de 2009): 402–7. http://dx.doi.org/10.1111/j.1399-3011.1982.tb02621.x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

Arduengo, Anthony J., H. V. Rasika Dias e J. C. Calabrese. "Coordination Chemistry of ADPO". Phosphorus, Sulfur, and Silicon and the Related Elements 87, n.º 1-4 (fevereiro de 1994): 1–10. http://dx.doi.org/10.1080/10426509408037435.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

Cupertino, Dominico, Robin Keyte, Alexandra Slawin, David Williams e J. Derek Woollins. "Coordination Chemistry of Dithioimidophosphinates". Phosphorus, Sulfur, and Silicon and the Related Elements 109, n.º 1 (1 de fevereiro de 1996): 193–96. http://dx.doi.org/10.1080/10426509608046231.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

Cupertino, Dominico, Robin W. Keyte, Alexandra M. Z. Slawin, David J. Williams e J. Derek Woollins. "Coordination Chemistry of Dithioimidophosphinates." Phosphorus, Sulfur, and Silicon and the Related Elements 109, n.º 1-4 (janeiro de 1996): 193–96. http://dx.doi.org/10.1080/10426509608545123.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

Vedernikov, Andrei N., John C. Huffman e Kenneth G. Caulton. "Coordination Chemistry of Tripyridinedimethane". Inorganic Chemistry 41, n.º 24 (dezembro de 2002): 6244–48. http://dx.doi.org/10.1021/ic025708o.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
45

Peng, S. M., e M. C. Liaw. "Trigonal prismatic coordination chemistry". Acta Crystallographica Section A Foundations of Crystallography 49, s1 (21 de agosto de 1993): c228. http://dx.doi.org/10.1107/s0108767378093629.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
46

Abdelhalim Ahmed, Ibrahim, Guido Kastner, Hans Reuter e Dietrich Schultze. "Coordination chemistry of tin". Journal of Organometallic Chemistry 649, n.º 2 (abril de 2002): 147–51. http://dx.doi.org/10.1016/s0022-328x(02)01111-7.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
47

Shiemke, A. K., J. A. Shelnutt e R. A. Scott. "Coordination Chemistry of F430". Journal of Biological Chemistry 264, n.º 19 (julho de 1989): 11236–45. http://dx.doi.org/10.1016/s0021-9258(18)60454-5.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
48

Heinekey, D. M., e Warren J. Oldham. "Coordination chemistry of dihydrogen". Chemical Reviews 93, n.º 3 (maio de 1993): 913–26. http://dx.doi.org/10.1021/cr00019a004.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
49

Alcarazo, Manuel, Christian W. Lehmann, Anakuthil Anoop, Walter Thiel e Alois Fürstner. "Coordination chemistry at carbon". Nature Chemistry 1, n.º 4 (14 de junho de 2009): 295–301. http://dx.doi.org/10.1038/nchem.248.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
50

Xu, Qiang. "Coordination chemistry for energy". Coordination Chemistry Reviews 373 (outubro de 2018): 1. http://dx.doi.org/10.1016/j.ccr.2018.08.003.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia