Teses / dissertações sobre o tema "Contrôle à mode glissant"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores trabalhos (teses / dissertações) para estudos sobre o assunto "Contrôle à mode glissant".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja as teses / dissertações das mais diversas áreas científicas e compile uma bibliografia correta.
Huber, Olivier. "Analyse et implémentation du contrôle par modes glissants en temps discret". Thesis, Université Grenoble Alpes (ComUE), 2015. http://www.theses.fr/2015GREAT042.
Texto completo da fonteSliding Mode Control is a control technique with a long history, with research efforts dating back to the 50's. The basic idea is to define the control input as a discontinuous function of the sliding variable, which solely depends on the state, and to constraint the system to evolve on a manifold, hence the term sliding. Over the years a strong theory was build around this technique, but only in continuous time. In our context, this means that control input value can change value at any time. The discrete-time case is when the control input can only change at isolated time instants and the dynamical system on which the control is still a continuous-time process. The control input is therefore a step function. This case appears when the controller is digitally implemented, for instance with the help of a microcontroller. This kind of setup is nowadays ubiquitous in benchmarks and industrial applications. One of the main limitation of the applicability of sliding mode control is the chattering phenomenon that is witnessed when this control technique is applied in practice, but already in simulations. In contrast to previous approaches, we single out the chattering that is already witnessed in simulation, even with no disturbance and with perfect knowledge of the dynamics. This is called the numerical chattering and one of its distinct feature is the constant chattering, or high-frequency bang-bang behavior, of the control input. This naturally induces a chattering of the sliding variable. The claim that this type of chattering is usually predominant and that it is due to a bad discretization of the signum multifunction. The approach developed in this work was inspired by the research effort in the nonsmooth mechanical to properly simulate some systems like those with dry friction and/or unilateral constraints. The main point is to discretize the signum in an implicit fashion, that is its argument is the value of the sliding variable at the end of the next sampling period. With this change, the numerical chattering can be removed in the simplest cases, largely attenuated. The research effort was focused on classical sliding mode controller, rather than the higher order ones. The frameworks used to perform the analysis are convex analysis and variational inequalities. This discrete-time controller enjoys several interesting theoretical properties. First it is finite-time Lyapunov stable: the sliding variable goes to 0 in finite-time. The discrete-time control input converges to the continuous-time one as the sampling period goes to 0. The control action also attenuates the effect of matched perturbations. Also the increase of the gain of the controller does not affect the performances when the system is sliding. The twisting controller can be discretized in the same way and is also finite-time Lyapunov stable. This good theoretical properties have been verified in simulations, but also on experimental setups. Two tests were conducted: the first one on an electropneumatic system, where both the classical first-order sliding mode controller and the twisting algorithm were tested. The objective was to track a reference trajectory. The second one was an inverted pendulum on a cart with only the classical SMC. The goal was to stabilize the system at the unstable equilibrium. The analysis from the data collected during those experiments shows that the proposed controllers perform better than the their explicitly discretized versions. The performances are better and the chattering is effectively reduced
Chovet, Camila. "Manipulation de la turbulence en utilisant le contrôle par mode glissant et le contrôle par apprentissage : de l'écoulement sur une marche descendante à une voiture réelle". Thesis, Valenciennes, 2018. http://www.theses.fr/2018VALE0016/document.
Texto completo da fonteThe present work aims to pre-evaluate flow control parameters to reduce the drag in a real vehicle. Two different actuation mechanisms (Murata’s micro-blower, and air-knives) are characterized and compared to define their advantages and limitations. Murata micro-blowers energized the boundary layer to directly perturb the vortex structures formed in the shear layer region. The air-knife has a rounded surface, adjacent to the slit exit, that could be considered as an active boat-tail (Coanda effect) for drag reduction. Different open-loop and closed-loop control strategies are examined, such as continuous blowing, periodic forcing, sliding mode control (SMC) and machine learning control (MLC). SMC is a robust closed-loop algorithm to track, reach and maintain a predefined set-point; this approach has on-line adaptivity in changing conditions. Machine learning control is a model-free control that learns an effective control law that is judged and optimized with respect to a problem-specific cost/objective function. A hybrid between MLC and SMC may provide adaptive control exploiting the best non-linear actuation mechanisms. Finally, all these parameters are brought together and tested in real experimental applications representative of the mean wake and shear-layer structures related to control of real cars. For the backward-facing step, the goal is to experimentally reduce the recirculation zone. The flow is manipulated by a row of micro-blowers and sensed by pressure sensors. Initial measurements were carried out varying the periodic forcing. MLC is used to improve performance optimizing a control law with respect to a cost function. MLC is shown to outperform periodic forcing. For the Ahmed body, the goal is to reduce the aerodynamic drag of the square-back Ahmed body. The flow is manipulated by an air-knife placed on the top trailing edge and sensed by a force balance. Continuous blowing and periodic forcing are used as open-loop strategies. SMC and MLC algorithms are applied and compared to the open-loop cases. The pre-evaluation of the flow control parameters yielded important information to reduce the drag of a car. The first real vehicle experiments were performed on a race track. The first actuator device concept and sensor mechanism are presented
Morel, Cristina Monica. "Analyse et contrôle de dynamiques chaotiques, application à des circuits électroniques non-linéaires". Angers, 2005. http://www.theses.fr/2005ANGE0020.
Texto completo da fonteSwitch-mode power supplies are highly non-linear systems that can naturally exhibit a chaotic behavior. We first study the control of chaos, i. E, a means to remove chaos, with sliding mode control. Nevertheless, inducing chaos in these systems reduces their electromagnetic interferences emissions, yet at the expense of aggravating the overall magnitude of the output voltage ripple. We then introduce a nonlinear feedback control method, which induces chaos, and which is able at the same time to achieve low spectral emission and to maintain a small ripple in the output. We also propose a new technique to generate several independent chaotic attractors, by designing a switching binary controller of continuous-time systems : this controller can create chaos using an anticontrol of chaos feedback. We show that non-linear continuous-time systems have several attractors and demonstrate that their state space equidistant repartition is on a precise curve. A mathematical formula giving the distance between the attractors is then deduced. Finally, a practical implementation is described, with some experimental measurements
Tahoumi, Elias. "New robust control schemes linking linear and sliding mode approaches". Thesis, Ecole centrale de Nantes, 2019. http://www.theses.fr/2019ECDN0056.
Texto completo da fonteThis work deals with the design of control laws for nonlinear, uncertain and perturbed systems based on sliding mode control and linear state feedback. Sliding mode control is known for its robustness versus perturbations and uncertainties as well as high accuracy tracking; however, it is high energy consuming. The linear state feedback is known to be a smooth control and low energy consuming, but it is highly sensitive to perturbations and uncertainties. The first objective of this thesis is the development of control laws that have the advantages of both sliding mode control (robustness and accuracy) and linear state feedback (low energy consumption). The second objective is to show the applicability of the proposed methods to real physical systems, notably the LS2N electropneumatic bench. Applications are also made on a wind system physical systems, notably the LS2N electropneumatic bench. Applications are also made on a wind system
Perozzi, Gabriele. "Exploration sécurisée d’un champ aérodynamique par un mini drone". Thesis, Ecole centrale de Lille, 2018. http://www.theses.fr/2018ECLI0007/document.
Texto completo da fonteThis thesis is part of the project "Small drones in the wind" carried by the ONERA center of Lille. This project aims to use the drone as a "wind sensor" to manage a UAV quadrotor in disturbed wind conditions using wind field prediction. In this context, the goal of the thesis is to make the quadrotor a wind sensor to provide local information to update the navigation system. With real-time on-board wind estimation, the quadrotor can compute a trajectory planning avoiding dangerous areas and the corresponding trajectory control, based on anexisting cartography and information on the aerodynamic behavior of airflow close to obstacles. Thus, the results of this thesis, whose main objectives are to estimate instant wind and position control, will be merged with another study dealing with trajectory planning. An important problem is that pressure sensors, such as the aeroclinometer and the Pitot tube, are not usable in rotary-wing vehicles because rotors air inflow interferes with the atmospheric flow and lightweight LIDAR sensors generally are not available. Another approach to estimate the wind is to implement an estimation software (or an intelligent sensor). In this thesis, three estimators are developed using the sliding mode approach, based on an adequate drone model, available measurements on the quadrotor and inertial tracking position systems. We are then interested in the control of the trajectory also by sliding mode considering the nonlinear model of the quadrotor. In addition, we are still studying quite an early alternative solution based on the H control, considering the linearized model for different equilibrium points as a function of the wind speed. The control and estimation algorithms are strictly based on the detailed model of the quadrotor, which highlights the influence of the wind
Huangfu, Yigeng. "La recherche de systèmes nonlinéaires de contrôle de mode glissant à Ordre Supérieur et ses applications pour la MSAP". Belfort-Montbéliard, 2010. http://tel.archives-ouvertes.fr/tel-00608229/fr/.
Texto completo da fonteNonlinear system control has been widely concern of the research. At present, the nonlinear system decoupling control and static feedback linearization that based on the theory of differential geometry brought the research getting rid of limitation for local linearization and small scale motion. However, differential geometry control must depend on precise mathematical model. As a matter of fact, the control system usually is with parameters uncertainties and output disturbance. In this thesis, nonlinear system of control theory has been studied deeply. Considering sliding mode variable structure control with good robust, which was not sensitive for parameters perturbation and external disturbance, the combination idea of nonlinear system and sliding mode controls was obtained by reference to the large number of documents. Thus, it not only can improve system robustness but solve the difficulties problem of nonlinear sliding mode surface structure. As known to all, traditional sliding mode had a defect that is famous chattering phenomenon. A plenty of research papers focus on elimination/avoidance chattering by using different methods. By comparing, the document is concerned with novel design method for high order sliding mode control, which can eliminate chattering fundamentally. Especially, the approach and realization of nonlinear system high order sliding mode control is presented in this paper. High order sliding mode technique is the latest study. This thesis from the theory analysis to the simulation and experiment deeply study high order sliding mode control principle and its applications. By comparison, the second order sliding mode control law (also known as dynamic sliding mode control, DSM) may be effective to eliminate the chattering phenomenon. But it is still unable to shake off the requirement of system relative degree. Therefore, arbitrary order sliding mode controller is employed, whose relative degree can equal any values instead of one. The robot car model adopted high order sliding mode is taken as an example. The simulation results show that the tracking control is effective. In the control systems design, it is very often to differentiate the variables. Through the derivation of sliding mode, the expression of sliding mode differential value is obtained. The simulation results certificate sliding mode differentiator with robustness and precision. At the same time, the differentiator for arbitrary sliding mode is given to avoiding conventional complex numerical calculation. It not only remains the precision of variables differential value, but also obtains the robustness. A direct application is simplification for high order sliding mode controller. Due to its inherent advantages, the permanent magnet synchronous motor (PMSM) deserves attention and is the most used drive in machine tool servos and modern speed control applications. For improving performance, this paper will applied nonlinear high order sliding mode research achievement to MIMO permanent magnet synchronous motor. It changes the coupling nonlinear PMSM to single input single output (SISO) linear subsystem control problem instead of near equilibrium point linearization. Thereby, the problem of nonlinear and coupling for PMSM has been solved. In addition, Uncertainty nonlinear robust control system has been well-received study of attention. Because the robust control theory is essentially at the expense of certain performance. This kind of robust control strategy often limits bandwidth of closed loop, so that system tracking performance and robustness will be decreased. So, sliding mode control is an effective approach for improving system robust. This thesis first proposed a robust high order sliding mode controller for PMSM. The system has good position servo tracking precision in spite of parameters uncertainties and external torque disturbance. On this basis, According to the principle of high order sliding mode, as well as differentiator, the state variables of PMSM are identified online firstly and successfully. The results of simulation indicate observe value has high precision when sliding mode variable and its differentials are convergent into zero. The same theory is used in external unknown torque disturbance estimation online for PMSM. As if, load torque will no longer be unknown disturbance. System performance can be improved greatly. It establishes theoretical foundation for the future applications. At the end of paper, using advanced half-physical platform controller dSPACE to drive a PMSM, hardware experiment implement is structured completely. The experiment results illustrate that PMSM adopting precious feedback linearization decoupling and high order sliding mode controller can realize system servo tracking control with good dynamic and steady character
Saied, Hussein. "On control of parallel robots for high dynamic performances : from design to experiments". Thesis, Montpellier, 2019. http://www.theses.fr/2019MONTS110.
Texto completo da fonteParallel Kinematic Manipulators (PKMs) have gained an increased popularity in thelast few decades. This interest has been stimulated by the significant advantages of PKMscompared to their serial counterparts, such as better precision and higher accelerationcapabilities. Efficient and performant control algorithms play a crucial role in improvingthe overall performance of PKMs. Control of PKMs is often considered in the literature achallenging task due to their highly nonlinear dynamics, abundant uncertainties, parametersvariation, and actuation redundancy. In this thesis, we aim at improving the dynamicperformance of PKMs in terms of precision and robustness towards changes of operatingconditions. Thus, we propose robust control strategies being extensions of (i) the standardRobust Integral of the Sign of the Error (RISE) feedback control and (ii) the super-twistingSliding Mode Control (SMC). Moreover, an actuator and friction dynamics formulation isproposed within a model-based control strategy to compensate for their resulting errors.Lyaponuv-based stability analysis is established for all the proposed controllers verifyingthe asymptotic convergence of the tracking errors. In order to validate the proposed controllers,real-time experiments are conducted on several parallel robot prototypes: the 3-DOF Delta robot at EPFL, Switzerland, the 4-DOF VELOCE robot, and the 5-DOF SPIDER4robot at LIRMM, France. Several experiments are tested including nominal scenarios, robustnesstowards speed variation, and robustness towards payload changes. The relevanceof the proposed control schemes is proved through the improvement of the tracking errorsat different dynamic operating conditions
Yan, Xinming. "Development of robust control based on sliding mode for nonlinear uncertain systems". Thesis, Ecole centrale de Nantes, 2016. http://www.theses.fr/2016ECDN0012.
Texto completo da fonteThis work deals with the development of control laws for nonlinear uncertain systems based onsliding mode theory. The standard sliding mode control approaches are state feedback ones, in which the sliding variable and its time derivatives are required. This first objective of this thesis is to propose high order sliding mode control laws with a reduced use of sliding variable time derivatives. The contributions are made for the second and third order sliding mode control. The second objective is to combine the proposed control laws with a gain adaptation mechanism. The use of adaptive gain law allows to simplify the tuning process, to reduce the convergence time and to improve the accuracy. Finally, the applicability of the proposed approaches is shown on IRCCyN pneumatic benchmark. Applications are also made on 3DOF flying system
Alvaro, Mendoza Carlos Enrique. "Control strategies for permanent magnet synchronous machines without mechanical sensors by sliding modes". Thesis, Ecole centrale de Nantes, 2022. http://www.theses.fr/2022ECDN0055.
Texto completo da fonteThis thesis proposes two adaptive sensorless controls based on sliding mode approach for interior permanent magnet synchronous motor(IPMSM). The proposed strategies are composed of an Adaptive High-Order Sliding Mode Observer (AHOSMO) in closed-loop with an Adaptive Super- Twisting Control (ASTWC), where the control and observer gains of the proposed strategy are reparameterized in terms of a single parameter. Then, the main advantage of this strategy is the adaptable laws are easy to implement, avoiding overestimates of gains that increases of chattering, reducing the time to tune the gains, and reducing the damage of the actuators. Furthermore, a strategy for angular position estimation error extraction is proposed. Then, from this information and using a parameter-free virtual system, AHOSMO isdesigned for estimating the angular position and speed in a wide speed range, where the estimated variables provided by this observer are obtained with greater precision, despite the variations of the parameters, achieving greater robustness. These estimated states are used in the proposed robust control to track a desired reference of speed and direct-axis current. A stability analysis of the closedloop system is presented, using a Lyapunov approach. In addition, the proposed strategy is validated throughout experimental and simulationset-up in order to show its effectiveness
Braikia, Karim. "Asservissement des systèmes incertains par des commandes à mode glissant - Application à un robot flexible". Thesis, Toulouse, INSA, 2011. http://www.theses.fr/2011ISAT0016/document.
Texto completo da fonteThis thesis addresses the control of complex systems through fixed parameters sliding modes. The objective being to show that it is possible to use robust control laws while keeping the system model and control law synthesis simple.The considered physical system is a seven d.o.f flexible anthropomorphic manipulator robot driven by pneumatic artificial muscles.We address robust control laws, particularly second order sliding modes, Twisting and Super–twisting together with the equivalent control which is associated to them in order to reduce the discontinuities of these type of controls. These laws are applied onto a flexible robot. Through experiment we show their robustness, the influence of modelling uncertainties on performance and the difficulty in synthesizing their parameters for an uncertain system. A convergence accelerator is proposed for enhancing control quality both in regulation and tracking. These theoretical results are experimentally verified through the flexible robot.Due to the difficulty in synthetizing Twisting and Super–twisting control laws, a new approach based on commuted state feedback is presented. The objective being a sliding mode control law with a systematic parameters synthesis using Lyapunov stability condition. This approach named Puma: Polytopic Uncertain Model Approach uses the system’s polytopic model, which allows keeping modelling simple by considering the system, whatever its complexity may be, as a black box. This approach is applied to a flexible robot in simulation ; it is compared to a similar approach to show its interest.In order to evaluate the relevance of these laws from the point of view of performance and implementation simplicity, they are compared to one of the most popular control law: The PID
Feingesicht, Maxime. "Contrôle non linéaire actif d’écoulements turbulents décollés : Théorie et expérimentations". Thesis, Ecole centrale de Lille, 2017. http://www.theses.fr/2017ECLI0024/document.
Texto completo da fonteFlow control is a strongly growing field aiming at modifying fluid flows using actuators and control algorithms. An important part of flow control is the control of flow separation as boundary layer separation increases drag and therefore energy losses and fuel consumption. This thesis focuses on developing control algorithms for flow reattachment using pulsed jets actuators. The first part of this work develops a model identification technique based on experimental data. The models are derived from physical and control theory considerations. They provide a good fit to the data while remaining simple and using few coefficients. The second part of this work uses this models in order to design two different control algorithms : the first one is an optimal feedforward control while the second one is a robust feedback control. The control algorithms have been applied on several experimental setups (LML, ONERA, LAMIH) and their properties have been experimentally tested. The tests were conducted using a simple Arduino Uno for the measurements and computation of the control, showing that the developed method is easy to apply and requires very few computational resources
Darure, Tejaswinee. "Contribution à l’optimisation de la performance énergétique des bâtiments de grande dimension : une approche intégrée diagnostic / commande économique et coopérative à horizon glissant". Thesis, Université de Lorraine, 2017. http://www.theses.fr/2017LORR0142/document.
Texto completo da fonteSince the last two decades, there has been a growing awareness about the climate change and global warming that has instigated several Directorate initiatives from various administrations. These initiatives mainly deal with controlling greenhouse gas emissions, use of non-conventional energy resources and optimization of energy consumption in the existing systems. The European Union has proposed numerous projects under FP7 framework to achieve the energy savings up to 20% by the year 2020. Especially, stated by the Energy Efficiency Directive, buildings are majorly responsible for 40% of energy resources in Europe and 36% of CO2 emission. Hence a class of projects in the FP7 framework promotes the use of smart technology in the buildings and the streamline existing rules. Energy IN TIME is one of the projects focused on developing a Smart Energy Simulation Based Control method which will reduce the energy consumption in the operational stage of existing non-residential buildings. Essentially, this thesis proposes several novel solutions to fulfill the project objectives assigned to the University of Lorraine. The developed solutions under this project should be validated on the demonstration sites from various European locations. We design a general benchmark building framework to emulate the behavior of demonstration sites. This benchmark building framework serves as a test bench for the validation of proposed solutions given in this thesis work. Based on the design of benchmark building layout, we present an economic control formulation using model predictive control minimizing the energy consumption. This optimal control has maintenance-aware control properties. Furthermore, as in buildings, fault occurrences may result in deteriorating the energy efficiency as well as the thermal comfort for the occupants inside the buildings. To address this issue, we design a fault diagnosis and fault adaptive control techniques based on the model predictive control and demonstrate the simulation results on the benchmark building. Moreover, the application of these proposed solutions may face great challenges in case of large-scale buildings. Therefore, in the final part of this thesis, we concentrate on the economic control of large-scale buildings by formulating a novel approach of distributed model predictive control. This distributed control formulation holds numerous advantages such as fault propagation mitigation, flexibility in the building maintenance and simplified plug-and-play control strategies, etc... Finally, a particular attention is paid to the estimation problem under limited measurements in large-scale buildings. The suggested advanced estimation techniques are based on the moving horizon methodologies and are demonstrated on the benchmark building systems
Rosendo, Juan luis. "Techniques robustes pour le contrôle automatique des systèmes robotiques". Thesis, Brest, École nationale supérieure de techniques avancées Bretagne, 2019. http://www.theses.fr/2019ENTA0004.
Texto completo da fonteThis work seeks to mitigate the effects of constraints on mobile robotic systems. To this end, auxiliary control loops and robust tuning techniques are proposed. The former are proposed to mitigate the effects of constraints on the input and output of the systems through the modification of the motion parameter in path following applications.Then, PID controllers are considered as a structural constraint, given its wide use in robotics particularly at low control level. A robust tuning methodology considering this constraint is proposed which achieves good performancelevels even when facing disturbances. Finally, to deal with robustness in presence of robots nonlinearity constraints, an analysis and tuning tool for sliding mode controllers is proposed. The particularity of this tuning method, based on global optimization and interval techniques,is that it allows generating tuning maps of the parameter regions where the desired performance criterion is fulfilled. All the proposed strategies are put into practice, through real experimentation or invalidated simulators, over the AUV Ciscrea available at ENSTA Bretagne
Nouvelière, Lydie. "Commandes robustes appliquées au contrôle assisté d'un véhicule à basse vitesse". Versailles-St Quentin en Yvelines, 2002. http://www.theses.fr/2002VERS0023.
Texto completo da fonteThis work deals with low speed automated vehicles. The peri-urban traffic congestion daily represents a real problem for the drivers because the travel time is strongly increased in spite of often short covered distances. Low speed automation then allows to homogenize the traffic while guaranteeing a shorter travel time and also contributes to the reduction of the driver's task. Safety and comfort are thus two main criteria. Congestion analysis is carried out in terms of inter-distance and speed of the vehicle. Measurements on the Parisian motorways were collected and inform about the way the driver manages the inter-vehicular distance and time according to the speed. A parametric model of the inter-distance is developed, the parameters being estimated by a Kalman filtering procedure. The interest is then to generate realistic desired inputs for vehicle control. From vehicle model (models for analysis and synthesis of control laws for a multi-field approach : automatic and transport), robust non-linear control laws are synthesized (1 and 2-order sliding mode control, optimal control) and are adapted to the road vehicle. Simulations permit to determinate the results obtained with such systems, for an autonomous or co-operative control, for individual control or platooning. The use of a technique of gain scheduling associated with a loop-shaping procedure based Hinfini method allows lateral control of vehicle at different speeds, in lane change or lane keeping aneuvers. Finally, an equipped vehicle for a shared control between driver and automat permits to test several scénarii of longitudinal control at low speed. They were validated in real time during the IEEE Intelligent Vehicle IV2002 congress (low speed car-following, stop and go, stop on obstacles. . . )
Darure, Tejaswinee. "Contribution à l’optimisation de la performance énergétique des bâtiments de grande dimension : une approche intégrée diagnostic / commande économique et coopérative à horizon glissant". Electronic Thesis or Diss., Université de Lorraine, 2017. http://www.theses.fr/2017LORR0142.
Texto completo da fonteSince the last two decades, there has been a growing awareness about the climate change and global warming that has instigated several Directorate initiatives from various administrations. These initiatives mainly deal with controlling greenhouse gas emissions, use of non-conventional energy resources and optimization of energy consumption in the existing systems. The European Union has proposed numerous projects under FP7 framework to achieve the energy savings up to 20% by the year 2020. Especially, stated by the Energy Efficiency Directive, buildings are majorly responsible for 40% of energy resources in Europe and 36% of CO2 emission. Hence a class of projects in the FP7 framework promotes the use of smart technology in the buildings and the streamline existing rules. Energy IN TIME is one of the projects focused on developing a Smart Energy Simulation Based Control method which will reduce the energy consumption in the operational stage of existing non-residential buildings. Essentially, this thesis proposes several novel solutions to fulfill the project objectives assigned to the University of Lorraine. The developed solutions under this project should be validated on the demonstration sites from various European locations. We design a general benchmark building framework to emulate the behavior of demonstration sites. This benchmark building framework serves as a test bench for the validation of proposed solutions given in this thesis work. Based on the design of benchmark building layout, we present an economic control formulation using model predictive control minimizing the energy consumption. This optimal control has maintenance-aware control properties. Furthermore, as in buildings, fault occurrences may result in deteriorating the energy efficiency as well as the thermal comfort for the occupants inside the buildings. To address this issue, we design a fault diagnosis and fault adaptive control techniques based on the model predictive control and demonstrate the simulation results on the benchmark building. Moreover, the application of these proposed solutions may face great challenges in case of large-scale buildings. Therefore, in the final part of this thesis, we concentrate on the economic control of large-scale buildings by formulating a novel approach of distributed model predictive control. This distributed control formulation holds numerous advantages such as fault propagation mitigation, flexibility in the building maintenance and simplified plug-and-play control strategies, etc... Finally, a particular attention is paid to the estimation problem under limited measurements in large-scale buildings. The suggested advanced estimation techniques are based on the moving horizon methodologies and are demonstrated on the benchmark building systems
Benbouzid, Salim. "Synthèse d'un contrôleur multivariable pour un système de traction pile à combustible". Ecole Centrale de Lille, 2005. http://www.theses.fr/2005ECLI0010.
Texto completo da fonteNew scientific and technical breakthroughs as global energetic constraints show the way for fuel cells (fc) as a potential candidate for on-board electric generators supplying energy for automotive traction. Fc appear as a fine system with high theoretical efficiency as well as a direct electricity power production from hydrogen with zero local emission (water production only). Nevertheless, ancillaries’ components have to be added and controlled in order to follow the fc to work properly, thus reducing the overall system efficiency. Hence, this thesis proposes a control approach to optimize the fc system efficiency for vehicle traction ensuring system and environment safety. The first step addresses dynamical modelling of the fc itself governed by coupled nonlinear physical laws and the ancillaries’ components in order to build a representative model for the system. Multi domain bond graph is used for this purpose. Secondly, a hierarchical control approach is proposed. The high level consists in optimizing the system efficiency and giving references for the low level (component). At this low level, several sliding modes controls are synthesised to regulate the fc operative conditions despite model uncertainties. The interest of this work is then shown by simulation tests using the overall system model
Nollet, Frédéric Perruquetti Wilfrid Floquet Thierry. "Lois de commande par modes glissants du moteur pas-à-pas". Villeneuve d'Ascq : Université des sciences et technologies de Lille, 2008. https://iris.univ-lille1.fr/dspace/handle/1908/1144.
Texto completo da fonteTitre provenant de la page de titre du document numérisé. Bibliogr. p. 223-228.
Nollet, Frédéric. "Lois de commande par modes glissants du moteur pas-à-pas". Phd thesis, Ecole Centrale de Lille, 2006. http://tel.archives-ouvertes.fr/tel-00132768.
Texto completo da fonteZenteno, Torres Jazmin. "Sliding mode control with fault tolerance capacities : application to a rendezvous mission in a circular orbit". Thesis, Bordeaux, 2020. http://www.theses.fr/2020BORD0063.
Texto completo da fonteIncreasing attention has grown with regards to Sliding Mode Controllers (SMC). In order to reduce the so-called chattering effect, the Super-Twisting Algorithm (STA) has been proposed, recently. In this work, a controller based on the STA in a backstepping setup, is proposed for spacecraft rendezvous in a circular orbit. A key feature is that the chaser is not treated as a point mass, given that the effects of the flexible modes and propellant sloshing phenomena are considered. The results obtained are taken further, given that the guarantee of robustness against perturbations is not enough when it comes to critical systems, through the second ordersliding mode controllers technique. It is shown that the technique enables to solve to problem of fault tolerant control. The solution is based on the Generalized Super-Twisting Algorithm (GSTA) with an anti-windup strategy and a nonlinear observer and the dual quaternion formalism. The main reason of employing a GSTA is because it offers more robustness against state dependentperturbations (sloshing phenomena and flexible modes) than the STA. In addition, with the help of the anti-windup strategy, the control law does not saturate the thrusters, avoiding instablity when faults occur. The proposed solution is evaluated through a simulation campaign in a high-fidelity non-linear simulator, and mission oriented criteria demonstrate its potential
Balogoun, Ismaïla. "Contributions à la théorie du contrôle des systèmes de dimension infinie soumis à des perturbations/incertitudes". Electronic Thesis or Diss., Ecole centrale de Nantes, 2023. http://www.theses.fr/2023ECDN0017.
Texto completo da fonteIn this thesis, we study problems ofstabilization and output regulation for infinitedimensionalsystems subjected to disturbances.First, we consider the problem of the stabilizationof an abstract linear infinite-dimensional systemwith unbounded control operators and subject toa matched disturbance. To solve this problem, wefollow a sliding mode control strategy. Secondly, weconsider the problem of the boundary stabilizationof a linear hyperbolic system (a transport equationand a system of transport equations) subjected toa matched disturbance. The objective here is topropose for this particular case a control which requiresmuch less in terms of measurement than thedesign proposed before. To solve this problem, wepropose an active disturbance rejection control. Finally,we are interested in the construction of aninput-to-state stability Lyapunov functional and theoutput regulation of a Korteweg-de Vries equation
Labbe, Benoit. "A contribution to synchronization of the sliding-mode control-based integrated step-down DC/DC converter". Thesis, Lyon, INSA, 2013. http://www.theses.fr/2013ISAL0120.
Texto completo da fonteMobile applications necessitate nowadays huge digital-resources. Power management of a digital System-On-Chip (SOC) is based on dynamic voltage scaling. DC/DC converters used to supply the digital SoCs are facing stringent constraints with respect to load-transients, line-transients and reference tracking. Hysteretic control is known as the most convenient control scheme with a fair trade-off between transient performances, analog implementation and power consumption, particularly for one-phase architecture. The thesis focuses on-board DC/DC with a significant constraint on footprint (i.e. on components count and values). Fixed switching-frequency hysteretic control has been experimented with significant results. Transient performances are reduced due to latency introduced in the switching frequency control. The present study focuses on the improvement of the concept as well as its implementation and the analysis of stability. A new analog implementation of the sliding-mode control is presented with switching-frequency control using a particular analog phase-locked-loop but preserve transient performances. The DC/DC converter is implemented in CMOS 130nm by STMicroelectronics. The switching frequency range has been voluntarily limited and excludes the possible integration of passive components for the sake of silicon access. A hybrid demonstrator is presented with efficiency higher than 80\% between 2.4 mW and 960 mW output power
Gaye, Oumar. "Contrôle du profil de facteur de sécurité dans les plasmas de tokamak en dimension infinie". Angers, 2012. https://theses.hal.science/tel-00774718.
Texto completo da fonteThe increasing energy needs of the world population require the development, the control and the supply of new forms of energy. In this context, nuclear fusion is a track of extremely promising research. World project ITER is intended to prove the scientific and technical feasibility of nuclear fusion. One of the many key-goal is the control of the current profile spatial distribution in plasmas of tokamak, which is one of the main parameter for the stability and the performance of the experiments. The spatiotemporal evolution of this current is described by a set of nonlinear partial differential equations. In this document stabilization is proposed considering robust control of current profile spatial distribution in infinite dimension. Two approaches are proposed : the first one is based on sliding mode approach and the second one (of type proportional and proportional integral) is based on the Lyapunov functions in infinite dimension. The design of the control law is based on the 1D equation resistive diffusion of the magnetic flux. The control laws are calculated in infinite dimension without space discretization
Liu, Jianxing. "Contributions to Adaptative Higher Order Sliding Mode Observers : Application to Fuel Cell an Power Converters". Thesis, Belfort-Montbéliard, 2014. http://www.theses.fr/2014BELF0232/document.
Texto completo da fonteAutomotive PEM Fuel Cell systems rely upon a set of auxiliary systems for proper operation, such as humidifier, air-feed compressor, power converter etc. The internal physical states of the latter are often unmeasurable, yet required for their precise control. Observers provide a means of obtaining the unmeasured states of these auxiliary systems for feedback control, optimal energy consumption and Fault Diagnosis and Isolation (FDI). This thesis is based on higher order sliding mode observer design studies for two major PEMFC auxiliary systems found in modern automobiles, the air-feed system and the power electronics system.The first part is focused on robust observation and FDI of the PEMFC air-feed systems. Sliding mode observer design and their applications to FDI have been studied in detail for this purpose and the key observation problems in this system have been identified. Based on this study, two solutions are proposed, a sliding mode algebraic observer for oxygen and nitrogen partial pressures and a novel robust adaptive-gain Second Order Sliding Mode (SOSM) observer based FDI for simultaneous state observation, parameter identification, health monitoring and fault reconstruction of the PEMFC air-feed system. The performance of the proposed observers has been validated on an instrumented Hardware-In-Loop (HIL) test bench.The observation and output feedback control problems of different power electronic converters, commonly found in fuel cell vehicles, are addressed in the next part. Robust output feedback SOSM control for three phase AC/DC converters have been presented. A robust SOSM observer for multi-cell converters has also been designed. The performance of all these designs has been demonstrated through a multi-rate simulation approach. The results highlight the robustness of the observers and controllers against parametric uncertainty, measurement noise and external disturbance
Chitraganti, Shaikshavali. "On stability and control of random jump linear systems". Thesis, Université de Lorraine, 2014. http://www.theses.fr/2014LORR0165/document.
Texto completo da fonteWe address stability and control problems of random jump linear systems (JLSs) that consists of a set of linear systems and the switching among them is governed by a random jump process. In the first part, we consider second moment stability and stabilization of random JLSs. We first consider discrete-Time inhomogeneous Markov JLSs with interval transition probability matrix and obtain a sufficient condition in terms of a spectral radius of a matrix by using results of interval analysis and graph theory. Alternatively, we obtain a convex hull representation of the interval transition probability matrix and give a sufficient condition in terms of linear matrix inequalities, using which we deal with stabilization. Next, we consider a continuous-Time state-Dependent JLS, where the transition rates of the random jump process depend on the state variable and address the problem of stochastic stability and stabilization. Then, we consider the presence of external disturbances and extend our results to H infinity stabilization problem. In the second part, we consider control of random JLSs subject to constraints. We use receding horizon control approach to handle constraints. We first investigate a receding horizon control of discrete-Time state-Dependent JLSs subject to stochastic disturbances and probabilistic constraints. For the same system, we try to extend our approach to the case of imperfect state availability. However, the unavailability of the state makes the formulation of state-Dependent jump process complex. Thus we confine ourselves to discrete-Time homogeneous Markov JLSs with process noise and noisy measurements and address the receding horizon control problem
Chitraganti, Shaikshavali. "On stability and control of random jump linear systems". Electronic Thesis or Diss., Université de Lorraine, 2014. http://docnum.univ-lorraine.fr/prive/DDOC_T_2014_0165_CHITRAGANTI.pdf.
Texto completo da fonteWe address stability and control problems of random jump linear systems (JLSs) that consists of a set of linear systems and the switching among them is governed by a random jump process. In the first part, we consider second moment stability and stabilization of random JLSs. We first consider discrete-Time inhomogeneous Markov JLSs with interval transition probability matrix and obtain a sufficient condition in terms of a spectral radius of a matrix by using results of interval analysis and graph theory. Alternatively, we obtain a convex hull representation of the interval transition probability matrix and give a sufficient condition in terms of linear matrix inequalities, using which we deal with stabilization. Next, we consider a continuous-Time state-Dependent JLS, where the transition rates of the random jump process depend on the state variable and address the problem of stochastic stability and stabilization. Then, we consider the presence of external disturbances and extend our results to H infinity stabilization problem. In the second part, we consider control of random JLSs subject to constraints. We use receding horizon control approach to handle constraints. We first investigate a receding horizon control of discrete-Time state-Dependent JLSs subject to stochastic disturbances and probabilistic constraints. For the same system, we try to extend our approach to the case of imperfect state availability. However, the unavailability of the state makes the formulation of state-Dependent jump process complex. Thus we confine ourselves to discrete-Time homogeneous Markov JLSs with process noise and noisy measurements and address the receding horizon control problem
Chen, Hao. "Modeling and control of a marine current energy conversion system using a doubly salient permanent magnet generator". Nantes, 2014. http://archive.bu.univ-nantes.fr/pollux/show.action?id=83aa318a-2539-4dda-aa76-c57351bf6c09.
Texto completo da fonteSeveral techniques to extract and exploit ocean energy have been recently suggested. The most studied ones are: marine current energy, wave energy and ocean ̐thermal energy. This Ph. D. Thesis fits in this context and its main objective is to contribute on control and modelling of a Marine Current Energy Conversion System (MCECS). This requires multi-physics modelling from the hydrokinetic resource to the electricity grid, design and control of an innovative low speed non-conventional generator and its associated power electronic interfaces. At first, turbine concepts, relative projects and usual chain of tidal energy conversion are presented. Tidal current and turbine modelling are secondly addressed. The dynamic modelling of a low speed Double Salient Permanent Magnet Generator (DSPMG) based on finite element method and Park transformations is developed. Results are compared to classical Permanent Magnet Synchronous Generator (PMSG) to highlight advantages, originality, complexity and principal characteristics of the proposed structure. Suitable currents are then determined and tested by simulation in order to deliver a quasi-constant torque and minimise Joule losses. The mutual effect on the generator performances is detailed. Finally, several control strategies are applied to DSPMG associated to a bidirectional back-to-back converter and are analysed. The main results, based on the developed marine current turbine simulation tool, are presented and discussed with illustration by several realistic studies and Matlab/Simulink assessment
Marouf, Alaa. "Contribution à la Commande du Système de Direction Assistée Electrique". Thesis, Valenciennes, 2013. http://www.theses.fr/2013VALE0012.
Texto completo da fonteThe control of Electric Power Assisted Steering (EPAS) system is a challengingproblem due to the multiple objectives and the need of several pieces of information to implement the control. The control objectives are to generate assist torque with fast responses to driver’s torque commands, insure system stability, attenuate vibrations, transmit the road information to the driver, and improve the steering wheel returnability and free control performance. The control must also be robust against modeling errors and parameter uncertainties. In addition, several pieces of information are required to implement the control, such as steering wheel angle, motor velocity, driver torque and road reaction torque
Gaye, Oumar. "CONTRÔLE DU PROFIL DE FACTEUR DE SECURITE DANS LES PLASMAS DE TOKAMAK EN DIMENSION INFINIE". Phd thesis, Université d'Angers, 2012. http://tel.archives-ouvertes.fr/tel-00774718.
Texto completo da fonteMalasse, Olaf. "Contribution à la commande numérique robuste d'un actionneur électromécanique". Vandoeuvre-les-Nancy, INPL, 1994. http://docnum.univ-lorraine.fr/public/INPL_T_1994_MALASSE_O.pdf.
Texto completo da fonteLiu, Xinyi. "Contribution to adaptative sliding mode, fault tolerant control and control allocation of wind turbine system". Thesis, Belfort-Montbéliard, 2016. http://www.theses.fr/2016BELF0295/document.
Texto completo da fonteThe main challenges for the deployment of wind energy conversion systems (WECS) are to maximize the amount of good quality electrical power extracted from wind energy over a significantly wide range of weather conditions and minimize both manufacturing and maintenance costs. Wind turbine's efficiency is highly dependent on environmental disturbances and varying parameters for operating conditions, such as wind speed, pitch angle, tip-speed ratio, sensitive resistor and inductance. Uncertainties on the system are hard to model exactly while it affects the stability of the system. In order to ensure an optimal operating condition, with unknown perturbations, adaptive control can play an important role. On the other hand, a Fault Tolerant Control (FTC) with control allocation that is able to maintain the WECS connected after the occurrence of certain faults can avoid major economic losses. The thesis work concerns the establishment of an adaptive control and fault diagnosis and tolerant control of WECS. After a literature review, the contributions of the thesis are:In the first part of the thesis, a nonlinear uncertain model of the wind energy conversion system with a doubly fed induction generator (DFIG) is proposed. A novel Lyapunov-based adaptive Sliding Mode (HOSM) controller is designed to optimize the generated power.In the second part, a new output integral sliding mode methodology for fault tolerant control with control allocation of linear time varying systems is presented. Then, this methodology has been applied in order to force the wind turbine speed to its optimal value the presence of faults in the actuator
Chokor, Abbas. "Design of several centralized and decentralized multilayer robust control architectures for global chassis control". Thesis, Compiègne, 2019. http://www.theses.fr/2019COMP2514.
Texto completo da fonteGlobal Chassis Control (GCC) is crucial task in intelligent vehicles. It consists of assisting the driver by several automated functionalities especially for active safety and comfort purposes. Due to the fact that the dynamics of these functionalities are interconnected, thus the awaited performances are sometimes contradictory. Hence, the main task in GCC field is to coordinate the different Advanced Driving Assistance Systems (ADAS) to create synergies between the interconnected dynamics in order to improve the overall vehicle performance. Several powerful coordination strategies have already been developed either in the academic world or in the industrial one to manage these interconnections. Because the active safety needs are increasing from one side, and the technology that can be embedded into vehicles is evolving, an intense research and development is still involved in the field of global chassis control. This thesis analyzes di_erent dynamics interconnections and develops new several GCC strategies where the Active Front Steering, Active Differential Braking, and the Active Suspensions are coordinated - all together or partially - to improve the vehicle overall performance i.e. the rollover avoidance, the lateral stability, the driving comfort (maneuverability), and the ride comfort. Several multilayer architectures formed by three hierarchical layers are proposed. The lower layer represents the actuators implemented into the vehicle which generate their control inputs based on the orders sent from the middle layer. The middle layer is the control layer which is responsible to generate the control inputs that minimize the errors between the desired and actual vehicle state variables i.e. the yaw, side-slip, roll, pitch, and heave motions, regardless of the driving situation. The higher layer is the decision making layer. It instantly monitors the vehicle dynamics by di_erent criteria, then, it generates weighting parameters to adapt the controllers performances according to the driving conditions i.e. to improve the vehicle's maneuverability, lateral stability, rollover avoidance, and ride comfort. The proposed architectures di_er in the control and decision layers depending on the proposed embedded actuators. For instance, the decision layers di_er in the monitored criteria and the way the decision is taken (fuzzy logic or explicit relations). The control layers di_er in structure, where centralized and decentralized controllers are developed. In the centralized architecture, one single Multi-Input-Multi-Output optimal controller generates the optimal control inputs based on the Linear Parameter Varying (LPV)/H-infinity control technique. In the decentralized architecture, the controllers are decoupled, where the Super-Twisting Sliding Mode (STSM) technique is applied to derive each control input apart. The proposed architectures are tested and validated on the professional simulator « SCANeR Studio » and on a Full vehicle nonlinear complex model. Simulation shows that all architectures are relevant to the global chassis control. The centralized one is optimal, complex and overall stability is guaranteed, while the decentralized one does not guarantee the overall stability, but it is intuitive, simple, and robust
Carvalho, Antoine. "Contrôle actif de l'ensemble roue-pneu pour la réduction de la transmission vibratoire solidienne". Electronic Thesis or Diss., Lyon, INSA, 2024. http://www.theses.fr/2024ISAL0073.
Texto completo da fonteThe impact of noise on humans is increasingly at the heart of health issues. In a context of intense industrial competitiveness, these issues lie at the heart of the automotive sector, a truth that also applies to the tire industry. With the rise of electric vehicles, the rolling noise previously masked by other sources of vehicle-related noise pollution poses a real problem for passenger comfort. Vehicle structure, tires, and suspension systems can attenuate some of the undesirable effects of tire-road contact at high and low frequencies. However, few technical solutions have been deployed to address the vibratory phenomena transmitted by tire-wheel assemblies operating between 200 and 500 Hz. One reason for this, these tire-wheel assemblies present complex dynamics dependent on multiple factors, such as their internal pressure, loads, and rotation speed. This thesis is structured around three axes: a deeper understanding of the dynamic behavior of tire-wheel assemblies, the development and control of a set of experimental devices, and the realization of a system and a control law to reduce the forces transmitted in the hubs. Work carried out on four different experimental setups enabled us to minimize the uncertainties associated with the evolving dynamics of the structure to be controlled, thereby allowing for a better definition of the proposed solution's field of action. Based on these results, a network of piezoelectric transducers, used as sensors and actuators, has been proposed. Various robust control solutions have been suggested, including one that combines active control and a spatial modal filter, and another that exploits a sliding-mode controller. These solutions were first studied numerically using models based on experimental data, and then tested on the full-scale structure. In parallel with this work, robustness studies of the proposed solutions were carried out. The most advanced control system was finally tested under realistic operating conditions, involving loading, contact with the tire similar to that obtained with the roadway, and rotation of the assembly. Attenuation of the two target modes was achieved for different rotation speeds
Majid, Hirsh. "Contribution à l'estimation et à la commande des systèmes de transport intelligents". Thesis, Artois, 2014. http://www.theses.fr/2014ARTO0203/document.
Texto completo da fonteThe works presented in this PhD dissertation fit into the framework of Intelligent TransportationSystems. Although the beginnings of these systems have started since the 60s, their development, basedon information and communication technologies, has reached maturity during the early 80s. The ITS usesthe intelligence of different systems (embedded systems, intelligents sensors, intelligents highways, etc.)in order to optimize road infrastructures performances and respond to the daily problems of congestions.The dissertation presents four contributions into the framework of road traffic flow and tackles theestimation and control problems in order to eliminate or at least reduce the “recurrent" congestionsphenomena. The first point treats the problem of traffic state estimation which is of most importance inthe field of ITS. Indeed, the implementation and performance of any control strategy is closely relatedto the ability to have all needed information about the traffic state describing the dynamic behavior ofthe studied system. Two estimation algorithms are then proposed. The first one uses the “metanet"model and high order sliding mode techniques. The second is based on the so-called Cell TransmissionModels. Several comparative studies with the Kalman filters, which are the most used in road traffic flowengineering, are established in order to demonstrate the effectiveness of the proposed approaches. Thethree other contributions concern the problem of traffic flow control. At first, the focus is on the isolatedramp metering using an algorithm based on the high order sliding mode control. The second contributiondeals with the dynamic traffic routing problem based on the high order sliding mode control. Such controlstrategy is enriched by introducing the concept of integration, in the third contribution. Indeed, integratedcontrol consists of a combination of several traffic control algorithms. In this thesis the proposed approachcombines an algorithm of on-ramp control with a dynamic traffic routing control. The obtained results arevalidated via numerical simulations. The validated results of the proposed isolated ramp metering controlare compared with the most used ramp metering strategy : ALINEA. Finally, the last contributiontreats the coordination problems. The objective is to coordinate several ramps which cooperate andchange information in order to optimize the highway traffic flow and reduce the total travel time in theapplied area. All these contributions were validated using real data mostly from French freeways. Theobtained results show substantial gains in term of performances such as travel time, energetic consumptiondecreasing, as well as the increasing in the mean speed. These results allow to consider several furtherworks in order to provide more interesting and efficient solutions in the ITS field
Harmouche, Mohamed. "Contribution à la théorie de la commande par modes glissants d'ordre supérieur et à la commande des systèmes mécaniques sous-actionnés". Thesis, Belfort-Montbéliard, 2013. http://www.theses.fr/2013BELF0214/document.
Texto completo da fonteNonlinear systems are so diverse that generalized tools for control are difficult to develop. Nonlinear control theory requires rigorous mathematical analysis to justify its conclusions. This thesis addresses two distinct, yet important branches of nonlinear control theory: control of uncertain nonlinear systems and control of under-actuated systems.In the first part, a class of Lyapunov-based robust arbitrary higher order sliding mode (HOSM) controllers is developed for the control of uncertain nonlinear systems. This class of controllers is based on a class of controllers for finite-time stabilization of pure integrator chain, and requires the limits of the system uncertainty to be known a-priori. Then, in order to eliminate the dependence on the knowledge of these limits, an adaptive arbitrary HOSM controller is developed. Using this new class, a universal homogeneous arbitrary HOSM controller is developed and it is shown that the homogeneity degree can be manipulated to obtain additional advantages in the proposed controllers, such as bounded control, minimum amplitude of discontinuous control and fixed time convergence. The performance of the controllers has been demonstrated through simulations and experiments on a fuel cell system.In the next part, the control of two under-actuated systems is studied. The first control problem is the global path following of car-type robotic vehicle, using target-point. The second problem is the precise tracking of surface marine vessels. Both these problems are distinct in nature; however, they are subjected to similar physical constraints. The solutions proposed for these control problems use saturated controls, taking into account the physical bounds on the control inputs. Simulations have been performed to demonstrate the performance of these controllers
Rahmani, Mustapha Amine. "Gestion de l'énergie d'une micro-centrale solaire thermodynamique". Thesis, Grenoble, 2014. http://www.theses.fr/2014GRENT077/document.
Texto completo da fonteThis Ph.D thesis was prepared in the scope of the MICROSOL project, ledby Schneider Electric, that aims at developing Off-grid solar thermodynamic micro powerplants exploiting the solar thermal energy. The aim of this thesis being the development of innovative and efficient control strategies for the energy management of two kinds of solar thermodynamic micro power plants: based on Stirling engine and based and Organic RankineCycle (ORC) machines.In a first part, we consider the Stirling based solar thermodynamic micro power planthybridized with a supercapacitor as an energy buffer. Within this framework, we propose afirst experimentally validated control strategy, associated to the energy conversion system ofthe Stirling engine, that endows the system with quasi optimal performances in term of settlingtime enabling the size reduction of the supercapacitor. A second control strategy that handlesexplicitly the system constraints while providing the system with optimal performances interm of settling time , is also proposed. This control strategy is in fact more than a simplecontroller, it is a control framework that holds for a family of energy conversion systems.In a second part, we consider the Organic Rankine Cycle (ORC) based thermodynamicmicro power plant hybridized with a battery bank as an energy buffer. Since this system worksat constant speed for the asynchronous generator electrically connected to a commercial energyconversion system, we propose a model predictive controller that acts on the thermodynamicpart of this system to move from an operating point to another, during the load power demandtransients, as fast as possible (to reduce the size of the battery banks) while respecting thephysical system constraints. The developed predictive controller is based upon a dynamicmodel, for the ORC power plant, identified experimentally thanks to an adequate nonlinearidentification algorithm
Zhang, Lei. "Contribution to robust and adaptive control and observation of linear induction machine : High order sliding mode approach". Thesis, Bourgogne Franche-Comté, 2018. http://www.theses.fr/2018UBFCA010.
Texto completo da fonteDynamic end effects play an important role in the Linear Induction Machine (LIM) control. They increase significantly the nonlinearity of the machine model and generate several difficulties to control and observe states with good performances. This thesis addresses three distinctissues: LIM robust control, LIM speed and flux estimation and observer-based robust control using higher order sliding mode theory.In the first part, to achieve speed and flux tracking,Super Twisting Controller (STC), Adaptive Super Twisting Controller (ASTC), and Adaptive Twisting Controller (ATC) were proposed and implemented into LIM system with great performance, i.e. finite time convergence and robustness properties. Among them, STC ensures continuous control with finite time convergence of the error to zero despite disturbances, under the assumption that their bounds are known. ATC and ASTC can deal with unknown bounded disturbance thanks to their adaptive properties.In the second part, a novel simplified LIM model was proposed and its observability has been proved. Then, Second Order Sliding Mode Observer (SOSMO) and Adaptive High Order Sliding Mode Observer (HOSMO) were proposed to estimate LIM speed, only by using the measured stator voltages and stator currents. SOSMO observer is based on the super twisting algorithm and its stability has been proved with Lyapunov’s theory, which can guarantee finite time convergence with less chattering. Adaptive HOSMO strategy combines speed adaptive algorithm and HOSMO method together to estimate rotor fluxes and speed simultaneously.In the third part, the LIM is viewed as two second order subsystems. Moreover, only the speed and the flux are supposed to be measured. Based on that two differentcontrollers based on HOSMO were presented in order to achieve flux and speed tracking. In both controllers, the idea of active disturbance rejection control is applied. Hence, the HOSMO is used to estimate the derivatives of the flux and the speed, as well as the disturbance. Then, in order to deal with the uncertainty in the measured variables, two different SM controllers are proposed. Firstly, the TC is applied in the LIM. However, the control signal in this case is discontinuous. Then, in order to provide a continuous control signal, the TC is replaced with STC. The stability and convergence of proposed TC-HOSMO and STC-HOSMO approaches were given and simulation validated their performances
Alvarez-Palacio, Juan Miguel. "Contrôle commande d'un robot ultra léger gonflable à actionneurs pneumatiques textiles". Thesis, Paris, HESAM, 2020. http://www.theses.fr/2020HESAE007.
Texto completo da fonteThis thesis work concerns the modeling and control of an ultra-light inflatable arm, powered by pneumatictextile cylinders. In recent years, the French Atomic Energy and Renewable Energy Commission (CEA), inpartnership with Warein SAS, has been developing an innovative concept of inflatable robotic arms forinspection in a restricted environment, with all the components of the structure, including the actuators, madeof fabric. The constraint of lightness imposes new challenges that have consequences on the control strategy:the actuators have never been studied nor characterized, the joint sensors traditionally used in robotics are notadapted to this type of structure, the pressure sensors are far from the actuators, and the non-linear nature ofthe pneumatic circuits, as well as the flexibility of the structure, make it more complex to control the positionof the robot's end-effector. The first contribution of this thesis is related to the modeling and characterizationof the actuators, by comparing an analytical model and numerical approach based on finite elementssimulations with experimental results. The second contribution concerns the proposal of a joint sensor, basedon the use of a network of Inertial Measurement Units (IMU) placed on each segment of the arm. In thiscontext, a method for estimating the relative orientation between two bodies was proposed using the quaternionformalism. Finally, the control of one of the robot joints is carried out with the implementation of a slidingmode control. These results open new perspectives in the instrumentation and control of intrinsically saferobots, which will have a significant impact not only on inspection robotics but also on close interaction withhumans
Abaunza, Gonzalez Hernán. "Robust tracking of dynamic targets with aerial vehicles using quaternion-based techniques". Thesis, Compiègne, 2019. http://www.theses.fr/2019COMP2480/document.
Texto completo da fonteThe objective of this thesis work is to design control and navigation algorithms for tracking of dynamic ground targets using aerial vehicles. Quaternions, which provide an alternative to the classical representations of aerial vehicle dynamics, have been chosen as a basement to develop robust controllers and agile navigation algorithm, due to their advantages such as the absence of singularities and discontinuities and their mathematical simplicity when handling rotations. The quaternion-based control approaches explored in this thesis range from state feedback, passivity, and energy-based controllers, up to sliding modes, and three-dimensional saturation approaches. Then, autonomous and semi-autonomous navigation strategies for quadrotors were explored. An algorithm has been developed for controlling a quadrotor using gestures from a user wearing an armband. To facilitate the operation of multirotors in adverse scenarios, an aggressive deployment strategy has been proposed where a quadrotor is launched by hand With its motors turned off. Finally, autonomous navigation techniques for tracking dynamic targets have been designed. A trajectory generation algorithm based on differential equations has been introduced to track a land vehicle while describing circles. Finally a distributed path planning algorithm has been developed for a fleet of drones to autonomously track ground targets by solving an online optimization problem
Merheb, Abdel-Razzak. "Diagnostic and fault-tolerant control applied to an unmanned aerial vehicle". Thesis, Aix-Marseille, 2016. http://www.theses.fr/2016AIXM4367/document.
Texto completo da fonteUnmanned Aerial Vehicles (UAV) are more and more popular for their civil and military applications. Classical control laws usually show weaknesses in the presence of parameter uncertainties, environmental disturbances, and actuator and sensor faults. Therefore, it is judicious to design a control law capable of stabilizing the UAV not only in the fault-free nominal cases, but also in the presence of disturbances and faults. In this thesis, a new bio-inspired search algorithm called Ecological Systems Algorithm (ESA) suitable for engineering optimization problems is developed. The algorithm is used over the thesis to find optimal gains for the fault tolerant controllers. Sliding Mode Control theory is used to develop two Passive Fault Tolerant Controllers for quadrotor UAVs: Regular and Cascaded SMC. Because Passive Controllers handle a few numbers of faults, an Active Sliding Mode Fault Tolerant Controller using Kalman Filter is developed. To overcome severe faults and failures, an emergency controller based on the Quadrotor-to-Trirotor conversion maneuver is developed. The Controllers developed so far (Passive, Active, and emergency controllers) are then integrated to form the Integrated Fault Tolerant Controller (IFTC). The IFTC is a powerful controller that is able to handle a wide number of faults, and save actuator resources as well as processor computational effort. Finally, Passive and Active Fault Tolerant Controllers are designed for octorotor UAVs based on First Order and Second Order Sliding Mode Control. The AFTC uses Dynamic and Pseudo-Inverse Control Allocation methods to redistribute the control effort among healthy actuators reducing the effect of fault
Sidhom, Lilia. "Sur les différentiateurs en temps réel : algorithmes et applications". Phd thesis, INSA de Lyon, 2011. http://tel.archives-ouvertes.fr/tel-00701576.
Texto completo da fonteJabbari, Imed. "Commandes non linéaires sous contraintes pour les Robots Parallèles à Câbles". Electronic Thesis or Diss., Université de Lorraine, 2022. http://www.theses.fr/2022LORR0186.
Texto completo da fonteThis study concerns the control of nonlinear systems under constraints for parallel robots with cables. These have grown in popularity over the past twenty years. Indeed, cable robots have several advantages over rigid robots, namely a very large workspace, moving heavy loads with high speed and precision, low inertia, simple and fast reconfiguration, and finally low manufacturing cost. The applications are numerous: in the medical field, in biology, to study the behavior of insects in free flight, in port activities to move containers or for the construction of buildings.This type of system represents a major interest in the analysis and synthesis of dynamical systems. Indeed, cable robots, through their modeling, represent a large class of nonlinear electromechanical systems with the additional difficulty of solving an algebraic constraint on cable tensions. It is worth pointing out that the control of (free-end) robots has been largely addressed/solved by classical approaches using elegant solutions, the control of cable robots remains a difficult problem to solve given this constraint. There are few results, often local and heuristic with simplifying assumptions, but far from being a satisfactory solution.It is useful to remember that the main feature of cable robots is that the kinematic chains are not rigid segments, but made up of flexible cables. The latter are attached, at one end, to the mobile base (or terminal device in industrial parlance) and, at the other end, to an electric actuator/motor. This particularity introduces a strong constraint, unlike series robots with free ends, on the tensions of the cables which must belong to a given and positive range in order to avoid breaks or the formation of belly. Therefore, the issues related to the control of parallel robots with cables are not only to bring the robot from one point to another, to follow a trajectory, but also to satisfy these constraints.In this thesis, we answer this problem by proposing simple and effective control laws according to two different approaches:The first consists in developing a control law with convergence in finite time using the “sliding mode” method for a robot with eight motors (moving in 3D). Very few parameters are required to implement this technique, which still requires an optimization algorithm. Numerical simulations are promising and give very satisfactory results.The second approach is quite different and original, after some clever transformations, we write the dynamics of the error in a bilinear form then we establish a time control law varying under saturation constraints. By using a time-varying Lyapunov function, we demonstrate the exponential convergence of the tracking error. This result has been successfully applied to robots with four motors (2D) and then with eight motors (3D). It is important to emphasize that this approach, contrary to the literature, is freed from the use of optimization algorithms which can sometimes pose convergence problems.Finally, it is useful to emphasize that these results have been validated through several numerical simulations
Ndoye, Bada. "Contribution à la synthèse des lois de commande pour la tolérance aux fautes de la boucle d'air d'un moteur Diesel". Rouen, 2014. http://www.theses.fr/2014ROUES046.
Texto completo da fonteDryankova, Vesela. "Contribution à la commande du flux de trafic autoroutier". Thesis, Artois, 2013. http://www.theses.fr/2013ARTO2008/document.
Texto completo da fonteThe technological advances, due to the advent of the new information and communication technologieshave given rise to the Intelligent Transportation Systems (ITS) concept. The objectivesof such applications are to provide effective solutions to deal with the daily problems of congestion.The importance as well as the socio-economic challenges raised by congestion requires theintroduction of innovative solutions based on the latest advances in the automatic control field. Theworks presented in this thesis lie in the frame of ITS and treat the problems of the freeway andUrban Express Routes (UER) control. Among the used control techniques, our works focus mainlyon the isolated ramp metering. The objective of this control measurement is to act on the on-rampflow, through traffic lights, in order to keep the traffic density on the mainstream section around acritical threshold allowing then an optimal use of the freeway or UER infrastructures. The proposedalgorithm rests on the jointly use of differential flatness and high order sliding mode control(HOSMC) concept. The main characteristic of the differential flatness lies in its ability to providea trajectory generation, without integration of any differential equation of the studied model. Onthe other hand, the advantage of HOSMC is to allow a robust trajectory tracking even in the case ofthe presence of uncertainties and disturbances which are typical to traffic systems. The relevanceof the proposed approach is validated through a set of numerical simulations using real-data froma part of the A6 freeway from Paris ring. In addition, the validation step has been enriched by theperformance evaluation based on a set of criteria commonly used by the freeway practitioners. Theobtained results paves the way to several perspectives in order to improve the proposed controlapproach and its generalization for more complex freeway networks
Mehmood, Adeel. "Modeling, simulation and robust control of an electro-pneumatic actuator for a variable geometry turbocharger". Phd thesis, Université de Technologie de Belfort-Montbeliard, 2012. http://tel.archives-ouvertes.fr/tel-00827445.
Texto completo da fonteMariette, Kevin. "Contrôle en boucle fermée pour la réduction active de traînée aérodynamique des véhicules". Thesis, Lyon, 2020. http://www.theses.fr/2020LYSEI088.
Texto completo da fonteActive flow control techniques can decrease the aerodynamic drag acting on a vehicle moving at high velocity. Instead of exclusively passive techniques, active control can reduce the pressure drag on a vehicle under a wider range of operating conditions without requiring large modifications of the functional shape of the vehicles. However, active control devices require an additional source of energy, which may decrease the global efficiency of the control. Our work aims to reduce significantly the drag of ground vehicles with efficiency and robustness thanks to high frequency pulsed jet control. We present experimental studies on a simplified bluff body mock-up of a ground vehicle and we seek to understand the phenomena linked to the pressure drag on a vehicle. In this thesis, we propose a modelling methodology of the vehicle’s turbulent wake adapted for control purposes. Finally, we design and test experimentally different closed-loop control methods of the wake with high frequency pulsed air jets. The experimental studies performed in a wind tunnel show the efficient application of sliding mode control and extremum seeking techniques for a robust drag control with energy cost considerations. This thesis was financed by the French National Research Agency (ANR) and contributes to the project ActivRoad involving three French laboratories: Ampère (INSA, Lyon), Pprime Institute (ENSMA, Poitiers), and the LMFA (Centrale, Lyon); and two automotive companies: PSA group and Volvo Trucks
Mohamed, Ramadan Haitham Saad. "Non-linear control and stabilization of VSC-HVDC transmission systems". Thesis, Paris 11, 2012. http://www.theses.fr/2012PA112046/document.
Texto completo da fonteThe integration of nonlinear VSC-HVDC transmission systems in power grids becomes very important for environmental, technical, and economic reasons. These systems have enabled the interconnection of asynchronous networks, the connection of offshore wind farms, and the control of power flow especially for long distances. This thesis aims the non-linear control and stabilization of VSC-HVDC systems, with two main themes. The first theme focuses on the design and synthesis of nonlinear control laws based on Variable Structure Systems (VSS) for VSC-HVDC systems. Thus, the Sliding Mode Control (SMC) and the Asymptotic Output Tracking (AOT) have been proposed to provide an adequate degree of stability via suitable Lyapunov functions. Then, the robustness of these commands has been studied in presence of parameter uncertainties and/or disturbances. The compromise between controller’s robustness and the system’s dynamic behavior depends on the gain settings. These control approaches, which are robust and can be easily implemented, have been applied to enhance the system dynamic performance and stability level in presence of different abnormal conditions for different DC link lengths. The second theme concerns the influence of VSC-HVDC control on improving the AC network dynamic performance during transients. After modeling the Single Machine via VSC-HVDC system in which the detailed synchronous generator model is considered, the conventional PI controller is applied to the converter side to act on damping the synchronous machine power angle oscillations. This simple control guarantees the reinforcement of the system dynamic performance and the power angle oscillations damping of the synchronous machine in presence of faults
Mohammadridha, Taghreed. "Automatic Glycemia Regulation of Type I Diabetes". Thesis, Ecole centrale de Nantes, 2017. http://www.theses.fr/2017ECDN0008.
Texto completo da fonteThis thesis investigates closed-loop control for glycemia regulation of Type1 Diabetes Mellitus (T1DM). Two main controller categories are designed: non-model-based and model-based. To test their efficiency, both types are tested in silico on two T1DM simulators. The first is a long-term model that is derived from clinical data of T1DM subjects and the second is the Uva/Padova simulator. Firstly, Model-free Control (MFC) is designed: a variable reference intelligent Proportional (iP) control and a constant reference intelligent Proportional-Integral-Derivative (iPID). Better overall performance is yielded with iPID over iP and over a classic PID. Secondly, a positive Sliding Mode Control SMC is designed for the first time for glycemia regulation. The model-based controller is chosen for glycemia regulation due to its well-known robustness properties. More importantly, our main contribution is that SMC is designed to be positive everywhere in the positively invariant set for the plasma insulin subsystem. Finally, a positive state feedback controller is designed for the first time to regulate glycemia. The largest Positively Invariant Set (PIS) is found. Not only control positivity is respected but rather a tight glycemic control is achieved. When the system initial condition belongs to the PIS, hypoglycemia is prevented, otherwise future hypoglycemia is predicted for any initial condition outside the PIS
Matraji, Imad. "Contribution à la commande non linéaire robuste des systèmes d'alimentation en air des piles à combustible de type PEM". Phd thesis, Université de Technologie de Belfort-Montbeliard, 2013. http://tel.archives-ouvertes.fr/tel-00983443.
Texto completo da fonteTran, Van Nhu. "Amélioration de l'agrément de conduite via le pilotage du groupe motopropulseur". Phd thesis, Université de Valenciennes et du Hainaut-Cambresis, 2013. http://tel.archives-ouvertes.fr/tel-00871807.
Texto completo da fonteHamadi, Hussein. "Fault-tolerant control of a multirotor unmanned aerial vehicle under hardware and software failures". Thesis, Compiègne, 2020. http://www.theses.fr/2020COMP2555.
Texto completo da fonteThe aim of this work is to propose mechanisms for multirotor drones that allow, on the one hand, to tolerate faults on the drone, and on the other hand to take into account the effects of the wind outdoors. The faults targeted include fault in actuators, sensors, but also software faults on the data fusion algorithms. ln our work, we have developed a robust controller and an exterior disturbance observer capable of cooperating with th, contrai reconfiguration method, to simultaneously tolerate motor failures and exterior wind disturbances through active fault tolerance techniques… We have also proposed a new technique for tolerating actuator faults for a coaxial octorotor drone. This technique is based on a robust command law with reconfigurable "self tuning sliding mode control (STSMC)" gains, where the control gains are readjusted according to the detected error in order to maintain the stability of the system. lndoor experiments are conducted to show and compare our solution with two other fault tolerance techniques. The efficiency and behavior of each method are studied after successive fault injections into the actuators. The main advantages and disadvantages of each method are deduced by analyzing the results obtained. Additionally, we provide an approach for fault tolerance of drone data fusion sensors and software mechanisms. This approach is based on the redundancy of sensors and the diversification of software components