Artigos de revistas sobre o tema "Continuous and distributed machine learning"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Continuous and distributed machine learning".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Stan, Ioan-Mihail, Siarhei Padolski e Christopher Jon Lee. "Exploring the self-service model to visualize the results of the ATLAS Machine Learning analysis jobs in BigPanDA with Openshift OKD3". EPJ Web of Conferences 251 (2021): 02009. http://dx.doi.org/10.1051/epjconf/202125102009.
Texto completo da fonteYin, Zhongdong, Jingjing Tu e Yonghai Xu. "Development of a Kernel Extreme Learning Machine Model for Capacity Selection of Distributed Generation Considering the Characteristics of Electric Vehicles". Applied Sciences 9, n.º 12 (13 de junho de 2019): 2401. http://dx.doi.org/10.3390/app9122401.
Texto completo da fonteBrophy, Eoin, Maarten De Vos, Geraldine Boylan e Tomás Ward. "Estimation of Continuous Blood Pressure from PPG via a Federated Learning Approach". Sensors 21, n.º 18 (21 de setembro de 2021): 6311. http://dx.doi.org/10.3390/s21186311.
Texto completo da fonteVrachimis, Andreas, Stella Gkegka e Kostas Kolomvatsos. "Resilient edge machine learning in smart city environments". Journal of Smart Cities and Society 2, n.º 1 (7 de julho de 2023): 3–24. http://dx.doi.org/10.3233/scs-230005.
Texto completo da fonteMusa, M. O., e E. E. Odokuma. "A framework for the detection of distributed denial of service attacks on network logs using ML and DL classifiers". Scientia Africana 22, n.º 3 (25 de janeiro de 2024): 153–64. http://dx.doi.org/10.4314/sa.v22i3.14.
Texto completo da fonteOliveri, Giorgio, Lucas C. van Laake, Cesare Carissimo, Clara Miette e Johannes T. B. Overvelde. "Continuous learning of emergent behavior in robotic matter". Proceedings of the National Academy of Sciences 118, n.º 21 (10 de maio de 2021): e2017015118. http://dx.doi.org/10.1073/pnas.2017015118.
Texto completo da fonteKodaira, Daisuke, Kazuki Tsukazaki, Taiki Kure e Junji Kondoh. "Improving Forecast Reliability for Geographically Distributed Photovoltaic Generations". Energies 14, n.º 21 (4 de novembro de 2021): 7340. http://dx.doi.org/10.3390/en14217340.
Texto completo da fonteHua, Xia, e Lei Han. "Design and Practical Application of Sports Visualization Platform Based on Tracking Algorithm". Computational Intelligence and Neuroscience 2022 (16 de agosto de 2022): 1–9. http://dx.doi.org/10.1155/2022/4744939.
Texto completo da fonteRustam, Furqan, Muhammad Faheem Mushtaq, Ameer Hamza, Muhammad Shoaib Farooq, Anca Delia Jurcut e Imran Ashraf. "Denial of Service Attack Classification Using Machine Learning with Multi-Features". Electronics 11, n.º 22 (20 de novembro de 2022): 3817. http://dx.doi.org/10.3390/electronics11223817.
Texto completo da fonteHuang, Leqi. "Problems, solutions and improvements on federated learning model". Applied and Computational Engineering 22, n.º 1 (23 de outubro de 2023): 183–86. http://dx.doi.org/10.54254/2755-2721/22/20231215.
Texto completo da fonteJohnson, Paul A., e Chris W. Johnson. "Earthquake fault slip and nonlinear dynamics". Journal of the Acoustical Society of America 153, n.º 3_supplement (1 de março de 2023): A203. http://dx.doi.org/10.1121/10.0018661.
Texto completo da fonteT V, Bhuvana. "AI ENABLED WATER CONSERVATION FOR IRRIGATION USING IOT". INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 08, n.º 05 (14 de maio de 2024): 1–5. http://dx.doi.org/10.55041/ijsrem33920.
Texto completo da fonteXie, Anze, Anders Carlsson, Jason Mohoney, Roger Waleffe, Shanan Peters, Theodoros Rekatsinas e Shivaram Venkataraman. "Demo of marius". Proceedings of the VLDB Endowment 14, n.º 12 (julho de 2021): 2759–62. http://dx.doi.org/10.14778/3476311.3476338.
Texto completo da fonteChang, Wanjun, Yangbo Li e Qidong Du. "Microblog Emotion Analysis Using Improved DBN Under Spark Platform". International Journal of Information Technologies and Systems Approach 16, n.º 2 (16 de fevereiro de 2023): 1–16. http://dx.doi.org/10.4018/ijitsa.318141.
Texto completo da fonteGómez, Jairo A., Jorge E. Patiño, Juan C. Duque e Santiago Passos. "Spatiotemporal Modeling of Urban Growth Using Machine Learning". Remote Sensing 12, n.º 1 (28 de dezembro de 2019): 109. http://dx.doi.org/10.3390/rs12010109.
Texto completo da fonteBehera, Ranjan, Sushree Das, Santanu Rath, Sanjay Misra e Robertas Damasevicius. "Comparative Study of Real Time Machine Learning Models for Stock Prediction through Streaming Data". JUCS - Journal of Universal Computer Science 26, n.º 9 (28 de setembro de 2020): 1128–47. http://dx.doi.org/10.3897/jucs.2020.059.
Texto completo da fonteLiu, Bowen, e Qiang Tang. "Secure Data Sharing in Federated Learning through Blockchain-Based Aggregation". Future Internet 16, n.º 4 (15 de abril de 2024): 133. http://dx.doi.org/10.3390/fi16040133.
Texto completo da fonteAvcı, İsa, e Murat Koca. "Predicting DDoS Attacks Using Machine Learning Algorithms in Building Management Systems". Electronics 12, n.º 19 (5 de outubro de 2023): 4142. http://dx.doi.org/10.3390/electronics12194142.
Texto completo da fonteBattaglia, Elena, Simone Celano e Ruggero G. Pensa. "Differentially Private Distance Learning in Categorical Data". Data Mining and Knowledge Discovery 35, n.º 5 (13 de julho de 2021): 2050–88. http://dx.doi.org/10.1007/s10618-021-00778-0.
Texto completo da fonteKim, Bockjoo, e Dimitri Bourilkov. "Automatic Monitoring of Large-Scale Computing Infrastructure". EPJ Web of Conferences 295 (2024): 07007. http://dx.doi.org/10.1051/epjconf/202429507007.
Texto completo da fontePaul, Baltescu, Blunsom Phil e Hoang Hieu. "OxLM: A Neural Language Modelling Framework for Machine Translation". Prague Bulletin of Mathematical Linguistics 102, n.º 1 (11 de setembro de 2014): 81–92. http://dx.doi.org/10.2478/pralin-2014-0016.
Texto completo da fonteSánchez-Reolid, Roberto, Arturo S. García, Miguel A. Vicente-Querol, Beatriz García-Martinez e Antonio Fernández-Caballero. "Distributed Architecture for Acquisition and Processing of Physiological Signals". Proceedings 31, n.º 1 (20 de novembro de 2019): 30. http://dx.doi.org/10.3390/proceedings2019031030.
Texto completo da fonteOjugo, Arnold, e Andrew Okonji Eboka. "An Empirical Evaluation On Comparative Machine Learning Techniques For Detection of The Distributed Denial of Service (DDoS) Attacks". Journal of Applied Science, Engineering, Technology, and Education 2, n.º 1 (13 de junho de 2020): 18–27. http://dx.doi.org/10.35877/454ri.asci2192.
Texto completo da fonteKareem, Amer, Haiming Liu e Vladan Velisavljevic. "A Privacy-Preserving Approach to Effectively Utilize Distributed Data for Malaria Image Detection". Bioengineering 11, n.º 4 (30 de março de 2024): 340. http://dx.doi.org/10.3390/bioengineering11040340.
Texto completo da fonteMelton, Joe R., Ed Chan, Koreen Millard, Matthew Fortier, R. Scott Winton, Javier M. Martín-López, Hinsby Cadillo-Quiroz, Darren Kidd e Louis V. Verchot. "A map of global peatland extent created using machine learning (Peat-ML)". Geoscientific Model Development 15, n.º 12 (20 de junho de 2022): 4709–38. http://dx.doi.org/10.5194/gmd-15-4709-2022.
Texto completo da fonteLi, Boyuan, Shengbo Chen e Zihao Peng. "New Generation Federated Learning". Sensors 22, n.º 21 (3 de novembro de 2022): 8475. http://dx.doi.org/10.3390/s22218475.
Texto completo da fonteSitokonstantinou, Vasileios, Alkiviadis Koukos, Thanassis Drivas, Charalampos Kontoes, Ioannis Papoutsis e Vassilia Karathanassi. "A Scalable Machine Learning Pipeline for Paddy Rice Classification Using Multi-Temporal Sentinel Data". Remote Sensing 13, n.º 9 (1 de maio de 2021): 1769. http://dx.doi.org/10.3390/rs13091769.
Texto completo da fonteZeng, Liang, Wenxin Wang e Wei Zuo. "A Federated Learning Latency Minimization Method for UAV Swarms Aided by Communication Compression and Energy Allocation". Sensors 23, n.º 13 (21 de junho de 2023): 5787. http://dx.doi.org/10.3390/s23135787.
Texto completo da fonteKawabata, Kuniaki, Zhi-Wei Luo e Jie Huang. "Special Issue on Machine Intelligence for Robotics and Mechatronics". Journal of Robotics and Mechatronics 22, n.º 4 (20 de agosto de 2010): 417. http://dx.doi.org/10.20965/jrm.2010.p0417.
Texto completo da fonteGreifeneder, Felix, Claudia Notarnicola e Wolfgang Wagner. "A Machine Learning-Based Approach for Surface Soil Moisture Estimations with Google Earth Engine". Remote Sensing 13, n.º 11 (27 de maio de 2021): 2099. http://dx.doi.org/10.3390/rs13112099.
Texto completo da fonteHao, Yixue, Yiming Miao, Min Chen, Hamid Gharavi e Victor Leung. "6G Cognitive Information Theory: A Mailbox Perspective". Big Data and Cognitive Computing 5, n.º 4 (16 de outubro de 2021): 56. http://dx.doi.org/10.3390/bdcc5040056.
Texto completo da fonteSun, Hanqi, Wanquan Zhu, Ziyu Sun, Mingsheng Cao e Wenbin Liu. "FMDL: Federated Mutual Distillation Learning for Defending Backdoor Attacks". Electronics 12, n.º 23 (30 de novembro de 2023): 4838. http://dx.doi.org/10.3390/electronics12234838.
Texto completo da fonteKarlgren, Jussi, e Pentti Kanerva. "High-dimensional distributed semantic spaces for utterances". Natural Language Engineering 25, n.º 4 (julho de 2019): 503–17. http://dx.doi.org/10.1017/s1351324919000226.
Texto completo da fonteAshush, Nerya, Shlomo Greenberg, Erez Manor e Yehuda Ben-Shimol. "Unsupervised Drones Swarm Characterization Using RF Signals Analysis and Machine Learning Methods". Sensors 23, n.º 3 (1 de fevereiro de 2023): 1589. http://dx.doi.org/10.3390/s23031589.
Texto completo da fonteNaqvi, Sardar Shan Ali, Yuancheng Li e Muhammad Uzair. "DDoS attack detection in smart grid network using reconstructive machine learning models". PeerJ Computer Science 10 (9 de janeiro de 2024): e1784. http://dx.doi.org/10.7717/peerj-cs.1784.
Texto completo da fonteFlores, Juan J., Jose L. Garcia-Nava, Jose R. Cedeno Gonzalez, Victor M. Tellez, Felix Calderon e Arturo Medrano. "A Machine-Learning Pipeline for Large-Scale Power-Quality Forecasting in the Mexican Distribution Grid". Applied Sciences 12, n.º 17 (24 de agosto de 2022): 8423. http://dx.doi.org/10.3390/app12178423.
Texto completo da fonteManavalan, Mani. "Intersection of Artificial Intelligence, Machine Learning, and Internet of Things – An Economic Overview". Global Disclosure of Economics and Business 9, n.º 2 (25 de dezembro de 2020): 119–28. http://dx.doi.org/10.18034/gdeb.v9i2.584.
Texto completo da fonteRashid, Kanwal, Yousaf Saeed, Abid Ali, Faisal Jamil, Reem Alkanhel e Ammar Muthanna. "An Adaptive Real-Time Malicious Node Detection Framework Using Machine Learning in Vehicular Ad-Hoc Networks (VANETs)". Sensors 23, n.º 5 (26 de fevereiro de 2023): 2594. http://dx.doi.org/10.3390/s23052594.
Texto completo da fonteZhang, Nan, Mingjie Chen, Fan Yang, Cancan Yang, Penghui Yang, Yushan Gao, Yue Shang e Daoli Peng. "Forest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China". Remote Sensing 14, n.º 18 (6 de setembro de 2022): 4434. http://dx.doi.org/10.3390/rs14184434.
Texto completo da fonteRajab Asaad, Renas, e Subhi R. M. Zeebaree. "Enhancing Security and Privacy in Distributed Cloud Environments: A Review of Protocols and Mechanisms". Academic Journal of Nawroz University 13, n.º 1 (31 de março de 2024): 476–88. http://dx.doi.org/10.25007/ajnu.v13n1a2010.
Texto completo da fonteNaeem, Muhammad, Jian Yu, Muhammad Aamir, Sajjad Ahmad Khan, Olayinka Adeleye e Zardad Khan. "Comparative analysis of machine learning approaches to analyze and predict the COVID-19 outbreak". PeerJ Computer Science 7 (16 de dezembro de 2021): e746. http://dx.doi.org/10.7717/peerj-cs.746.
Texto completo da fonteBonilla-Garzón, Andrea, Shyam Madhusudhana, Robert P. Dziak e Holger Klinck. "Assessing vocal activity patterns of leopard seals (Hydrurga leptonyx) In the Bransfield Strait, Antarctica using machine learning". Journal of the Acoustical Society of America 152, n.º 4 (outubro de 2022): A106. http://dx.doi.org/10.1121/10.0015696.
Texto completo da fontePriya, Harshitha. "A Cloud Approach for Melanoma Detection Based On Deep Learning Networks". International Journal for Research in Applied Science and Engineering Technology 11, n.º 5 (31 de maio de 2023): 3983–88. http://dx.doi.org/10.22214/ijraset.2023.52571.
Texto completo da fonteAnand, Dubey, e Choubey Siddhartha. "Blockchain and machine learning for data analytics, privacy preserving, and security in fraud detection". i-manager’s Journal on Software Engineering 18, n.º 1 (2023): 45. http://dx.doi.org/10.26634/jse.18.1.20091.
Texto completo da fonteChen, Shaomin, Jiachen Gao, Fangchuan Lou, Yunfei Tuo, Shuai Tan, Yuyang Shan, Lihua Luo, Zhilin Xu, Zhengfu Zhang e Xiangyu Huang. "Rapid estimation of soil water content based on hyperspectral reflectance combined with continuous wavelet transform, feature extraction, and extreme learning machine". PeerJ 12 (22 de agosto de 2024): e17954. http://dx.doi.org/10.7717/peerj.17954.
Texto completo da fonteAhmed, Mehreen, Rafia Mumtaz, Syed Mohammad Hassan Zaidi, Maryam Hafeez, Syed Ali Raza Zaidi e Muneer Ahmad. "Distributed Fog Computing for Internet of Things (IoT) Based Ambient Data Processing and Analysis". Electronics 9, n.º 11 (22 de outubro de 2020): 1756. http://dx.doi.org/10.3390/electronics9111756.
Texto completo da fonteBakurov, Illya, Marco Buzzelli, Mauro Castelli, Leonardo Vanneschi e Raimondo Schettini. "General Purpose Optimization Library (GPOL): A Flexible and Efficient Multi-Purpose Optimization Library in Python". Applied Sciences 11, n.º 11 (23 de maio de 2021): 4774. http://dx.doi.org/10.3390/app11114774.
Texto completo da fonteBarron, Alfredo, Dante D. Sanchez-Gallegos, Diana Carrizales-Espinoza, J. L. Gonzalez-Compean e Miguel Morales-Sandoval. "On the Efficient Delivery and Storage of IoT Data in Edge–Fog–Cloud Environments". Sensors 22, n.º 18 (16 de setembro de 2022): 7016. http://dx.doi.org/10.3390/s22187016.
Texto completo da fonteSamuel Olaoluwa Folorunsho, Olubunmi Adeolu Adenekan, Chinedu Ezeigweneme, Ike Chidiebere Somadina e Patrick Azuka Okeleke. "Ensuring Cybersecurity in telecommunications: Strategies to protect digital infrastructure and sensitive data". Computer Science & IT Research Journal 5, n.º 8 (23 de agosto de 2024): 1855–83. http://dx.doi.org/10.51594/csitrj.v5i8.1448.
Texto completo da fonteDudeja, Deepak, Sabeena Yasmin Hera, Nitika Vats Doohan, Nilesh Dubey, R. Mahaveerakannan, Tariq Ahamed Ahanger e Simon Karanja Hinga. "Energy Efficient and Secure Information Dissemination in Heterogeneous Wireless Sensor Networks Using Machine Learning Techniques". Wireless Communications and Mobile Computing 2022 (7 de junho de 2022): 1–14. http://dx.doi.org/10.1155/2022/2206530.
Texto completo da fonte