Artigos de revistas sobre o tema "Conjecture de Littlewood"

Siga este link para ver outros tipos de publicações sobre o tema: Conjecture de Littlewood.

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Conjecture de Littlewood".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

Mignot, Teddy. "Points de hauteur bornée sur les hypersurfaces lisses de l'espace triprojectif". International Journal of Number Theory 11, n.º 03 (31 de março de 2015): 945–95. http://dx.doi.org/10.1142/s1793042115500529.

Texto completo da fonte
Resumo:
Nous démontrons ici la conjecture de Batyrev et Manin pour le nombre de points de hauteur bornée de certaines hypersurfaces de l'espace triprojectif de tridegré (1, 1, 1). La constante intervenant dans le résultat final est celle conjecturée par Peyre. La méthode utilisée est inspirée de celle développée par Schindler pour traiter le cas des hypersurfaces des espaces biprojectifs. Celle-ci est essentiellement basée sur la méthode du cercle de Hardy–Littlewood. We prove the Batyrev–Manin conjecture for the number of points of bounded height on some smooth hypersurfaces of the triprojective space of tridegree (1, 1, 1). The constant appearing in the final result is the one conjectured by Peyre. The method used is the one developed by Schindler to study the case of hypersurfaces of biprojective spaces. It is essentially based on the Hardy–Littlewood method.
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Haglund, J., J. Morse e M. Zabrocki. "A Compositional Shuffle Conjecture Specifying Touch Points of the Dyck Path". Canadian Journal of Mathematics 64, n.º 4 (1 de agosto de 2012): 822–44. http://dx.doi.org/10.4153/cjm-2011-078-4.

Texto completo da fonte
Resumo:
Abstract We introduce a q, t-enumeration of Dyck paths that are forced to touch the main diagonal at specific points and forbidden to touch elsewhere and conjecture that it describes the action of the Macdonald theory ∇ operator applied to a Hall–Littlewood polynomial. Our conjecture refines several earlier conjectures concerning the space of diagonal harmonics including the “shuffle conjecture” (Duke J. Math. 126 (2005), pp. 195 − 232) for ∇ en[X]. We bring to light that certain generalized Hall–Littlewood polynomials indexed by compositions are the building blocks for the algebraic combinatorial theory of q, t-Catalan sequences, and we prove a number of identities involving these functions.
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

CHAN, TSZ HO. "A NOTE ON PRIMES IN SHORT INTERVALS". International Journal of Number Theory 02, n.º 01 (março de 2006): 105–10. http://dx.doi.org/10.1142/s1793042106000437.

Texto completo da fonte
Resumo:
Montgomery and Soundararajan obtained evidence for the Gaussian distribution of primes in short intervals assuming a quantitative Hardy–Littlewood conjecture. In this article, we show that their methods may be modified and an average form of the Hardy–Littlewood conjecture suffices.
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Xuan Jiang, Chun. "On the singular series in the Jiang prime k-tuple theorem". Physics & Astronomy International Journal 2, n.º 6 (16 de novembro de 2018): 514–17. http://dx.doi.org/10.15406/paij.2018.02.00134.

Texto completo da fonte
Resumo:
Using Jiang function we prove Jiang prime k-tuple theorem. We find true singular series. Using the examples we prove the Hardy-Littlewood prime k-tuple conjecture with wrong singular series. Jiang prime k-tuple theorem will replace the Hardy-Littlewood prime k-tuple conjecture.
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Chindris, Calin, Harm Derksen e Jerzy Weyman. "Counterexamples to Okounkov’s log-concavity conjecture". Compositio Mathematica 143, n.º 6 (novembro de 2007): 1545–57. http://dx.doi.org/10.1112/s0010437x07003090.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

de Mathan, Bernard. "Conjecture de Littlewood et récurrences linéaires". Journal de Théorie des Nombres de Bordeaux 15, n.º 1 (2003): 249–66. http://dx.doi.org/10.5802/jtnb.401.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Brüdern, Jörg. "On Waring's problem for cubes". Mathematical Proceedings of the Cambridge Philosophical Society 109, n.º 2 (março de 1991): 229–56. http://dx.doi.org/10.1017/s0305004100069711.

Texto completo da fonte
Resumo:
A classical conjecture in the additive theory of numbers is that all sufficiently large natural numbers may be written as the sum of four positive cubes of integers. This is known as the Four Cubes Problem, and since the pioneering work of Hardy and Littlewood one expects a much more precise quantitative form of the conjecture to hold. Let v(n) be the number of representations of n in the proposed manner. Then the expected formula takes the shapewhere (n) is the singular series associated with four cubes as familiar in the Hardy–Littlewood theory.
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

BUGEAUD, YANN, ALAN HAYNES e SANJU VELANI. "METRIC CONSIDERATIONS CONCERNING THE MIXED LITTLEWOOD CONJECTURE". International Journal of Number Theory 07, n.º 03 (maio de 2011): 593–609. http://dx.doi.org/10.1142/s1793042111004289.

Texto completo da fonte
Resumo:
The main goal of this paper is to develop a metrical theory of Diophantine approximation within the framework of the de Mathan–Teulié Conjecture — also known as the "Mixed Littlewood Conjecture". Let p be a prime. A consequence of our main result is that, for almost every real number α, [Formula: see text]
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Krass, S. "On a conjecture of Littlewood in Diophantine approximations". Bulletin of the Australian Mathematical Society 32, n.º 3 (dezembro de 1985): 379–87. http://dx.doi.org/10.1017/s0004972700002495.

Texto completo da fonte
Resumo:
A conjecture of Littlewood States that for arbitrary , and any ε > 0 there exist m0 ≠ 0, m1,…,mn so that . In this paper we show this conjecture holds for all ξ̲ = (ξ1,…,ξn) such that 1, ξ1,…,ξn is a rational bass of a real algebraic number field of degree n+1.
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Klemes, Ivo. "A Note on Hardy's Inequality". Canadian Mathematical Bulletin 36, n.º 4 (1 de dezembro de 1993): 442–48. http://dx.doi.org/10.4153/cmb-1993-059-4.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

Bugeaud, Yann. "Around the Littlewood conjecture in Diophantine approximation". Publications Mathématiques de Besançon, n.º 1 (13 de abril de 2015): 5–18. http://dx.doi.org/10.5802/pmb.1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Harpaz, Yonatan, Alexei N. Skorobogatov e Olivier Wittenberg. "The Hardy–Littlewood conjecture and rational points". Compositio Mathematica 150, n.º 12 (10 de setembro de 2014): 2095–111. http://dx.doi.org/10.1112/s0010437x14007568.

Texto completo da fonte
Resumo:
AbstractSchinzel’s Hypothesis (H) was used by Colliot-Thélène and Sansuc, and later by Serre, Swinnerton-Dyer and others, to prove that the Brauer–Manin obstruction controls the Hasse principle and weak approximation on pencils of conics and similar varieties. We show that when the ground field is $\mathbb{Q}$ and the degenerate geometric fibres of the pencil are all defined over $\mathbb{Q}$, one can use this method to obtain unconditional results by replacing Hypothesis (H) with the finite complexity case of the generalised Hardy–Littlewood conjecture recently established by Green, Tao and Ziegler.
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

Essouabri, Driss. "Preuve d'une conjecture de Hardy et Littlewood". Comptes Rendus de l'Académie des Sciences - Series I - Mathematics 328, n.º 7 (abril de 1999): 557–62. http://dx.doi.org/10.1016/s0764-4442(99)80246-8.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Fei, JinHua. "An application of the Hardy–Littlewood conjecture". Journal of Number Theory 168 (novembro de 2016): 39–44. http://dx.doi.org/10.1016/j.jnt.2016.05.001.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

Haynes, Alan, e Henna Koivusalo. "A randomized version of the Littlewood Conjecture". Journal of Number Theory 178 (setembro de 2017): 201–7. http://dx.doi.org/10.1016/j.jnt.2017.02.017.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Vinogradov, A. I. "The Hardy-Littlewood conjecture. An algebraic approach". Journal of Mathematical Sciences 79, n.º 5 (maio de 1996): 1273–76. http://dx.doi.org/10.1007/bf02366456.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Haynes, Alan, Henna Koivusalo e James Walton. "Perfectly ordered quasicrystals and the Littlewood conjecture". Transactions of the American Mathematical Society 370, n.º 7 (8 de fevereiro de 2018): 4975–92. http://dx.doi.org/10.1090/tran/7136.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Ferolito, Clarice. "An unresolved analogue of the Littlewood Conjecture". Involve, a Journal of Mathematics 3, n.º 2 (11 de agosto de 2010): 191–96. http://dx.doi.org/10.2140/involve.2010.3.191.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

BAIER, STEPHAN, e LIANGYI ZHAO. "ON PRIMES IN QUADRATIC PROGRESSIONS". International Journal of Number Theory 05, n.º 06 (setembro de 2009): 1017–35. http://dx.doi.org/10.1142/s1793042109002523.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

Bugeaud, Yann, Michael Drmota e Bernard de Mathan. "On a mixed Littlewood conjecture in Diophantine approximation". Acta Arithmetica 128, n.º 2 (2007): 107–24. http://dx.doi.org/10.4064/aa128-2-2.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

de Mathan, Bernard. "On a mixed Littlewood conjecture for quadratic numbers". Journal de Théorie des Nombres de Bordeaux 17, n.º 1 (2005): 207–15. http://dx.doi.org/10.5802/jtnb.487.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

ADAMCZEWSKI, BORIS, e YANN BUGEAUD. "ON THE LITTLEWOOD CONJECTURE IN SIMULTANEOUS DIOPHANTINE APPROXIMATION". Journal of the London Mathematical Society 73, n.º 02 (abril de 2006): 355–66. http://dx.doi.org/10.1112/s0024610706022617.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

Badziahin, Dzmitry. "Computation of the Infimum in the Littlewood Conjecture". Experimental Mathematics 25, n.º 1 (12 de outubro de 2015): 100–105. http://dx.doi.org/10.1080/10586458.2015.1031356.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

Bary-Soroker, Lior. "Hardy–Littlewood Tuple Conjecture Over Large Finite Fields". International Mathematics Research Notices 2014, n.º 2 (16 de novembro de 2012): 568–75. http://dx.doi.org/10.1093/imrn/rns249.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

Harrap, Stephen, e Alan Haynes. "The mixed Littlewood conjecture for pseudo-absolute values". Mathematische Annalen 357, n.º 3 (26 de março de 2013): 941–60. http://dx.doi.org/10.1007/s00208-013-0928-z.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

Giordano, George. "On the irregularity of the distribution of the sums of pairs of odd primes". International Journal of Mathematics and Mathematical Sciences 30, n.º 6 (2002): 377–81. http://dx.doi.org/10.1155/s0161171202110325.

Texto completo da fonte
Resumo:
LetP2(n)denote the number of ways of writingnas a sum of two odd primes. We support a conjecture of Hardy and Littlewood concerningP2(n)by showing that it holds in a certain “average” sense. Thereby showing the irregularity ofP2(n).
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

Zhou, Mi. "The number of 8n+1 primes compare with 8n-1 primes". Advances in Engineering Technology Research 1, n.º 1 (17 de maio de 2022): 189. http://dx.doi.org/10.56028/aetr.1.1.189.

Texto completo da fonte
Resumo:
There is a phenomenon in mathematics: there is a phenomenon that before a natural number K, primes of the form 4n+1 do not appear more frequently than 4n-1 primes; Beyond k, between k and k+k', the above phenomenon is reversed, the frequency of 4n+1 primes is not less than 4n-1 primes; After exceeding k+k', between k+k 'and k+k'+k'', it is reversed again ...... The J.E. Littlewood proved the first stage of the phenomenon: primes of the form 4n+1 appear no more frequently than 4n-1 primes before a natural number k. In this paper used a more easy method and directly prove the phenomenon very shortly , provides a theoretical proof for this description.This method is more easy directly and elementary than Littlewood’,and It can help people understand this phenomenon better, and at the same time, it provides a good example for the optimization of number theory research methods and the use of some elementary methods to study mathematical problems. At the same time, there is a generalization conjecture: before a natural number K, which of 8n+1 and 8N-1 primes appear more frequently? The conjecture remains unsolved. Littlewood proved the occurrence frequency theorem of 4n+1 primes and 4N-1 primes, and this paper also gave the proof, the method is different from Littlewood, but he was the first; However, for 8n+1 primes compare with 8n-1 primes, we prove for the first time that the result is same as 4n+1 primes compare with 4n-1 primes.
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

GOLDSTON, D. A., e A. H. LEDOAN. "JUMPING CHAMPIONS AND GAPS BETWEEN CONSECUTIVE PRIMES". International Journal of Number Theory 07, n.º 06 (setembro de 2011): 1413–21. http://dx.doi.org/10.1142/s179304211100471x.

Texto completo da fonte
Resumo:
The most common difference that occurs among the consecutive primes less than or equal to x is called a jumping champion. Occasionally there are ties. Therefore there can be more than one jumping champion for a given x. In 1999 Odlyzko, Rubinstein and Wolf provided heuristic and empirical evidence in support of the conjecture that the numbers greater than 1 that are jumping champions are 4 and the primorials 2, 6, 30, 210, 2310,…. As a step toward proving this conjecture they introduced a second weaker conjecture that any fixed prime p divides all sufficiently large jumping champions. In this paper we extend a method of Erdős and Straus from 1980 to prove that the second conjecture follows directly from the prime pair conjecture of Hardy and Littlewood.
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

Badziahin, D. "On $t$-adic Littlewood conjecture for certain infinite products". Proceedings of the American Mathematical Society 149, n.º 11 (6 de agosto de 2021): 4527–40. http://dx.doi.org/10.1090/proc/15475.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

Ayadi, Khalil. "A note on the Littlewood conjecture in positive characteristic". Quaestiones Mathematicae 43, n.º 1 (15 de janeiro de 2019): 107–16. http://dx.doi.org/10.2989/16073606.2018.1539047.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

Krenedits, S. "On mockenhoupt’s conjecture in the Hardy-Littlewood majorant problem". Journal of Contemporary Mathematical Analysis 48, n.º 3 (maio de 2013): 91–109. http://dx.doi.org/10.3103/s1068362313030011.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

Chun-Xuan, Jiang. "The Hardy-Littlewood Prime K-Tuple Conjecture Is False". Journal of Middle East and North Africa Sciences 2, n.º 7 (2016): 5–10. http://dx.doi.org/10.12816/0032684.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

Táfula, Christian. "An elementary heuristic for Hardy–Littlewood extended Goldbach’s conjecture". São Paulo Journal of Mathematical Sciences 14, n.º 1 (27 de agosto de 2019): 391–405. http://dx.doi.org/10.1007/s40863-019-00146-3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

Vlamos, Panayiotis. "Properties of the functionf(x)=x/π(x)". International Journal of Mathematics and Mathematical Sciences 28, n.º 5 (2001): 307–11. http://dx.doi.org/10.1155/s0161171201005725.

Texto completo da fonte
Resumo:
We obtain the asymptotic estimations for∑k=2nf(k)and∑k=2n1/f(k), wheref(k)=k/π(k),k≥2. We study the expression2f(x+y)−f(x)−f(y)for integersx,y≥2and as an application we make several remarks in connection with the conjecture of Hardy and Littlewood.
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

Hong, Shao Fang, e Wei Cao. "Notes on the Borwein-Choi conjecture of Littlewood cyclotomic polynomials". Acta Mathematica Sinica, English Series 25, n.º 1 (17 de novembro de 2008): 65–76. http://dx.doi.org/10.1007/s10114-008-6444-5.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

Technau, Niclas, e Agamemnon Zafeiropoulos. "The Discrepancy of (nkx)k=1∞ With Respect to Certain Probability Measures". Quarterly Journal of Mathematics 71, n.º 2 (12 de março de 2020): 573–97. http://dx.doi.org/10.1093/qmathj/haz058.

Texto completo da fonte
Resumo:
Abstract Let $(n_k)_{k=1}^{\infty }$ be a lacunary sequence of integers. We show that if $\mu$ is a probability measure on $[0,1)$ such that $|\widehat{\mu }(t)|\leq c|t|^{-\eta }$, then for $\mu$-almost all $x$, the discrepancy $D_N(n_kx)$ satisfies $$\begin{equation*}\frac{1}{4} \leq \limsup_{N\to\infty}\frac{N D_N(n_kx)}{\sqrt{N\log\log N}} \leq C\end{equation*}$$for some constant $C>0$. This proves a conjecture of Haynes, Jensen and Kristensen and allows an improvement on their previous result relevant to an inhomogeneous version of the Littlewood conjecture.
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

Sándor, József. "On certain inequalities for the prime counting function – Part III". Notes on Number Theory and Discrete Mathematics 29, n.º 3 (3 de julho de 2023): 454–61. http://dx.doi.org/10.7546/nntdm.2023.29.3.454-461.

Texto completo da fonte
Resumo:
As a continuation of [10] and [11], we offer some new inequalities for the prime counting function $\pi (x).$ Particularly, a multiplicative analogue of the Hardy–Littlewood conjecture is provided. Improvements of the converse of Landau's inequality are given. Some results on $\pi (p_n^2)$ are offered, $p_n$ denoting the $n$-th prime number. Results on $\pi (\pi (x))$ are also considered.
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

Graham, William, e Markus Hunziker. "Multiplication of Polynomials on Hermitian Symmetric spaces and Littlewood–Richardson Coefficients". Canadian Journal of Mathematics 61, n.º 2 (1 de abril de 2009): 351–72. http://dx.doi.org/10.4153/cjm-2009-018-2.

Texto completo da fonte
Resumo:
Abstract. Let K be a complex reductive algebraic group and V a representation of K. Let S denote the ring of polynomials on V. Assume that the action of K on S is multiplicity-free. If ƛ denotes the isomorphism class of an irreducible representation of K, let ρƛ : K → GL(Vƛ) denote the corresponding irreducible representation and Sƛ the ƛ-isotypic component of S. Write Sƛ ・ Sμ for the subspace of S spanned by products of Sƛ and Sμ. If Vν occurs as an irreducible constituent of Vƛ ⊗ Vμ, is it true that Sν ⊆ Sƛ ・ Sμ? In this paper, the authors investigate this question for representations arising in the context of Hermitian symmetric pairs. It is shown that the answer is yes in some cases and, using an earlier result of Ruitenburg, that in the remaining classical cases, the answer is yes provided that a conjecture of Stanley on the multiplication of Jack polynomials is true. It is also shown how the conjecture connects multiplication in the ring S to the usual Littlewood–Richardson rule.
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

Venkatesh, Akshay. "The work of Einsiedler, Katok and Lindenstrauss on the Littlewood conjecture". Bulletin of the American Mathematical Society 45, n.º 01 (29 de outubro de 2007): 117–35. http://dx.doi.org/10.1090/s0273-0979-07-01194-9.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

Bengoechea, Paloma, e Evgeniy Zorin. "On the Mixed Littlewood Conjecture and continued fractions in quadratic fields". Journal of Number Theory 162 (maio de 2016): 1–10. http://dx.doi.org/10.1016/j.jnt.2015.10.007.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

Gopalakrishna Gadiyar, H., e Ramanathan Padma. "Ramanujan-Fourier series and the conjecture D of Hardy and Littlewood". Czechoslovak Mathematical Journal 64, n.º 1 (março de 2014): 251–67. http://dx.doi.org/10.1007/s10587-014-0098-5.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

Cho, Nak, Virendra Kumar e Ji Park. "The Coefficients of Powers of Bazilević Functions". Mathematics 6, n.º 11 (18 de novembro de 2018): 263. http://dx.doi.org/10.3390/math6110263.

Texto completo da fonte
Resumo:
In the present work, a sharp bound on the modulus of the initial coefficients for powers of strongly Bazilević functions is obtained. As an application of these results, certain conditions are investigated under which the Littlewood-Paley conjecture holds for strongly Bazilević functions for large values of the parameters involved therein. Further, sharp estimate on the generalized Fekete-Szegö functional is also derived. Relevant connections of our results with the existing ones are also made.
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

GREEN, BEN, TERENCE TAO e TAMAR ZIEGLER. "AN INVERSE THEOREM FOR THE GOWERS U4-NORM". Glasgow Mathematical Journal 53, n.º 1 (25 de agosto de 2010): 1–50. http://dx.doi.org/10.1017/s0017089510000546.

Texto completo da fonte
Resumo:
AbstractWe prove the so-called inverse conjecture for the Gowers Us+1-norm in the case s = 3 (the cases s < 3 being established in previous literature). That is, we show that if f : [N] → ℂ is a function with |f(n)| ≤ 1 for all n and ‖f‖U4 ≥ δ then there is a bounded complexity 3-step nilsequence F(g(n)Γ) which correlates with f. The approach seems to generalise so as to prove the inverse conjecture for s ≥ 4 as well, and a longer paper will follow concerning this.By combining the main result of the present paper with several previous results of the first two authors one obtains the generalised Hardy–Littlewood prime-tuples conjecture for any linear system of complexity at most 3. In particular, we have an asymptotic for the number of 5-term arithmetic progressions p1 < p2 < p3 < p4 < p5 ≤ N of primes.
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

Sababheh, Mohammad. "Hardy Inequalities on the Real Line". Canadian Mathematical Bulletin 54, n.º 1 (1 de março de 2011): 159–71. http://dx.doi.org/10.4153/cmb-2010-091-8.

Texto completo da fonte
Resumo:
AbstractWe prove that some inequalities, which are considered to be generalizations of Hardy's inequality on the circle, can be modified and proved to be true for functions integrable on the real line. In fact we would like to show that some constructions that were used to prove the Littlewood conjecture can be used similarly to produce real Hardy-type inequalities. This discussion will lead to many questions concerning the relationship between Hardy-type inequalities on the circle and those on the real line.
Estilos ABNT, Harvard, Vancouver, APA, etc.
45

Badziahin, Dmitry, Yann Bugeaud, Manfred Einsiedler e Dmitry Kleinbock. "On the complexity of a putative counterexample to the -adic Littlewood conjecture". Compositio Mathematica 151, n.º 9 (19 de maio de 2015): 1647–62. http://dx.doi.org/10.1112/s0010437x15007393.

Texto completo da fonte
Resumo:
Let $\Vert \cdot \Vert$ denote the distance to the nearest integer and, for a prime number $p$, let $|\cdot |_{p}$ denote the $p$-adic absolute value. Over a decade ago, de Mathan and Teulié [Problèmes diophantiens simultanés, Monatsh. Math. 143 (2004), 229–245] asked whether $\inf _{q\geqslant 1}$$q\cdot \Vert q{\it\alpha}\Vert \cdot |q|_{p}=0$ holds for every badly approximable real number ${\it\alpha}$ and every prime number $p$. Among other results, we establish that, if the complexity of the sequence of partial quotients of a real number ${\it\alpha}$ grows too rapidly or too slowly, then their conjecture is true for the pair $({\it\alpha},p)$ with $p$ an arbitrary prime.
Estilos ABNT, Harvard, Vancouver, APA, etc.
46

LIU, WENCAI. "SOME REFINED RESULTS ON THE MIXED LITTLEWOOD CONJECTURE FOR PSEUDO-ABSOLUTE VALUES". Journal of the Australian Mathematical Society 107, n.º 1 (22 de agosto de 2018): 91–109. http://dx.doi.org/10.1017/s1446788718000198.

Texto completo da fonte
Resumo:
In this paper, we study the mixed Littlewood conjecture with pseudo-absolute values. For any pseudo-absolute-value sequence ${\mathcal{D}}$, we obtain a sharp criterion such that for almost every $\unicode[STIX]{x1D6FC}$ the inequality $$\begin{eqnarray}|n|_{{\mathcal{D}}}|n\unicode[STIX]{x1D6FC}-p|\leq \unicode[STIX]{x1D713}(n)\end{eqnarray}$$ has infinitely many coprime solutions $(n,p)\in \mathbb{N}\times \mathbb{Z}$ for a certain one-parameter family of $\unicode[STIX]{x1D713}$. Also, under a minor condition on pseudo-absolute-value sequences ${\mathcal{D}}_{1},{\mathcal{D}}_{2},\ldots ,{\mathcal{D}}_{k}$, we obtain a sharp criterion on a general sequence $\unicode[STIX]{x1D713}(n)$ such that for almost every $\unicode[STIX]{x1D6FC}$ the inequality $$\begin{eqnarray}|n|_{{\mathcal{D}}_{1}}|n|_{{\mathcal{D}}_{2}}\cdots |n|_{{\mathcal{D}}_{k}}|n\unicode[STIX]{x1D6FC}-p|\leq \unicode[STIX]{x1D713}(n)\end{eqnarray}$$ has infinitely many coprime solutions $(n,p)\in \mathbb{N}\times \mathbb{Z}$.
Estilos ABNT, Harvard, Vancouver, APA, etc.
47

Pellegrino, Daniel, e Eduardo V. Teixeira. "Towards sharp Bohnenblust–Hille constants". Communications in Contemporary Mathematics 20, n.º 03 (21 de fevereiro de 2018): 1750029. http://dx.doi.org/10.1142/s0219199717500298.

Texto completo da fonte
Resumo:
We investigate the optimality problem associated with the best constants in a class of Bohnenblust–Hille-type inequalities for [Formula: see text]-linear forms. While germinal estimates indicated an exponential growth, in this work we provide strong evidences to the conjecture that the sharp constants in the classical Bohnenblust–Hille inequality are universally bounded, irrespectively of the value of [Formula: see text]; hereafter referred as the Universality Conjecture. In our approach, we introduce the notions of entropy and complexity, designed to measure, to some extent, the complexity of such optimization problems. We show that the notion of entropy is critically connected to the Universality Conjecture; for instance, that if the entropy grows at most exponentially with respect to [Formula: see text], then the optimal constants of the [Formula: see text]-linear Bohnenblust–Hille inequality for real scalars are indeed bounded universally with respect to [Formula: see text]. It is likely that indeed the entropy grows as [Formula: see text], and in this scenario, we show that the optimal constants are precisely [Formula: see text]. In the bilinear case, [Formula: see text], we show that any extremum of the Littlewood’s [Formula: see text] inequality has entropy [Formula: see text] and complexity [Formula: see text], and thus we are able to classify all extrema of the problem. We also prove that, for any mixed [Formula: see text]-Littlewood inequality, the entropy do grow exponentially and the sharp constants for such a class of inequalities are precisely [Formula: see text]. In addition to the notions of entropy and complexity, the approach we develop in this work makes decisive use of a family of strongly non-symmetric [Formula: see text]-linear forms, which has further consequences to the theory, as we explain herein.
Estilos ABNT, Harvard, Vancouver, APA, etc.
48

Gross, Robert, e John H. Smith. "A Generalization of a Conjecture of Hardy and Littlewood to Algebraic Number Fields". Rocky Mountain Journal of Mathematics 30, n.º 1 (março de 2000): 195–215. http://dx.doi.org/10.1216/rmjm/1022008986.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
49

FOX, JACOB, MATTHEW KWAN e LISA SAUERMANN. "Combinatorial anti-concentration inequalities, with applications". Mathematical Proceedings of the Cambridge Philosophical Society 171, n.º 2 (30 de junho de 2021): 227–48. http://dx.doi.org/10.1017/s0305004120000183.

Texto completo da fonte
Resumo:
AbstractWe prove several different anti-concentration inequalities for functions of independent Bernoulli-distributed random variables. First, motivated by a conjecture of Alon, Hefetz, Krivelevich and Tyomkyn, we prove some “Poisson-type” anti-concentration theorems that give bounds of the form 1/e + o(1) for the point probabilities of certain polynomials. Second, we prove an anti-concentration inequality for polynomials with nonnegative coefficients which extends the classical Erdős–Littlewood–Offord theorem and improves a theorem of Meka, Nguyen and Vu for polynomials of this type. As an application, we prove some new anti-concentration bounds for subgraph counts in random graphs.
Estilos ABNT, Harvard, Vancouver, APA, etc.
50

Heath-Brown, D. R. "Christopher Hooley. 7 August 1928—13 December 2018". Biographical Memoirs of Fellows of the Royal Society 69 (9 de setembro de 2020): 225–46. http://dx.doi.org/10.1098/rsbm.2020.0027.

Texto completo da fonte
Resumo:
Christopher Hooley was one of the leading analytic number theorists of his day, world-wide. His early work on Artin’s conjecture for primitive roots remains the definitive investigation in the area. His greatest contribution, however, was the introduction of exponential sums into every corner of analytic number theory, bringing the power of Deligne’s ‘Riemann hypothesis’ for varieties over finite fields to bear throughout the subject. For many he was a figure who bridged the classical period of Hardy and Littlewood with the modern era. This biographical sketch describes how he succeeded in applying the latest tools to famous old problems.
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia