Literatura científica selecionada sobre o tema "Constrained pseudorandom functions"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Constrained pseudorandom functions".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Constrained pseudorandom functions"
Kissel, Zachary A. "Key regression from constrained pseudorandom functions". Information Processing Letters 147 (julho de 2019): 10–13. http://dx.doi.org/10.1016/j.ipl.2019.02.012.
Texto completo da fonteDatta, Pratish. "Constrained pseudorandom functions from functional encryption". Theoretical Computer Science 809 (fevereiro de 2020): 137–70. http://dx.doi.org/10.1016/j.tcs.2019.12.004.
Texto completo da fonteDatta, Pratish, Ratna Dutta e Sourav Mukhopadhyay. "Constrained Pseudorandom Functions for Turing Machines Revisited: How to Achieve Verifiability and Key Delegation". Algorithmica 81, n.º 9 (17 de maio de 2019): 3245–390. http://dx.doi.org/10.1007/s00453-019-00576-7.
Texto completo da fonteKietzmann, Peter, Thomas C. Schmidt e Matthias Wählisch. "A Guideline on Pseudorandom Number Generation (PRNG) in the IoT". ACM Computing Surveys 54, n.º 6 (julho de 2021): 1–38. http://dx.doi.org/10.1145/3453159.
Texto completo da fonteTontini, Fabio Caratori, Osvaldo Faggioni, Nicolò Beverini e Cosmo Carmisciano. "Gaussian envelope for 3D geomagnetic data inversion". GEOPHYSICS 68, n.º 3 (maio de 2003): 996–1007. http://dx.doi.org/10.1190/1.1581071.
Texto completo da fonteWatanabe, Yuhei, Hideki Yamamoto e Hirotaka Yoshida. "Lightweight Crypto Stack for TPMS Using Lesamnta-LW". Security and Communication Networks 2020 (24 de setembro de 2020): 1–12. http://dx.doi.org/10.1155/2020/5738215.
Texto completo da fonteLawnik, Marcin, Lazaros Moysis e Christos Volos. "A Family of 1D Chaotic Maps without Equilibria". Symmetry 15, n.º 7 (27 de junho de 2023): 1311. http://dx.doi.org/10.3390/sym15071311.
Texto completo da fonteLeander, Gregor, Thorben Moos, Amir Moradi e Shahram Rasoolzadeh. "The SPEEDY Family of Block Ciphers". IACR Transactions on Cryptographic Hardware and Embedded Systems, 11 de agosto de 2021, 510–45. http://dx.doi.org/10.46586/tches.v2021.i4.510-545.
Texto completo da fonteTeses / dissertações sobre o assunto "Constrained pseudorandom functions"
Riahinia, Mahshid. "Constrained Pseudorandom Functions : New Constructions and Connections with Secure Computation". Electronic Thesis or Diss., Lyon, École normale supérieure, 2024. http://www.theses.fr/2024ENSL0022.
Texto completo da fontePseudorandom functions (PRFs) were introduced in 1986 by Goldreich, Goldwasser, and Micali as efficient means of generating randomness and serve as essential tools in cryptography. These functions use a master secret key to map different inputs to pseudorandom outputs. Constrained pseudorandom functions (CPRFs), introduced in 2013, extend PRFs by additionally allowing the delegation of constrained keys that enable the evaluation of the function only on specific subsets of inputs. Notably, given a constrained key that evaluates the function on a subset of inputs, the output of a CPRF should remain pseudorandom on inputs outside of this subset. In this thesis, we establish links between CPRFs and two other cryptographic tools which were introduced in the context of secure computation: 1. We show how CPRFs can be constructed from homomorphic secret sharing (HSS) protocols. Homomorphic secret sharing protocols allow distributed computations over shares of a secret. We start by identifying two extensions of HSS protocols and show how they can be transformed into CPRFs generating constrained keys for subset of inputs that can be expressed via inner-product and NC1 predicates. Next, we observe that HSS protocols that already exist in the literature can be adapted to these new extensions. This leads to the discovery of five new CPRF constructions based on various standard hardness assumptions. 2.We show how CPRFs can be used to construct pseudorandom correlation functions (PCFs) for oblivious transfer (OT) correlations. PCFs for OT correlations enable two parties to generate OT-correlated pairs that can be used in fast secure computation protocols. Next, we instantiate our transformation by applying a slight modification to the well-known PRF construction of Naor and Reingold. We finally present a method for the non-interactive generation of evaluation keys for the latter instantiation which results in an efficient public-key PCF for OT correlations from standard assumptions
Capítulos de livros sobre o assunto "Constrained pseudorandom functions"
Banerjee, Abhishek, Georg Fuchsbauer, Chris Peikert, Krzysztof Pietrzak e Sophie Stevens. "Key-Homomorphic Constrained Pseudorandom Functions". In Theory of Cryptography, 31–60. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-46497-7_2.
Texto completo da fonteHofheinz, Dennis, Akshay Kamath, Venkata Koppula e Brent Waters. "Adaptively Secure Constrained Pseudorandom Functions". In Financial Cryptography and Data Security, 357–76. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-32101-7_22.
Texto completo da fonteBoneh, Dan, e Brent Waters. "Constrained Pseudorandom Functions and Their Applications". In Advances in Cryptology - ASIACRYPT 2013, 280–300. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-42045-0_15.
Texto completo da fonteDeshpande, Apoorvaa, Venkata Koppula e Brent Waters. "Constrained Pseudorandom Functions for Unconstrained Inputs". In Advances in Cryptology – EUROCRYPT 2016, 124–53. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-49896-5_5.
Texto completo da fonteBoneh, Dan, Sam Kim e David J. Wu. "Constrained Keys for Invertible Pseudorandom Functions". In Theory of Cryptography, 237–63. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-70500-2_9.
Texto completo da fonteCouteau, Geoffroy, Pierre Meyer, Alain Passelègue e Mahshid Riahinia. "Constrained Pseudorandom Functions from Homomorphic Secret Sharing". In Advances in Cryptology – EUROCRYPT 2023, 194–224. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-30620-4_7.
Texto completo da fonteDavidson, Alex, Shuichi Katsumata, Ryo Nishimaki, Shota Yamada e Takashi Yamakawa. "Adaptively Secure Constrained Pseudorandom Functions in the Standard Model". In Advances in Cryptology – CRYPTO 2020, 559–89. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-56784-2_19.
Texto completo da fonteDatta, Pratish, Ratna Dutta e Sourav Mukhopadhyay. "Constrained Pseudorandom Functions for Unconstrained Inputs Revisited: Achieving Verifiability and Key Delegation". In Lecture Notes in Computer Science, 463–93. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-54388-7_16.
Texto completo da fonteDatta, Pratish. "Constrained (Verifiable) Pseudorandom Function from Functional Encryption". In Information Security Practice and Experience, 141–59. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-99807-7_9.
Texto completo da fonteDodson, C. T. J. "Some Illustrations of Information Geometry in Biology and Physics". In Handbook of Research on Computational Science and Engineering, 287–315. IGI Global, 2012. http://dx.doi.org/10.4018/978-1-61350-116-0.ch013.
Texto completo da fonte