Artigos de revistas sobre o tema "Converter-Based impedance spectroscopy (IS)"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Converter-Based impedance spectroscopy (IS)".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Dam, Shimul Kumar, e Vinod John. "High-Resolution Converter for Battery Impedance Spectroscopy". IEEE Transactions on Industry Applications 54, n.º 2 (março de 2018): 1502–12. http://dx.doi.org/10.1109/tia.2017.2771498.
Texto completo da fonteNamin, Reyhaneh L., e Shahin J. Ashtiani. "Effect of ADC Resolution on Low-Frequency Electrical Time-Domain Impedance Spectroscopy". Metrology and Measurement Systems 24, n.º 2 (27 de junho de 2017): 425–36. http://dx.doi.org/10.1515/mms-2017-0019.
Texto completo da fonteWang, Ke Ning, Heng Zhao e Wei Wang. "Design of a Bioelectrical Impedance Spectrometer Based on AD5933". Applied Mechanics and Materials 239-240 (dezembro de 2012): 392–96. http://dx.doi.org/10.4028/www.scientific.net/amm.239-240.392.
Texto completo da fonteDam, Shimul Kumar, e Vinod John. "Battery impedance spectroscopy using bidirectional grid connected converter". Sādhanā 42, n.º 8 (4 de julho de 2017): 1343–54. http://dx.doi.org/10.1007/s12046-017-0686-9.
Texto completo da fonteSchmidt, Wolfram, Carsten Tautorat, Klaus-Peter Schmitz, Niels Grabow, Frank Kamke, Sylvia Pfensig e Stefan Siewert. "Multi-channel impedance analyzer for automated testing of networks and biomaterials". Current Directions in Biomedical Engineering 6, n.º 3 (1 de setembro de 2020): 414–17. http://dx.doi.org/10.1515/cdbme-2020-3107.
Texto completo da fonteChen, Tse-An, Wen-Jui Wu, Chia-Ling Wei, Robert B. Darling e Bin-Da Liu. "Novel 10-Bit Impedance-to-Digital Converter for Electrochemical Impedance Spectroscopy Measurements". IEEE Transactions on Biomedical Circuits and Systems 11, n.º 2 (abril de 2017): 370–79. http://dx.doi.org/10.1109/tbcas.2016.2592511.
Texto completo da fonteArceo-Gómez, David Enrique, Javier Reyes-Trujeque, Patricia Balderas-Hernández, Andrés Carmona-Hernández, Araceli Espinoza-Vázquez, Ricardo Galván-Martínez e Ricardo Orozco-Cruz. "Performance and Surface Modification of Cast Iron Corrosion Products by a Green Rust Converter (Mimosa tenuiflora Extract)". Surfaces 7, n.º 1 (13 de março de 2024): 143–63. http://dx.doi.org/10.3390/surfaces7010010.
Texto completo da fonteShin, Sounghun, Yoontae Jung, Soon-Jae Kweon, Eunseok Lee, Jeong-Ho Park, Jinuk Kim, Hyung-Joun Yoo e Minkyu Je. "Design of Reconfigurable Time-to-Digital Converter Based on Cascaded Time Interpolators for Electrical Impedance Spectroscopy". Sensors 20, n.º 7 (29 de março de 2020): 1889. http://dx.doi.org/10.3390/s20071889.
Texto completo da fonteLi, Wang, Gen Wang Liu e Fu He Yang. "Design of Automatic Measurement System of Lithium Battery Electrochemical Impedance Spectroscopy Based on Microcomputer". Applied Mechanics and Materials 241-244 (dezembro de 2012): 259–64. http://dx.doi.org/10.4028/www.scientific.net/amm.241-244.259.
Texto completo da fonteWang, Hanqing, Arnaud Gaillard e Daniel Hissel. "A review of DC/DC converter-based electrochemical impedance spectroscopy for fuel cell electric vehicles". Renewable Energy 141 (outubro de 2019): 124–38. http://dx.doi.org/10.1016/j.renene.2019.03.130.
Texto completo da fonteBorchani, Fadoua, Souhir Sallem e Mohamed Ben Ali Kammoun. "On-line Electrochemical Impedance Spectroscopy method for PV diagnosis system". E3S Web of Conferences 336 (2022): 00071. http://dx.doi.org/10.1051/e3sconf/202233600071.
Texto completo da fonteBarylo, Hryhorii, Oksana Boyko, Ihor Helzhynskyy, Roman Holyaka e Tetyana Marusenkova. "Universal hardware and software system of signal converting for integrated sensor devices implementation". Scientific journal of the Ternopil national technical university 100, n.º 4 (2020): 106–17. http://dx.doi.org/10.33108/visnyk_tntu2020.04.106.
Texto completo da fonteAbareshi, Mohammad, Erfan Sadeghi, Mohsen Hamzeh, Mehrdad Saif e Seyed Mohammad Mahdi Alavi. "Multi-purpose controllable electrochemical impedance spectroscopy using bidirectional DC–DC converter". Journal of Energy Storage 55 (novembro de 2022): 105750. http://dx.doi.org/10.1016/j.est.2022.105750.
Texto completo da fonteIslam, Shekh Md Mahmudul, Mohammad Anisur Rahman Reza e Md Adnan Kiber. "Performances of Multi-Frequency Voltage to Current Converters for Bioimpedance Spectroscopy". Bangladesh Journal of Medical Physics 5, n.º 1 (19 de abril de 2013): 71–76. http://dx.doi.org/10.3329/bjmp.v5i1.14671.
Texto completo da fonteBasak, Rinku, Khan A. Wahid e Anh Dinh. "Estimation of the Chlorophyll-A Concentration of Algae Species Using Electrical Impedance Spectroscopy". Water 13, n.º 9 (28 de abril de 2021): 1223. http://dx.doi.org/10.3390/w13091223.
Texto completo da fontePolom, Timothy A., Markus Andresen, Marco Liserre e Robert D. Lorenz. "Frequency-Domain Electrothermal Impedance Spectroscopy of an Actively Switching Power Semiconductor Converter". IEEE Transactions on Industry Applications 55, n.º 6 (novembro de 2019): 6161–72. http://dx.doi.org/10.1109/tia.2019.2930031.
Texto completo da fonteBaert, B., O. Nakatsuka, S. Zaima e N. D. Nguyen. "Impedance Spectroscopy of GeSn-based Heterostructures". ECS Transactions 50, n.º 9 (15 de março de 2013): 481–90. http://dx.doi.org/10.1149/05009.0481ecst.
Texto completo da fonteYin, Hong-Run, Ming Ye, Yang Wu, Kai Liu, Hua-Ping Pan e Jia-Feng Yao. "Biological tissue detection based on electrical impedance spectroscopic tomograsphy". Acta Physica Sinica 71, n.º 4 (2022): 048706. http://dx.doi.org/10.7498/aps.71.20211600.
Texto completo da fonteZhou, Jialong, Jinhai Jiang, Fulin Fan, Chuanyu Sun, Zhen Dong e Kai Song. "Real-Time Impedance Detection for PEM Fuel Cell Based on TAB Converter Voltage Perturbation". Energies 17, n.º 17 (29 de agosto de 2024): 4320. http://dx.doi.org/10.3390/en17174320.
Texto completo da fonteRadogna, Antonio Vincenzo, Simonetta Capone, Luca Francioso, Pietro Aleardo Siciliano e Stefano D’Amico. "A 177 ppm RMS Error-Integrated Interface for Time-Based Impedance Spectroscopy of Sensors". Electronics 11, n.º 22 (19 de novembro de 2022): 3807. http://dx.doi.org/10.3390/electronics11223807.
Texto completo da fonteZhang, Bin Bin, Guan Hua Wu, Сhao Bo Chen e Song Gao. "Solid Propellant Aging Detection Method Based on Impedance Spectroscopy". Advanced Materials Research 1179 (31 de janeiro de 2024): 133–44. http://dx.doi.org/10.4028/p-hnkn3r.
Texto completo da fonteSchüler, M., T. Sauerwald e A. Schütze. "Metal oxide semiconductor gas sensor self-test using Fourier-based impedance spectroscopy". Journal of Sensors and Sensor Systems 3, n.º 2 (25 de setembro de 2014): 213–21. http://dx.doi.org/10.5194/jsss-3-213-2014.
Texto completo da fonteManjunath, Manjunath, Simon Hausner, André Heine, Patrick De Baets e Dieter Fauconnier. "Electrical Impedance Spectroscopy for Precise Film Thickness Assessment in Line Contacts". Lubricants 12, n.º 2 (10 de fevereiro de 2024): 51. http://dx.doi.org/10.3390/lubricants12020051.
Texto completo da fonteVarnosfaderani, Mina Abedi, e Dani Strickland. "Online impedance spectroscopy estimation of a dc–dc converter connected battery using a switched capacitor-based balancing circuit". Journal of Engineering 2019, n.º 7 (1 de julho de 2019): 4681–85. http://dx.doi.org/10.1049/joe.2018.8069.
Texto completo da fonteAllison, Andrew L., Loriann M. Clark, William D. Howell e William L. Sexton. "Arduino-based Impedance Spectroscopy: An Open-source Platform For Physiological Impedance Spectroscopy Measurements In Rats". Medicine & Science in Sports & Exercise 52, n.º 7S (julho de 2020): 891. http://dx.doi.org/10.1249/01.mss.0000685220.55798.4a.
Texto completo da fonteIvanisevic, Nikola, Saul Rodriguez e Ana Rusu. "Impedance Spectroscopy Based on Linear System Identification". IEEE Transactions on Biomedical Circuits and Systems 13, n.º 2 (abril de 2019): 396–402. http://dx.doi.org/10.1109/tbcas.2019.2900584.
Texto completo da fonteKandukuri, Tharun Reddy, Ioannis Prattis, Pelumi Oluwasanya e Luigi G. Occhipinti. "Pathogen Detection via Impedance Spectroscopy-Based Biosensor". Sensors 24, n.º 3 (28 de janeiro de 2024): 856. http://dx.doi.org/10.3390/s24030856.
Texto completo da fonteKarlash, A. Yu. "Impedance spectroscopy of composites based on porous silicon and silica aerogel for sensor applications". Functional Materials 20, n.º 1 (25 de março de 2013): 68–74. http://dx.doi.org/10.15407/fm20.01.068.
Texto completo da fonteTohmyoh, Hironori, Takuya Imaizumi e Masumi Saka. "Measurement of Acoustic Impedance of Thin Polymeric Films by Acoustic Resonant Spectroscopy". Key Engineering Materials 353-358 (setembro de 2007): 2349–52. http://dx.doi.org/10.4028/www.scientific.net/kem.353-358.2349.
Texto completo da fonteParache, François, Henri Schneider, Christophe Turpin, Nicolas Richet, Olivier Debellemanière, Éric Bru, Anh Thao Thieu, Caroline Bertail e Christine Marot. "Impact of Power Converter Current Ripple on the Degradation of PEM Electrolyzer Performances". Membranes 12, n.º 2 (19 de janeiro de 2022): 109. http://dx.doi.org/10.3390/membranes12020109.
Texto completo da fonteDepernet, Daniel, Abdellah Narjiss, Frédéric Gustin, Daniel Hissel e Marie-Cécile Péra. "Integration of electrochemical impedance spectroscopy functionality in proton exchange membrane fuel cell power converter". International Journal of Hydrogen Energy 41, n.º 11 (março de 2016): 5378–88. http://dx.doi.org/10.1016/j.ijhydene.2016.02.010.
Texto completo da fonteYamaguchi, Tomiharu, e Akinori Ueno. "Capacitive-Coupling Impedance Spectroscopy Using a Non-Sinusoidal Oscillator and Discrete-Time Fourier Transform: An Introductory Study". Sensors 20, n.º 21 (9 de novembro de 2020): 6392. http://dx.doi.org/10.3390/s20216392.
Texto completo da fonteLi, Gen, Jie Chen, Hongze Li, Libin Hu, Wenjun Zhou, Chengke Zhou e Mingzhen Li. "Diagnosis and Location of Power Cable Faults Based on Characteristic Frequencies of Impedance Spectroscopy". Energies 15, n.º 15 (2 de agosto de 2022): 5617. http://dx.doi.org/10.3390/en15155617.
Texto completo da fonteYang, Yuxiang, He Bian, Fangling Du, Qiang Sun e He Wen. "Development of a Stair-Step Multifrequency Synchronized Excitation Signal for Fast Bioimpedance Spectroscopy". BioMed Research International 2014 (2014): 1–8. http://dx.doi.org/10.1155/2014/143461.
Texto completo da fonteSyarif, Nirwan, Nurlisa Hidayanti, Edy Herianto Majlan e Monica Sari Jayanti. "Electrochemical Impedance Spectroscopy of Polyvinylalcohol Based Gel Electrolyte". Indonesian Journal of Fundamental and Applied Chemistry 2, n.º 1 (6 de março de 2017): 16–21. http://dx.doi.org/10.24845/ijfac.v2.i1.16.
Texto completo da fonteIžák, Tibor, Ondrej Szabó, Lucie Bačáková e Alexander Kromka. "Diamond Functional Layers for Cell-based Impedance Spectroscopy". Procedia Engineering 168 (2016): 614–17. http://dx.doi.org/10.1016/j.proeng.2016.11.227.
Texto completo da fonteReis, F. T., L. F. Santos, R. M. Faria e D. Mencaraglia. "Temperature dependent impedance spectroscopy on polyaniline based devices". IEEE Transactions on Dielectrics and Electrical Insulation 13, n.º 5 (outubro de 2006): 1074–81. http://dx.doi.org/10.1109/tdei.2006.1714932.
Texto completo da fonteReis, Santos, Faria e Mencaraglia. "Temperature dependent impedance spectroscopy on polyaniline based devices". IEEE Transactions on Dielectrics and Electrical Insulation 13, n.º 5 (outubro de 2006): 1074–81. http://dx.doi.org/10.1109/tdei.2006.247834.
Texto completo da fonteCho, Sungbo, e Hagen Thielecke. "Micro hole-based cell chip with impedance spectroscopy". Biosensors and Bioelectronics 22, n.º 8 (15 de março de 2007): 1764–68. http://dx.doi.org/10.1016/j.bios.2006.08.028.
Texto completo da fonteHasegawa, Yasuhiro, Ryoei Homma e Mioko Ohtsuka. "Thermoelectric Module Performance Estimation Based on Impedance Spectroscopy". Journal of Electronic Materials 45, n.º 3 (29 de dezembro de 2015): 1886–93. http://dx.doi.org/10.1007/s11664-015-4271-x.
Texto completo da fonteRamanavicius, A., A. Finkelsteinas, H. Cesiulis e A. Ramanaviciene. "Electrochemical impedance spectroscopy of polypyrrole based electrochemical immunosensor". Bioelectrochemistry 79, n.º 1 (agosto de 2010): 11–16. http://dx.doi.org/10.1016/j.bioelechem.2009.09.013.
Texto completo da fonteBifano, Luca, Marco Weider, Alice Fischerauer, Gotthard Wolf e Gerhard Fischerauer. "In situ monitoring of used-sand regeneration in foundries by impedance spectroscopy". Journal of Sensors and Sensor Systems 11, n.º 2 (11 de outubro de 2022): 287–98. http://dx.doi.org/10.5194/jsss-11-287-2022.
Texto completo da fonteShen, Jiabin, e Jiacheng Wang. "Analysis of dc link oscillations in a hybrid fuel cell powertrain brought by in situ converter based electrochemical impedance spectroscopy". International Journal of Hydrogen Energy 45, n.º 55 (novembro de 2020): 31080–90. http://dx.doi.org/10.1016/j.ijhydene.2020.08.146.
Texto completo da fonteStevic, Zoran, e Mirjana Rajcic-Vujasinovic. "System for electrochemical investigations based on a PC and the Lab VIEW package". Chemical Industry 61, n.º 1 (2007): 1–6. http://dx.doi.org/10.2298/hemind0701001s.
Texto completo da fonteWang, Hanqing, Arnaud Gaillard e Daniel Hissel. "Online electrochemical impedance spectroscopy detection integrated with step-up converter for fuel cell electric vehicle". International Journal of Hydrogen Energy 44, n.º 2 (janeiro de 2019): 1110–21. http://dx.doi.org/10.1016/j.ijhydene.2018.10.242.
Texto completo da fonteCheon, Song-I., Soon-Jae Kweon, Youngin Kim, Jimin Koo, Sohmyung Ha e Minkyu Je. "An Impedance Readout IC with Ratio-Based Measurement Techniques for Electrical Impedance Spectroscopy". Sensors 22, n.º 4 (17 de fevereiro de 2022): 1563. http://dx.doi.org/10.3390/s22041563.
Texto completo da fonteAbdullah, Huda, Norshafadzila Mohammad Naim, Noor Azwen Noor Azmy e Aidil Abdul Hamid. "PANI-Ag-Cu Nanocomposite Thin Films Based Impedimetric Microbial Sensor for Detection ofE. coliBacteria". Journal of Nanomaterials 2014 (2014): 1–8. http://dx.doi.org/10.1155/2014/951640.
Texto completo da fonteAlaka, Panda, e Ramanujan Govindaraj. "Complex Dielectric and Impedance Spectroscopic Studies in a Multiferroic Composite of Bi2Fe4O9-BiFeO3". Condensed Matter 3, n.º 4 (2 de dezembro de 2018): 44. http://dx.doi.org/10.3390/condmat3040044.
Texto completo da fonteSHARMA, DHANANJAY K., RAJU KUMAR, RADHESHYAM RAI, SEEMA SHARMA e ANDREI L. KHOLKIN. "IMPEDANCE AND MODULUS SPECTROSCOPY CHARACTERIZATION OF SODIUM-BISMUTH TITANATE-BASED LEAD-FREE FERROELECTRIC MATERIALS". Journal of Advanced Dielectrics 02, n.º 01 (janeiro de 2012): 1250002. http://dx.doi.org/10.1142/s2010135x12500026.
Texto completo da fonteLi, Yang, Nan Wang, Li-Feng Fan, Yong-Qian Wang, Peng-Fei Zhao, Lan Huang e Zhong-Yi Wang. "A fast approach to determine excitation eigenfrequencies for TD-EIT and FD-EIT". Measurement Science and Technology 34, n.º 10 (3 de julho de 2023): 105501. http://dx.doi.org/10.1088/1361-6501/acdff3.
Texto completo da fonte