Literatura científica selecionada sobre o tema "Cooling"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Cooling".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Cooling"
Che Sidik, Nor Azwadi, e Shahin Salimi. "The Use of Compound Cooling Holes for Film Cooling at the End Wall of Combustor Simulator". Applied Mechanics and Materials 695 (novembro de 2014): 371–75. http://dx.doi.org/10.4028/www.scientific.net/amm.695.371.
Texto completo da fonteWang, Chen, Chunhua Wang e Jingzhou Zhang. "Parametric Studies of Laminated Cooling Configurations: Overall Cooling Effectiveness". International Journal of Aerospace Engineering 2021 (10 de fevereiro de 2021): 1–15. http://dx.doi.org/10.1155/2021/6656804.
Texto completo da fonteShi, Li, Zhiying Sun e Yuanfeng Lu. "The Combined Influences of Film Cooling and Thermal Barrier Coatings on the Cooling Performances of a Film and Internal Cooled Vane". Coatings 10, n.º 9 (5 de setembro de 2020): 861. http://dx.doi.org/10.3390/coatings10090861.
Texto completo da fonteHarrington, Mark K., Marcus A. McWaters, David G. Bogard, Christopher A. Lemmon e Karen A. Thole. "Full-Coverage Film Cooling With Short Normal Injection Holes". Journal of Turbomachinery 123, n.º 4 (1 de fevereiro de 2001): 798–805. http://dx.doi.org/10.1115/1.1400111.
Texto completo da fonteFriedrichs, S., H. P. Hodson e W. N. Dawes. "The Design of an Improved Endwall Film-Cooling Configuration". Journal of Turbomachinery 121, n.º 4 (1 de outubro de 1999): 772–80. http://dx.doi.org/10.1115/1.2836731.
Texto completo da fonteDing, Yuzhang, Haocheng Ji, Rui Liu, Yuwei Jiang e Minxiang Wei. "Study of the thermal behavior of a battery pack with a serpentine channel". AIP Advances 12, n.º 5 (1 de maio de 2022): 055028. http://dx.doi.org/10.1063/5.0089378.
Texto completo da fonteZulfikar, Zulfikar. "Penambahan Water Coolant Pada Cooling Tower Tipe Counter Flow". Jurnal Mesin Nusantara 1, n.º 2 (27 de agosto de 2019): 85–92. http://dx.doi.org/10.29407/jmn.v1i2.13566.
Texto completo da fonteWang, J. H., J. Messner e H. Stetter. "An Experimental Investigation on Transpiration Cooling Part II: Comparison of Cooling Methods and Media". International Journal of Rotating Machinery 10, n.º 5 (2004): 355–63. http://dx.doi.org/10.1155/s1023621x04000363.
Texto completo da fonteSadov, V. V., e N. I. Kapustin. "AUTOMATED INSTALLATION FOR MILK COOLING USING A NATURAL COOLING AGENT". Vestnik Altajskogo gosudarstvennogo agrarnogo universiteta, n.º 11 (2021): 116–22. http://dx.doi.org/10.53083/1996-4277-2021-205-11-116-122.
Texto completo da fonteSong, Hanlin, Meng Zheng, Zheshu Ma, Yanju Li e Wei Shao. "Numerical simulation of thermal performance of cold plates for high heat flux electronics cooling". Thermal Science, n.º 00 (2023): 261. http://dx.doi.org/10.2298/tsci230715261s.
Texto completo da fonteTeses / dissertações sobre o assunto "Cooling"
Katta, Kiran Kumar. "Phase change cooling applications engine cooling /". To access this resource online via ProQuest Dissertations and Theses @ UTEP, 2008. http://0-proquest.umi.com.lib.utep.edu/login?COPT=REJTPTU0YmImSU5UPTAmVkVSPTI=&clientId=2515.
Texto completo da fonteChen, Ruiping. "Laser cooling of atoms for ultracold cooling". Thesis, Queen's University Belfast, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.479242.
Texto completo da fonteSrikanth, Sai Aswin. "Use of Electrical Coolant Pumps in Scania’s Cooling System". Thesis, KTH, Maskinkonstruktion (Avd.), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-259681.
Texto completo da fonteBilindustrin befinner sig mitt i en våg av elektrifiering. Flertalet tillverkare fokuserar på att elektrifiera sitt produktutbud och att minska utsläppen. Inom forskningen kring tunga transporter med dieseldrivna lastbilar, är elektrifiering av kylsystemet ett outforskat område. Ett optimerat kylsystem som är reglerbart med en elektrisk kylvätskepump skulle potentiellt kunna minska energiförluster och utsläpp. Kravet på flödet av kylvätska vid utmanande driftsfall skulle också kunna bli bättre uppfyllda än för dagens system. Trots att det blir allt vanligare att personbilar har elektriska kylvätskepumpar, så har det inte utforskats vad det innebär att ha reglerbara elektriska kylvätskepumpar i dieseldriva lastbilar. Därför är detta ett viktigt område att utforska. Målet med detta projekt är att skapa olika kylsystemskoncept, där den elektriska kylvätskepumpen är en systemkomponent. Prestandan hos dessa principlösningar jämförs sedan med volymflödet i ett standard kylvätskesystem. Koncept som uppfyller kraven för kylvätskesystemet kommer att bli utvalda för vidare verifiering. 1-D simuleringar används för att hitta samband och verifiera mot trenderna som hittas i resultat från en testrigg. Resultaten visar en förbättring i det totala volymflödet för flera av lösningarna, som har en elektrisk kylvätskepump. Men det finns fortfarande flera utmaningar som behöver övervinnas.
Graça, Guilherme Carrilho da 1972. "Ventilative cooling". Thesis, Massachusetts Institute of Technology, 1999. http://hdl.handle.net/1721.1/66785.
Texto completo da fonteIncludes bibliographical references (p. 131-134).
This thesis evaluates the performance of daytime and nighttime passive ventilation cooling strategies for Beijing, Shanghai and Tokyo. A new simulation method for cross-ventilated wind driven airflow is presented . This method decouples the airflow model from the thermal model allowing for fast real weather simulation of the building thermal performance. The simulation is performed on a six-story, isolated, suburban apartment building, considered to be typical of the three cities. The performance of the two natural ventilation strategies on this building is compared . The impact on the performance of different types of construction is assessed for the night cooling ventilation strategy. The results show that night cooling is superior to daytime ventilative cooling in the three cities. Night cooling can successfully replace air conditioning systems for a significant part of the cooling season in Beijing and Tokyo. For Shanghai, neither of the two passive ventilation systems can be considered successful. In both Beijing and Tokyo the application of night cooling may cause condensation in partitions. The use of heavyweight partitions does not show a noticeable improvement over normal construction (using 10cm concrete partitions) . On the other hand, the lightweight case shows a noticeable degradation in system performance. Therefore, the normal structural system is the best option. The use of carpet has a very negative impact on night cooling performance, and is therefore not advised.
by Guilherme Carrilho da Graça.
S.M.
Rizvani, Lejla. "Cooling Oasis". Thesis, KTH, Arkitektur, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-298809.
Texto completo da fonteFletcher, Daniel Alden. "Internal cooling of turbine blades : the matrix cooling method". Thesis, University of Oxford, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.360259.
Texto completo da fonteVILAFRANCA, MANGUÁN ANA. "Convesion of industrial compression cooling to absorption cooling in an integrated district heating and cooling system". Thesis, University of Gävle, University of Gävle, Department of Technology and Built Environment, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-4145.
Texto completo da fonteAstra Zeneca plant in Gärtuna has many compression cooling machines for comfort that consume about 11.7 GWh of electricity per year. Many of the cooling machines are old; due to the increase of production of the plant, cooling capacity was limited and new machines have been built. Now, the cooling capacity is over-sized. Söderenergi is the district heating plant that supplies heating to Astra Zeneca plant. Due to the strict environmental policy in the energy plant, last year, a bio-fuelled CHP plant was built. It is awarded with the electricity certificate system.
The study investigates the possibility for converting some of the compression cooling to absorption cooling and then analyzes the effects of the district heating system through MODEST optimizations. The effects of the analysis are studied in a system composed by the district heating system in Södertälje and cooling system in Astra Zeneca. In the current system the district heating production is from boiler and compression system supplies cooling to Astra Zeneca. The future system includes a CHP plant for the heating production, and compression system is converted to absorption system in Astra Zeneca. Four effects are analyzed in the system: optimal distribution of the district heating production with the plants available, saving fuel, environmental impact and total cost. The environmental impact has been analyzed considering the marginal electricity from coal condensing plants. The total cost is divided in two parts: production cost, in which district heating cost, purchase of electricity and Emissions Trading cost are included, and investment costs. The progressive changes are introduced in the system as four different scenarios.
The introduction of the absorption machines in the system with the current district heating production increases the total cost due to the low electricity price in Sweden. The introduction of the CHP plant in the district heating production supposes a profit of the production cost with compression system due to the high income of the electricity produced that is sold to the grid; it profit increases when compression is replaced by absorption system. The fuel used in the production of the future system decreases and also the emissions. Then, the future system becomes an opportunity from an environmental and economical point of view. At higher purchase electricity prices predicted in the open electricity market for an immediately future, the future system will become more economically advantageous.
Ozmen, Emin Mehmet. "Part Cooling Analysis By Conformal Cooling Channels In Injection Molding". Master's thesis, METU, 2007. http://etd.lib.metu.edu.tr/upload/2/12609186/index.pdf.
Texto completo da fonteelik Company was studied. The process was simulated using actual process parameters and simulation results were compared with production results. Then, the process was simulated using conformal cooling channels and compared with production results. It is seen that the cycle time of the refrigerator shelf was decreased considerably while preserving surface quality appearance.
Omma, Henrik Nilsen. "Jet-powered cooling cores : reversing cooling flows through AGN activity". Thesis, University of Oxford, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.419330.
Texto completo da fonteAghasi, Paul P. "Dependence of Film Cooling Effectiveness on 3D Printed Cooling Holes". University of Cincinnati / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1458893416.
Texto completo da fonteLivros sobre o assunto "Cooling"
Oxlade, Chris. Cooling. Oxford: Heinemann Library, 2009.
Encontre o texto completo da fonteOxlade, Chris. Cooling. Oxford: Heinemann Library, 2010.
Encontre o texto completo da fonteOxlade, Chris. Cooling. Chicago, Ill: Heinemann Library, 2009.
Encontre o texto completo da fonteOlama, Alaa A., ed. District Cooling. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2016. http://dx.doi.org/10.1201/9781315371634.
Texto completo da fonteOlama, Alaa A. District Cooling. Boca Raton : CRCress, 2017. | Series: Heat transfer : a series: CRC Press, 2016. http://dx.doi.org/10.4324/9781315371634.
Texto completo da fonteFrank, Esch, ed. Cooling off. San Diego, CA: Dominie Press, 1992.
Encontre o texto completo da fonteHill, G. B. Cooling towers. 3a ed. London: Butterworths, 1990.
Encontre o texto completo da fonteManning, Linda. Cooling off. Toronto: Gage Educational Pub., 1986.
Encontre o texto completo da fonteUnited States. Conservation and Renewable Energy Inquiry and Referral Service., ed. Passive cooling. 3a ed. [Silver Spring, MD]: U.S. Dept. of Energy, Conservation and Renewable Energy Inquiry and Referral Service, 1987.
Encontre o texto completo da fonteUnited States. Conservation and Renewable Energy Inquiry and Referral Service, ed. Passive cooling. 2a ed. Silver Spring, MD: U.S. Dept. of Energy, Conservation and Renewable Energy Inquiry and Referral Service, 1986.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Cooling"
Gooch, Jan W. "Cooling". In Encyclopedic Dictionary of Polymers, 170. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_2895.
Texto completo da fonteMinty, Michiko G., e Frank Zimmermann. "Cooling". In Particle Acceleration and Detection, 263–300. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-662-08581-3_11.
Texto completo da fonteTyler, Christopher J. "Cooling". In Maximising Performance in Hot Environments, 131–58. New York, NY: Routledge, 2019.: Routledge, 2019. http://dx.doi.org/10.4324/9781351111553-7.
Texto completo da fonteSchiller, Gary F. "Cooling". In A Practical Approach to Scientific Molding, 99–109. München: Carl Hanser Verlag GmbH & Co. KG, 2018. http://dx.doi.org/10.3139/9781569906873.010.
Texto completo da fonteZhu, Fang, e Baitun Yang. "Cooling". In Power Transformer Design Practices, 145–65. First edition. | Boca Raton, FL: CRC Press/Taylor & Francis Group, LLC, 2021.: CRC Press, 2021. http://dx.doi.org/10.1201/9780367816865-8.
Texto completo da fontevon Zabeltitz, Christian. "Cooling". In Integrated Greenhouse Systems for Mild Climates, 251–83. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-14582-7_11.
Texto completo da fonteF. Schiller, Gary. "Cooling". In A Practical Approach to Scientific Molding, 99–109. München, Germany: Carl Hanser Verlag GmbH & Co. KG, 2018. http://dx.doi.org/10.1007/978-1-56990-687-3_10.
Texto completo da fonteEstévez-Sánchez, Karen Hariantty, Carlos Enrique Ochoa-Velasco, Hector Ruiz-Espinosa e Irving Israel Ruiz-López. "Cooling". In Smart Food Industry: The Blockchain for Sustainable Engineering, 132–48. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003231059-10.
Texto completo da fontePeter, Johannes M. F., e Markus J. Kloker. "Numerical Simulation of Film Cooling in Supersonic Flow". In Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 79–95. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-53847-7_5.
Texto completo da fonte"Cooling". In How Your House Works, 91–95. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118286074.ch4.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Cooling"
Calabrese, R., e L. Tecchio. "Electron Cooling and New Cooling Techniques". In Workshop on Electron Cooling and New Cooling Techniques. WORLD SCIENTIFIC, 1991. http://dx.doi.org/10.1142/9789814539425.
Texto completo da fonteChan, Albert, Don Nguyen, Jean Chen, Chun-Chih Chen e Michael Brooks. "Coolant Considerations for Liquid-Cooling". In 2023 39th Semiconductor Thermal Measurement, Modeling & Management Symposium (SEMI-THERM). IEEE, 2023. http://dx.doi.org/10.23919/semi-therm59981.2023.10267902.
Texto completo da fonteTakeishi, K., Y. Oda, Y. Egawa e T. Kitamura. "Film cooling with swirling coolant flow". In HEAT TRANSFER 2010. Southampton, UK: WIT Press, 2010. http://dx.doi.org/10.2495/ht100171.
Texto completo da fonteAndrews, G. E., e I. M. Khalifa. "Effusion Cooling With Backside Crossflow Cooling and the Backside Coolant Mass Flow Rate Greater Than the Effusion Cooling Mass Flow". In ASME Turbo Expo 2013: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/gt2013-95355.
Texto completo da fonteFuqua, Matthew N., e James L. Rutledge. "Film Cooling Superposition Theory for Multiple Rows of Cooling Holes With Multiple Coolant Temperatures". In ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/gt2020-15252.
Texto completo da fonteClick, Austin, Phillip M. Ligrani, Maggie Hockensmith, Joseph Knox, Chandler Larson, Avery Fairbanks, Federico Liberatore, Rajeshriben Patel e Yin-Hsiang Ho. "Louver Slot Cooling and Full-Coverage Film Cooling With a Combination Internal Coolant Supply". In ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/gt2020-14520.
Texto completo da fonteTakeishi, Kenichiro, Yutaka Oda, Yuta Egawa e Satoshi Hada. "Film Cooling With Swirling Coolant Flow Controlled by Impingement Cooling in a Closed Cavity". In ASME 2011 Power Conference collocated with JSME ICOPE 2011. ASMEDC, 2011. http://dx.doi.org/10.1115/power2011-55390.
Texto completo da fonteDerwent, P. F. "Debuncher Cooling Performance". In BEAM COOLING AND RELATED TOPICS: International Workshop on Beam Cooling and Related Topics - COOL05. AIP, 2006. http://dx.doi.org/10.1063/1.2190117.
Texto completo da fonteKikkawa, Shinzo, Katsuji Sakaguchi e Toyoshi Nakata. "TRANSPIRATION COOLING USING WATER AS A COOLANT". In International Heat Transfer Conference 9. Connecticut: Begellhouse, 1990. http://dx.doi.org/10.1615/ihtc9.680.
Texto completo da fonteGalaso, Ivan, Tonko Curko e Davor Zvizdic. "ROOM COOLING LOAD AND CEILING COOLING". In Energy and the Environment, 1998. Connecticut: Begellhouse, 2023. http://dx.doi.org/10.1615/1-56700-127-0.1080.
Texto completo da fonteRelatórios de organizações sobre o assunto "Cooling"
Kurnik, Charles W., Brian Boyd, Kate M. Stoughton e Taylor Lewis. Cooling Tower (Evaporative Cooling System) Measurement and Verification Protocol. Office of Scientific and Technical Information (OSTI), dezembro de 2017. http://dx.doi.org/10.2172/1412805.
Texto completo da fonteKurnik, Charles W., Brian Boyd, Kate M. Stoughton e Taylor Lewis. Cooling Tower (Evaporative Cooling System) Measurement and Verification Protocol. Office of Scientific and Technical Information (OSTI), dezembro de 2017. http://dx.doi.org/10.2172/1412806.
Texto completo da fontePidaparti, Sandeep, Charles W. White e Nathan Weiland. Wet Cooling Tower Cooling System Spreadsheet Model for sCO2. Office of Scientific and Technical Information (OSTI), março de 2020. http://dx.doi.org/10.2172/1608968.
Texto completo da fonteAuthor, Not Given. Phasing Cooling Systems. Office of Scientific and Technical Information (OSTI), janeiro de 2000. http://dx.doi.org/10.2172/984590.
Texto completo da fonteEberhard K Keil. Muon cooling channels. Office of Scientific and Technical Information (OSTI), março de 2003. http://dx.doi.org/10.2172/808642.
Texto completo da fonteKenny, Thomas, e Theodore H. Geballe. Thermionic Cooling Devices. Fort Belvoir, VA: Defense Technical Information Center, agosto de 2000. http://dx.doi.org/10.21236/ada380668.
Texto completo da fonteChandra, S., P. Fairey, III e M. Houston. Cooling with ventilation. Office of Scientific and Technical Information (OSTI), dezembro de 1986. http://dx.doi.org/10.2172/7010873.
Texto completo da fonteChen, Jingliang, Bo Shen, Lulu Liu, Lin Yao e Yu Gao. Cooling Efficiency Improvement. Asian Development Bank Institute, agosto de 2023. http://dx.doi.org/10.56506/qjjv8928.
Texto completo da fonteDamman, Dennis. Cab Heating and Cooling. Office of Scientific and Technical Information (OSTI), outubro de 2005. http://dx.doi.org/10.2172/903061.
Texto completo da fonteBlaskiewicz, Michael. Dispersion and electron cooling. Office of Scientific and Technical Information (OSTI), janeiro de 2019. http://dx.doi.org/10.2172/1494049.
Texto completo da fonte