Literatura científica selecionada sobre o tema "Convex projective geometry"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Convex projective geometry".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Convex projective geometry"
Wienhard, Anna, e Tengren Zhang. "Deforming convex real projective structures". Geometriae Dedicata 192, n.º 1 (5 de maio de 2017): 327–60. http://dx.doi.org/10.1007/s10711-017-0243-z.
Texto completo da fonteWeisman, Theodore. "Dynamical properties of convex cocompact actions in projective space". Journal of Topology 16, n.º 3 (2 de agosto de 2023): 990–1047. http://dx.doi.org/10.1112/topo.12307.
Texto completo da fonteKapovich, Michael. "Convex projective structures on Gromov–Thurston manifolds". Geometry & Topology 11, n.º 3 (24 de setembro de 2007): 1777–830. http://dx.doi.org/10.2140/gt.2007.11.1777.
Texto completo da fonteKim, Inkang. "Compactification of Strictly Convex Real Projective Structures". Geometriae Dedicata 113, n.º 1 (junho de 2005): 185–95. http://dx.doi.org/10.1007/s10711-005-0550-7.
Texto completo da fonteKohn, Kathlén, e Kristian Ranestad. "Projective Geometry of Wachspress Coordinates". Foundations of Computational Mathematics 20, n.º 5 (11 de novembro de 2019): 1135–73. http://dx.doi.org/10.1007/s10208-019-09441-z.
Texto completo da fonteHildebrand, Roland. "Optimal Inequalities Between Distances in Convex Projective Domains". Journal of Geometric Analysis 31, n.º 11 (10 de maio de 2021): 11357–85. http://dx.doi.org/10.1007/s12220-021-00684-3.
Texto completo da fonteBenoist, Yves, e Dominique Hulin. "Cubic differentials and finite volume convex projective surfaces". Geometry & Topology 17, n.º 1 (8 de abril de 2013): 595–620. http://dx.doi.org/10.2140/gt.2013.17.595.
Texto completo da fonteSioen, M., e S. Verwulgen. "Locally convex approach spaces". Applied General Topology 4, n.º 2 (1 de outubro de 2003): 263. http://dx.doi.org/10.4995/agt.2003.2031.
Texto completo da fonteBray, Harrison, e David Constantine. "Entropy rigidity for finite volume strictly convex projective manifolds". Geometriae Dedicata 214, n.º 1 (17 de maio de 2021): 543–57. http://dx.doi.org/10.1007/s10711-021-00627-w.
Texto completo da fonteZimmer, Andrew. "A higher-rank rigidity theorem for convex real projective manifolds". Geometry & Topology 27, n.º 7 (19 de setembro de 2023): 2899–936. http://dx.doi.org/10.2140/gt.2023.27.2899.
Texto completo da fonteTeses / dissertações sobre o assunto "Convex projective geometry"
Fléchelles, Balthazar. "Geometric finiteness in convex projective geometry". Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASM029.
Texto completo da fonteThis thesis is devoted to the study of geometrically finite convex projective orbifolds, following work of Ballas, Cooper, Crampon, Leitner, Long, Marquis and Tillmann. A convex projective orbifold is the quotient of a bounded, convex and open subset of an affine chart of real projective space (called a properly convex domain) by a discrete group of projective transformations that preserve it. We say that a convex projective orbifold is strictly convex if there are no non-trivial segments in the boundary of the convex subset, and round if in addition there is a unique supporting hyperplane at each boundary point. Following work of Cooper-Long-Tillmann and Crampon-Marquis, we say that a strictly convex orbifold is geometrically finite if its convex core decomposes as the union of a compact subset and of finitely many ends, called cusps, all of whose points have an injectivity radius smaller than a constant depending only on the dimension. Understanding what types of cusps may occur is crucial for the study of geometrically finite orbifolds. In the strictly convex case, the only known restriction on cusp holonomies, imposed by a generalization of the celebrated Margulis lemma proven by Cooper-Long-Tillmann and Crampon-Marquis, is that the holonomy of a cusp has to be virtually nilpotent. We give a complete characterization of the holonomies of cusps of strictly convex orbifolds and of those of round orbifolds. By generalizing a method of Cooper, which gave the only previously known example of a cusp of a strictly convex manifold with non virtually abelian holonomy, we build examples of cusps of strictly convex manifolds and round manifolds whose holonomy can be any finitely generated torsion-free nilpotent group. In joint work with M. Islam and F. Zhu, we also prove that for torsion-free relatively hyperbolic groups, relative P1-Anosov representations (in the sense of Kapovich-Leeb, Zhu and Zhu-Zimmer) that preserve a properly convex domain are exactly the holonomies of geometrically finite round manifolds.In the general case of non strictly convex projective orbifolds, no satisfactory definition of geometric finiteness is known at the moment. However, Cooper-Long-Tillmann, followed by Ballas-Cooper-Leitner, introduced a notion of generalized cusps in this context. Although they only require that the holonomy be virtually nilpotent, all previously known examples had virtually abelian holonomy. We build examples of generalized cusps whose holonomy can be any finitely generated torsion-free nilpotent group. We also allow ourselves to weaken Cooper-Long-Tillmann’s original definition by assuming only that the holonomy be virtually solvable, and this enables us to construct new examples whose holonomy is not virtually nilpotent.When a geometrically finite orbifold has no cusps, i.e. when its convex core is compact, we say that the orbifold is convex cocompact. Danciger-Guéritaud-Kassel provided a good definition of convex cocompactness for convex projective orbifolds that are not necessarily strictly convex. They proved that the holonomy of a convex cocompact convex projective orbifold is Gromov hyperbolic if and only if the associated representation is P1-Anosov. Using these results, Vinberg’s theory and work of Agol and Haglund-Wise about cubulated hyperbolic groups, we construct, in collaboration with S. Douba, T. Weisman and F. Zhu, examples of P1-Anosov representations for any cubulated hyperbolic group. This gives new examples of hyperbolic groups admitting Anosov representations
Ellis, Amanda. "Classification of conics in the tropical projective plane /". Diss., CLICK HERE for online access, 2005. http://contentdm.lib.byu.edu/ETD/image/etd1104.pdf.
Texto completo da fonteEllis, Amanda. "Classifcation of Conics in the Tropical Projective Plane". BYU ScholarsArchive, 2005. https://scholarsarchive.byu.edu/etd/697.
Texto completo da fonteAlessandrini, Daniele. "A tropical compactification for character spaces of convex projective structures". Doctoral thesis, Scuola Normale Superiore, 2007. http://hdl.handle.net/11384/85709.
Texto completo da fonteBaratov, Rishat. "Efficient conic decomposition and projection onto a cone in a Banach ordered space". Thesis, University of Ballarat, 2005. http://researchonline.federation.edu.au/vital/access/HandleResolver/1959.17/61401.
Texto completo da fonteSim, Kristy Karen Wan Yen. "Multiple view geometry and convex optimization". Phd thesis, 2007. http://hdl.handle.net/1885/149870.
Texto completo da fonteBallas, Samuel Aaron. "Flexibility and rigidity of three-dimensional convex projective structures". 2013. http://hdl.handle.net/2152/21681.
Texto completo da fontetext
Livros sobre o assunto "Convex projective geometry"
Choi, Suhyoung. The Convex and concave decomposition of manifolds with real projective structures. [Paris, France]: Société mathématique de France, 1999.
Encontre o texto completo da fonteHuybrechts, D. Spherical and Exceptional Objects. Oxford University Press, 2007. http://dx.doi.org/10.1093/acprof:oso/9780199296866.003.0008.
Texto completo da fonteCapítulos de livros sobre o assunto "Convex projective geometry"
Oda, Tadao. "Integral Convex Polytopes and Toric Projective Varieties". In Convex Bodies and Algebraic Geometry, 66–114. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-72547-0_2.
Texto completo da fonteHibi, Takayuki. "Ehrhart polynomials of convex polytopes, ℎ-vectors of simplicial complexes, and nonsingular projective toric varieties". In Discrete and Computational Geometry: Papers from the DIMACS Special Year, 165–78. Providence, Rhode Island: American Mathematical Society, 1991. http://dx.doi.org/10.1090/dimacs/006/09.
Texto completo da fonteLi, Hongbo. "Projective geometric theorem proving with Grassmann–Cayley algebra". In From Past to Future: Graßmann's Work in Context, 275–85. Basel: Springer Basel, 2010. http://dx.doi.org/10.1007/978-3-0346-0405-5_24.
Texto completo da fonteFeferman, Solomon, John W. Dawson, Stephen C. Kleene, Gregory H. Moore, Robert M. Solovay e Jean van Heijenoort. "Introductory note to 1999b, c, d, g and h". In Kurt GöDel Collected Works Volume I, 272–75. Oxford University PressNew York, NY, 2001. http://dx.doi.org/10.1093/oso/9780195147209.003.0055.
Texto completo da fonte"Curves with Locally Convex Projection". In Differential Geometry and Topology of Curves, 91–95. CRC Press, 2001. http://dx.doi.org/10.1201/9781420022605.ch20.
Texto completo da fonteGoebel, Kazimierz, e Stanisław Prus. "Projections on balls and convex sets". In Elements of Geometry of Balls in Banach Spaces, 70–84. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198827351.003.0006.
Texto completo da fonte"On the road between polar projection bodies and intersection bodies". In The Interface between Convex Geometry and Harmonic Analysis, 75–85. Providence, Rhode Island: American Mathematical Society, 2007. http://dx.doi.org/10.1090/cbms/108/07.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Convex projective geometry"
Akhter, Muhammad Awais, Rob Heylen e Paul Scheunders. "Hyperspectral unmixing with projection onto convex sets using distance geometry". In IGARSS 2015 - 2015 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2015. http://dx.doi.org/10.1109/igarss.2015.7326970.
Texto completo da fonteStark, Henry, e Peyma Oskoui-Fard. "Geometry-Free X-Ray Reconstruction Using the Theory of Convex Projections". In Machine Vision. Washington, D.C.: Optica Publishing Group, 1987. http://dx.doi.org/10.1364/mv.1987.tha5.
Texto completo da fonteStark, Henry, e Peyma Oskoui-Fard. "Image reconstruction in tomography using convex projections". In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1986. http://dx.doi.org/10.1364/oam.1986.mr4.
Texto completo da fontevan Holland, Winfried, e Willem F. Bronsvoort. "Assembly Features and Visibility Maps". In ASME 1995 15th International Computers in Engineering Conference and the ASME 1995 9th Annual Engineering Database Symposium collocated with the ASME 1995 Design Engineering Technical Conferences. American Society of Mechanical Engineers, 1995. http://dx.doi.org/10.1115/cie1995-0799.
Texto completo da fonteReyes, L., e E. Bayro-Corrochano. "Geometric approach for simultaneous projective reconstruction of points, lines, planes, quadrics, plane conies and degenerate quadrics". In Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004. IEEE, 2004. http://dx.doi.org/10.1109/icpr.2004.1333705.
Texto completo da fonteSmith, Hollis, e Julian Norato. "A Topology Optimization Method for the Design of Orthotropic Plate Structures". In ASME 2020 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/detc2020-22400.
Texto completo da fonteDumitrescu, Adrian, Scott J. I. Walker e Atul Bhaskar. "Modelling of the Hypervelocity Impact Performance of a Corrugated Shield with an Integrated Honeycomb Geometry". In 2022 16th Hypervelocity Impact Symposium. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/hvis2022-13.
Texto completo da fonteSharpe, Conner, Carolyn Conner Seepersad, Seth Watts e Dan Tortorelli. "Design of Mechanical Metamaterials via Constrained Bayesian Optimization". In ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/detc2018-85270.
Texto completo da fonteMaywald, Thomas, Thomas Backhaus, Sven Schrape e Arnold Kühhorn. "Geometric Model Update of Blisks and its Experimental Validation for a Wide Frequency Range". In ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/gt2017-63446.
Texto completo da fonteGuo, Yuxiao, e Xin Tong. "View-Volume Network for Semantic Scene Completion from a Single Depth Image". In Twenty-Seventh International Joint Conference on Artificial Intelligence {IJCAI-18}. California: International Joint Conferences on Artificial Intelligence Organization, 2018. http://dx.doi.org/10.24963/ijcai.2018/101.
Texto completo da fonte