Literatura científica selecionada sobre o tema "Conics (Apollonius, of Perga)"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Conics (Apollonius, of Perga)".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Artigos de revistas sobre o assunto "Conics (Apollonius, of Perga)"

1

Tripepi, Alessandro. "International Perspectives on the Florentine Edition of Apollonius’ Conics". Nuncius 38, n.º 3 (23 de novembro de 2023): 690–710. http://dx.doi.org/10.1163/18253911-bja10085.

Texto completo da fonte
Resumo:
Abstract In 1661 Giovanni Alfonso Borelli published his edition of the three hitherto lost books belonging to the treatise on Conics by the Hellenistic mathematician Apollonius of Perga. The long and complex editorial operation is here reconstructed drawing on an unpublished document which had not been redacted within the Florentine circles that promoted the editorial initiative, but rather in the Roman circles which provided indispensable support to the venture. The examined letter, written by the Roman intellectual Michelangelo Ricci to prince Leopoldo de’ Medici, allows us to assess the significance of the effort made by a large a team involving numerous scholars experts in geometry and philology; and it allows us also to emphasise the important international dimension of a work that—from its genesis to its dissemination—has been able to connect the whole Continent.
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Stavek, Jiri. "Newton’s Hyperbola Observed from Newton’s Evolute (1687), Gudermann’s Circle (1833), the Auxiliary Circle (Pedal Curve and Inversion Curve), the Lemniscate of Bernoulli (1694) (Pedal Curve and Inversion Curve) (09.01.2019)". Applied Physics Research 11, n.º 1 (29 de janeiro de 2019): 65. http://dx.doi.org/10.5539/apr.v11n1p65.

Texto completo da fonte
Resumo:
Johannes Kepler and Isaac Newton inspired generations of researchers to study properties of elliptic, hyperbolic, and parabolic paths of planets orbiting around the Sun. After the intensive study of those conic sections during the last four hundred years it is believed that this topic is practically closed and the 21st Century cannot bring anything new to this subject. Can we add to those visible orbits from the Aristotelian World some curves from the Plato’s Realm that might bring to us new information about those conic sections? Isaac Newton in 1687 discovered one such curve - the evolute of the hyperbola - behind his famous gravitation law. In our model we have been working with Newton’s Hyperbola in a more complex way. We have found that the interplay of the empty focus M (= Menaechmus - the discoverer of hyperbola), the center of the hyperbola A (= Apollonius of Perga - the Great Geometer), and the occupied focus N (= Isaac Newton - the Great Mathematician) together form the MAN Hyperbola with several interesting hidden properties of those hyperbolic paths. We have found that the auxiliary circle of the MAN Hyperbola could be used as a new hodograph and we will get the tangent velocity of planets around the Sun and their moment of tangent momentum. We can use the lemniscate of Bernoulli as the pedal curve of that hyperbola and we will get the normal velocities of those orbiting planets and their moment of normal momentum. The first derivation of this moment of normal momentum will reveal the torque of that hyperbola and we can estimate the precession of hyperbolic paths and to test this model for the case of the flyby anomalies. The auxiliary circle might be used as the inversion curve of that hyperbola and the Lemniscate of Bernoulli could help us to describe the Kepler’s Equation (KE) for the hyperbolic paths. Have we found the Arriadne’s Thread leading out of the Labyrinth or are we still lost in the Labyrinth?
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Stavek, Jiri. "Galileo’s Parabola Observed from Pappus’ Directrix, Apollonius’ Pedal Curve (Line), Galileo’s Empty Focus, Newton’s Evolute, Leibniz’s Subtangent and Subnormal, Ptolemy’s Circle (Hodograph), and Dürer-Simon Parabola (16.03.2019)". Applied Physics Research 11, n.º 2 (30 de março de 2019): 56. http://dx.doi.org/10.5539/apr.v11n2p56.

Texto completo da fonte
Resumo:
Galileo’s Parabola describing the projectile motion passed through hands of all scholars of the classical mechanics. Therefore, it seems to be impossible to bring to this topic anything new. In our approach we will observe the Galileo’s Parabola from Pappus’ Directrix, Apollonius’ Pedal Curve (Line), Galileo’s Empty Focus, Newton’s Evolute, Leibniz’s Subtangent and Subnormal, Ptolemy’s Circle (Hodograph), and Dürer-Simon Parabola. For the description of events on this Galileo’s Parabola (this conic section parabola was discovered by Menaechmus) we will employ the interplay of the directrix of parabola discovered by Pappus of Alexandria, the pedal curve with the pedal point in the focus discovered by Apollonius of Perga (The Great Geometer), and the Galileo’s empty focus that plays an important function, too. We will study properties of this MAG Parabola with the aim to extract some hidden parameters behind that visible parabolic orbit in the Aristotelian World. For the visible Galileo’s Parabola in the Aristotelian World, there might be hidden curves in the Plato’s Realm behind the mechanism of that Parabola. The analysis of these curves could reveal to us hidden properties describing properties of that projectile motion. The parabolic path of the projectile motion can be described by six expressions of projectile speeds. In the Dürer-Simon’s Parabola we have determined tangential and normal accelerations with resulting acceleration g = 9.81 msec-2 directing towards to Galileo’s empty focus for the projectile moving to the vertex of that Parabola. When the projectile moves away from the vertex the resulting acceleration g = 9.81 msec-2 directs to the center of the Earth (the second focus of Galileo’s Parabola in the “infinity”). We have extracted some additional properties of Galileo’s Parabola. E.g., the Newtonian school correctly used the expression for “kinetic energy E = ½ mv2 for parabolic orbits and paths, while the Leibnizian school correctly used the expression for “vis viva” E = mv2 for hyperbolic orbits and paths. If we will insert the “vis viva” expression into the Soldner’s formula (1801) (e.g., Fengyi Huang in 2017), then we will get the right experimental value for the deflection of light on hyperbolic orbits. In the Plato’s Realm some other curves might be hidden and have been waiting for our future research. Have we found the Arriadne’s Thread leading out of the Labyrinth or are we still lost in the Labyrinth?
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Florio, Emilia. "Claude Mydorge Reader and Interpreter of Apollonius’ Conics". Mathematics 9, n.º 3 (28 de janeiro de 2021): 261. http://dx.doi.org/10.3390/math9030261.

Texto completo da fonte
Resumo:
In 1639, the treatise Prodromi catoptricorum et dioptricorum sive Conicorum operis ad abdita radii reflexi et refracti mysteria praevij et facem praeferentis. Libri quatuor priores by Claude Mydorge was printed in Paris. This volume, which followed the printing of his first two books in 1631, has resonance especially in the writings of those who, after him, addressed the conics. This fact raises the question of who Mydorge was and what his knowledge of the “doctrine” of the conics was, what is the most appropriate cultural context in which to properly read this writing, and finally, what is the place of its content in the development of thought placed between the Veteres and the Recentiores. In this paper, I attempt to elaborate an answer to these different questions, with the aim of emphasizing how the author reads and interprets the first books of Apollonius’ Conics. Neither the treatise, nor the figure of Mydorge, have received much attention in the current literature, although he was estimated as a savant in Paris and he was believed by Descartes to be one of the greatest mathematicians of his time.
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Hogendijk, Jan P. "Desargues' Brouillon Project and the Conics of Apollonius". Centaurus 34, n.º 1 (março de 1991): 1–43. http://dx.doi.org/10.1111/j.1600-0498.1991.tb00687.x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Bello-Chávez, Jhon Helver. "Elementa Curvarum Linearum more Apollonius that Descartes". Visión electrónica 2, n.º 2 (6 de dezembro de 2019): 435–38. http://dx.doi.org/10.14483/22484728.18442.

Texto completo da fonte
Resumo:
This document shows an analysis of the second book Elementa Curvarum Linearum written by Jan De Witt, published for the first time in the second edition of Geometry [1]. This writing is considered the first analytical geometry textbook. The influence of the work carried out by Apollonius in his conics book is studied, the use and interpretation of diagrams is debated. The development of the analytical method and the generation of curves by means of movement are also studied. Some propositions were renewed versions in terms of eighteenth-century mathematics, they used symbology, algebraic techniques and curves were classified by means of their symbolic representations, in these propositions a work closer to Apollonius is seen, the conic is not generated, it is assumed its existence, its nature is geometric. The study concludes that, although the textbook was published in the second edition of Geometry, the genesis of the curves remains geometric. The conics appear as objects of study in action immersed in the symbolic and algebraic practice characteristic of the time.
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Olmstead, Eugene A., e Arne Engebretsen. "Technology Tips: Exploring the Locus Definitions of the Conic Sections". Mathematics Teacher 91, n.º 5 (maio de 1998): 428–34. http://dx.doi.org/10.5951/mt.91.5.0428.

Texto completo da fonte
Resumo:
Conic sections were first studied in 350 B.C. by Menaechmus, who cut a circular conical surface at various angles. Early mathematicians who added to the study of conics include Apollonius, who named them in 220 B.C., and Archimedes, who studied their fascinating properties around 212 B.C. In previous articles in this journal, conic sections have been shown both as an algebraic, or parametric, representation (Vonder Embse 1997) and as a geometric, that is, a paper-folding, model (Scher 1996). Both articles offer important insights into the mathematical nature of the conic sections and into teaching methods that can integrate conics into our curriculum. Even though many textbooks discuss conic equations and their graphs, they do not fully develop locus definitions of conic sections.
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Hogendijk, Jan P. ""Apollonius Saxonicus": Die Restitution eines verlorenen Werkes des Apollonius von Perga durch Joachim Jungius, Woldeck Weland und Johannes Müller. Bernd Elsner". Isis 83, n.º 4 (dezembro de 1992): 665–66. http://dx.doi.org/10.1086/356327.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Jones, Alexander. "Book Review: On Isagogical Questions: Prolegomena Mathematica: From Apollonius of Perga to the Late Neoplatonists". Journal for the History of Astronomy 30, n.º 3 (agosto de 1999): 315–16. http://dx.doi.org/10.1177/002182869903000309.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Bellosta, Hélène. "DE L'USAGE DES CONIQUES CHEZ IBRĀHĪM IBN SINĀN". Arabic Sciences and Philosophy 22, n.º 1 (27 de fevereiro de 2012): 119–36. http://dx.doi.org/10.1017/s0957423911000129.

Texto completo da fonte
Resumo:
AbstractOnce Apollonius' Conics had been translated from Greek into Arabic, they became a main reference and the principal tool in studying solid problems, algebraic equations of 3rd and 4th degrees, infinitesimal mathematics, etc. Mathematicians of the 9th–10th centuries also studied the conic sections' constructions, as well as their continuous drawing and their drawing by points. Ibrāhīm ibn Sinān (909–946), as his grandfather Thābit ibn Qurra (826–901), was one of the most active and inventive mathematicians in these fields. Late Hélène Bellosta examined in this article Ibn Sinān's contribution.
Estilos ABNT, Harvard, Vancouver, APA, etc.

Teses / dissertações sobre o assunto "Conics (Apollonius, of Perga)"

1

McKinney, Colin Bryan Powell. "Conjugate diameters: Apollonius of Perga and Eutocius of Ascalon". Diss., University of Iowa, 2010. https://ir.uiowa.edu/etd/711.

Texto completo da fonte
Resumo:
The Conics of Apollonius remains a central work of Greek mathematics to this day. Despite this, much recent scholarship has neglected the Conics in favor of works of Archimedes. While these are no less important in their own right, a full understanding of the Greek mathematical corpus cannot be bereft of systematic studies of the Conics. However, recent scholarship on Archimedes has revealed that the role of secondary commentaries is also important. In this thesis, I provide a translation of Eutocius' commentary on the Conics, demonstrating the interplay between the two works and their authors as what I call conjugate. I also give a treatment on the duplication problem and on compound ratios, topics which are tightly linked to the Conics and the rest of the Greek mathematical corpus. My discussion of the duplication problem also includes two computer programs useful for visualizing Archytas' and Eratosthenes' solutions.
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Karimian, Zeinab. "La Recension des Coniques d’Apollonius par Naṣīr al-Dīn al-Ṭūsī : texte, traduction et commentaire du livre I". Thesis, Université de Paris (2019-....), 2019. http://www.theses.fr/2019UNIP7184.

Texto completo da fonte
Resumo:
Le traité des Coniques, rédigé en huit livres par Apollonius de Perge (IIIe-IIe avant J.-C.) est l’une des grandes œuvres des mathématiques grecques qui examine les propriétés fondamentales des sections coniques. Ce traité a connu une longue histoire de transmission. Traduit en arabe au IXe siècle à Bagdad, il a suscité de nouvelles recherches dans divers domaines des mathématiques en langue arabe. De plus, il a été l’objet de plusieurs nouvelles rédactions sous la forme d’abrégés, rectifications et recensions, dont l’objectif était de faciliter l’accès aux Coniques et d’enrichir le texte initial.L’un de ces écrits auxquels ont donné lieu les Coniques en arabe a été réalisé par le mathématicien et philosophe du XIIIe siècle, Naṣīr al-Dīn al-Ṭūsī (1201 – 1274) qui a également fourni des recensions d’autres traités mathématiques. Jusqu’à présent, la Recension des Coniques d’al-Ṭūsī n’avait pas fait l’objet d’étude appropriée. Une telle étude permet d’estimer dans quelle mesure le texte initial de la traduction arabe des Coniques a été modifié et enrichi au fil du temps. De plus, il nous éclaire sur la destinée réservée à ce traité dans le monde arabo-musulman. Cette thèse se propose de remplir une partie de cette tâche. Elle se divise en quatre chapitres. Le chapitre I traite du problème de transmission des Coniques vers la langue arabe ainsi que des applications des coniques dans les mathématiques de langue arabes. Le chapitre II est consacré à la recension d’al-Ṭūsī, le problème de son attribution, ses sources, etc. Les chapitres III et IV contiennent la première édition critique du premier livre de la Recension des Coniques par al-Ṭūsī, accompagnée de la traduction française et de commentaires mathématiques et historiques.L’examen du texte d’al-Ṭūsī nous a montré que cette recension comporte des termes techniques, des formulations et des figures géométriques empruntés au Résumé des Coniques de l’un de ses prédécesseurs, Maḥmūd Ibn Qāsim al-Iṣfahānī (XIIe siècle). Pour cette raison, nous avons également entrepris une étude du livre I du Résumé des Coniques. Cette étude, qui figure en annexe dans cette thèse, comprend la première édition critique du livre I de ce traité, ainsi que la traduction française et les commentaires mathématiques d’une partie du livre I consacrée à l’explication du nouveau lexique forgé par l’auteur
The treatise of Conics, written in eight Books by Apollonius of Perga (III-II BC) is one of the greatest Greek mathematical works, which examines the fundamental properties of conic sections. This treatise has a long history of transmission. The Conics was translated into Arabic in 9th century in Bagdad, and it contributed to the new research in several fields of mathematics in Islamic world. Moreover, several new redactions of the Conics – entitled abridgement, rectification and recension – were composed in order to facilitate the access to this treatise and to enrich the initial text.One of the Arabic writings to which gave rise the Conics was due to Naṣīr al-Dīn al-Ṭūsī (1201 – 1274), the mathematician and philosopher of 13th century, who has provided also the new recensions of other mathematical treatises. Until now, the Recension of the Conics by al-Ṭūsī had been never the subject of a separate study. Such a study enables us to estimate the extent to which the initial Arabic translation of the Conics had been enriching over the time. Furthermore, it sheds light on the destiny of the transmission of this treatise into the medieval Islamic world. The aim of this thesis is to partially fill this gap. It is divided into four chapters. Chapter I treat the problem of the transmission of the Conics to the Arabic language as well as the applications of conics in the mathematics written in the Arabic language. Chapter II is devoted to the recension of the Conics by al-Ṭūsī, the problem of its attribution, its sources, etc. Chapters III and IV present the first critical edition of the first Book of the Recension of the Conics by al-Ṭūsī, accompanying the French translation and the mathematical and historical analysis.During our research on the recension of al-Ṭūsī, we found out that it contains technical terms, some formulations and geometrical figures borrowed from one of his predecessors, Maḥmūd ibn Qāsim al-Iṣfahānī (12th century). For this reason, we have extended our research to the study of the redaction of al-Iṣfahānī, namely The Summery of the Conics. The results of this study are presented as an Appendix, which includes the first critical edition of the first Book of this treatise, as well as the French translation and the mathematical commentaries of a part of this Book, devoted to the explanation of the new vocabulary coined by the author
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Macedo, Helder Rodrigues. "Estudo sistemático das parábolas". Universidade Federal da Paraíba, 2015. http://tede.biblioteca.ufpb.br:8080/handle/tede/9431.

Texto completo da fonte
Resumo:
Submitted by ANA KARLA PEREIRA RODRIGUES (anakarla_@hotmail.com) on 2017-09-05T16:23:50Z No. of bitstreams: 1 arquivototal.pdf: 5447841 bytes, checksum: a0295648faf5705131303671d36247c5 (MD5)
Approved for entry into archive by ANA KARLA PEREIRA RODRIGUES (anakarla_@hotmail.com) on 2017-09-05T16:39:10Z (GMT) No. of bitstreams: 1 arquivototal.pdf: 5447841 bytes, checksum: a0295648faf5705131303671d36247c5 (MD5)
Made available in DSpace on 2017-09-05T16:39:10Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 5447841 bytes, checksum: a0295648faf5705131303671d36247c5 (MD5) Previous issue date: 2015-08-20
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
This work presents one proposal that allows High School teachers and students a historical study of the construction of Conics, developed by Apollonius of Perga, the Mathematician and Astronomer that contributed immensely with the definitions we study nowadays in Mathematics. In a second moment, with Conics well defined by Pierre Fermat, the goal of the work is to address the content of Analytical Geometry as taught in the initial school years and Calculus courses. In a third moment, the approach is done through the study of Quadratic Functions, using a review of the content taught in Sophomore year of High School.
Este trabalho apresenta uma proposta de abordagem que permite tanto ao professor quanto ao aluno do ensino médio um estudo histórico da construção das Cônicas desenvolvidas pelo Matemático e Astrónomo Apolônio de Perga que contribuiu imensamente com as definições hoje estudadas na Matemática. No segundo momento, já bem mais definidas as Cônicas por Pierre Fermat o estudo tem como objetivo abordar o conteúdo da Geometria Analítica como é ensinado nas séries básicas e nas disciplinas de Cálculo. No terceiro momento, a abordagem é feita através do estudo das Funções Quadráticas, uma revisão da primeira série do Ensino Médio.
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Decorps, Micheline. "Les Coniques d'Apollonios de Pergè". Clermont-Ferrand 2, 1994. http://www.theses.fr/1994CLF20067.

Texto completo da fonte
Resumo:
Le traité des Coniques est l'oeuvre maîtresse du grand géomètre Apollonios de Pergè. L'ouvrage présente en 7 livres (8 à l'origine) la théorie des courbes du second degré. La tradition grecque n'a transmis que les Livres 1-4, considérés par Apollonios comme des livres d'"éléments". Les livres 5-7 ont été transmis par les arabes. La présente étude est consacrée à l'histoire du texte grec jusqu'à l'éditio princeps de l'astronome Halley en 1710. C'est l'objet du volume 1. Les volumes 2 et 3 présentent l'édition critique et la traduction du livre 1 (avec des notes philologiques). Les manuscrits grecs et les manuscrits arabes recensés ne reproduisent pas le texte original des livres 1-4, mais une recension du 6e due au commentateur d'Archimède, Eutocius d'Ascalon. L'étude de la tradition indirecte grecque a permis de mettre en évidence la construction progressive du texte dans les écoles philosophiques de la fin de l'Antiquité. La seconde direction de recherche a été la détermination des processus de diffusion et de transmission du texte dans les communautés scientifiques orientales et occidentales et dans les milieux d'enseignement. La collation de tous les manuscrits grecs connus et l'utilisation des travaux des mathématiciens de la Renaissance ont permis de renouveler entièrement l'édition de Heiberg (1891-3), sans toutefouis remettre en cause la prééminence du Vaticanus GR. 206
The conics treatise is the masterpiece of the famous geometer apollonius of perga (3rd 2nd century b. C. ). Its seven book s (the eighth book is lost) constitute a systematic exposition of the theory of conics sections. Only the first four books, which according to apollonius form an elementary introduction, survive in greek; books 5-7 exist in arabic. The present work is devoted to the history of the greek text until the editio princeps of the astronomer halley iin 1710. It constitutes the contents of volume one (fasc. One and two). Volumes two and three consist of the critical edition and the translation of book one 8with philological notes). The greek manuscripts and the arabic manuscripts now registered don't contain the original text of books 1-4, but the recentsion of eutocius of ascalon, the commentator of archimedes's treatises (sixth century a. D. ). The study of the greek indirect tradition makes clear how the text was shaped in philoso phical schols of the late antiquity. Our second aim has been to determine the process of diffusion and transmission of the text among oriental and occidental communities of mathematicians and teachers. The collation of all greek manuscripts now known and the use of the works of renaissance mathematicians have permitted to renew entirely the heiber g's edition (1891-3) and confirm the pre-eminent place of vaticanus gr. 206
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Souza, Oertes Alves. "Problemas de Apolônio". reponame:Repositório Institucional da UFABC, 2014.

Encontre o texto completo da fonte
Resumo:
Orientador: Prof. Dr. Márcio Fabiano da Silva
Dissertação (mestrado) - Universidade Federal do ABC, Programa de Pós-Graduação em Mestrado Profissional em Matemática em Rede Nacional - PROFMAT, 2014.
Inspirado em um capítulo do Livro de I. M. Yaglom [7], neste trabalho estudaremos a geometria inversiva a m de resolver alguns dos antigos problemas de Apolônio de Pérgamo, apenas com o uso de régua e compasso ou com o auxílio de um software de geometria dinâmica.
Based on the work of I. M. Yaglom [7], in this work we study the inversive geometry to solve some old problems of Apollonius of Pergamum , just using a ruler and compass or with the aid of a dynamic geometry software.
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Maronne, Sébastien. "La théorie des courbes et des équations dans la géométrie cartésienne : 1637-1661". Paris 7, 2007. http://www.theses.fr/2007PA070061.

Texto completo da fonte
Resumo:
Dans cette thèse, nous étudions trois thèmes qui nous sont apparus centraux dans la Géométrie cartésienne : le problème de Pappus, le problème des tangentes et des normales, et un problème de gnomonique connu sous le nom de Problema Astronomicum. Par « Géométrie cartésienne », nous entendons le corpus formé non seulement par la Géométrie, publiée en 1637, mais également par la Correspondance cartésienne et les deux éditions latines placées sous la direction de Frans van Schooten, publiées respectivement en 1649 et 1659-1661. Nous étudions la genèse de la théorie des courbes géométriques définies par des équations algébriques en particulier à travers le controverses qui apparaissent dans la correspondance cartésienne : la controverse avec Roberval sur le problème de Pappus, la controverse avec Fermat sur les tangentes, et la controverse avec Stampioen sur le Problema astronomicum. Nous souhaitons ainsi montrer que la Géométrie de la Correspondance constitue un moyen terme entre la Géométrie de 1637 et les éditions latines de 1649 et 1659-1661, mettant en lumière les enjeux et les difficultés du processus de création de la courbe algébrique comme objet. D'autre part, nous examinons la méthode des tangentes de Fermat et la méthode des normales de Descartes, en les rapportant à une matrice commune formée par le traité des Coniques d'Apollonius, plus précisément, le Livre I et le Livre V consacré à une à théorie des droites minimales
In this thesis, we study three topics which appeared central to us in the Cartesian Geometry: the Pappus' problem, the problem of tangents and normals, and a problem of gnomonic known under the name of Problema Astronomicum. By "Cartesian Geometry", we understand the corpus formed not only by the Geometry, published in 1637, but also by the Cartesian Correspondence and the two Latin editions directed by Frans van Schooten, published respectively in 1649 and 1659-1661. We study the genesis of the theory of geometrical curves defined by algebraic equations in particular through the controversies which appear in the Cartesian correspondence: the controversy with Roberval about the Pappus' problem, the controversy with Fermat about tangents, and the controversy with Stampioen about the Problema astronomicum. We would thus like to show that the Geometry of the Correspondence constitutes a mean term between the Geometry of 1637 and the Latin editions of 1649 and 1659-1661, sheding light on stakes and difficulties of the creation process of the algebraic curve as object. Moreover, we examine Fermat's method for tangents and Descartes' method for normals, by referring them to a common matrix formed by Apollonius' Conics more precisely, Book I and Book V devoted to a theory of minimal straight lines
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Rhodes, Diana L. "A mathematical translation of Apollonius of Perga's Conics IV". 2005. http://etda.libraries.psu.edu/theses/approved/WorldWideIndex/ETD-851/index.html.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.

Livros sobre o assunto "Conics (Apollonius, of Perga)"

1

Vladimirovich, Habelashvili Albert. Problem by Apollonius from Perga. Pererva: A.V. Habelashvili, 1994.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Apollonius. Apollonius de Perge, Coniques. Berlin: Walter de Gruyter, 2010.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Toomer, Gerald J., ed. Apollonius: Conics Books V to VII. New York, NY: Springer New York, 1990. http://dx.doi.org/10.1007/978-1-4613-8985-9.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Apollonius. Apollonius de Perge, Coniques: Texte grec et arabe. Berlin: W. de Gruyter, 2008.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Euclid, ed. The Mathematical writings of Euclid, Archimedes, Apollonius of Perga, Nicomachus of Gerasa. Franklin Center, Pa: Franklin Library, 1985.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Bernd, Elsner, Apollonius of Perga, Jungius Joachim 1587-1657, Weland Woldeck 1614-1641 e Müller Johannes 1611-1671, eds. Apollonius Saxonicus: Die Restitution eines verlorenen Werkes des Apollonius von Perga durch Joachim Jungius, Woldeck Weland und Johannes Müller. Göttingen: Vandenhoeck & Ruprecht, 1988.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Mansfeld, Jaap. Prolegomena mathematica: From Apollonius of Perga to late Neoplatonism : with an appendix on Pappus and the history of Platonism. Leiden: Brill, 1998.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Heath, Thomas. Apollonius Of Perga Treatise On Conic Sections. Archaeology & Art Publications, 2015.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

), Apollonius (of Perga, e Ludwig Leo Michael Nix. Fünfte Buch der Conica des Apollonius Von Perga. Creative Media Partners, LLC, 2023.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Horsley, Sam, Apollonius e W. A. Diesterweg. Die Bücher des Apollonius Von Perga de Inclinationibus. de Gruyter GmbH, Walter, 2021.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.

Capítulos de livros sobre o assunto "Conics (Apollonius, of Perga)"

1

Decorps-Foulquier, Micheline. "“Parts of Text” in the Mathematical Literature of Ancient Greece: From the Author to His Commentator. The Example of Conics by Apollonius of Perga". In Pieces and Parts in Scientific Texts, 135–57. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-78467-0_6.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Winter, Thomas Nelson. "Apollonius of Perga". In Biographical Encyclopedia of Astronomers, 89. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4419-9917-7_60.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Aydüz, Salim, Leonard B. Abbey, Thomas R. Williams, Wayne Orchiston, Hüseyin Topdemir, Christof A. Plicht, Margherita Hack et al. "Apollonius of Perga". In The Biographical Encyclopedia of Astronomers, 52. New York, NY: Springer New York, 2007. http://dx.doi.org/10.1007/978-0-387-30400-7_60.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Herrmann, Dietmar. "Apollonius of Perga". In Ancient Mathematics, 251–63. Berlin, Heidelberg: Springer Berlin Heidelberg, 2022. http://dx.doi.org/10.1007/978-3-662-66494-0_15.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Khabelashvili, Albert V. "Problem by Apollonius of Perga". In Studies in History of Mathematics Dedicated to A.P. Youschkevitch, 125–40. Turnhout: Brepols Publishers, 2002. http://dx.doi.org/10.1484/m.dda-eb.4.01009.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Hogendijk, J. P. "The Conics of Apollonius". In Sources in the History of Mathematics and Physical Sciences, 30–40. New York, NY: Springer New York, 1985. http://dx.doi.org/10.1007/978-1-4757-4059-2_3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Baltus, Christopher. "Conics in Greek Geometry: Apollonius, Harmonic Division, and Later Greek Geometry". In Collineations and Conic Sections, 45–57. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-46287-1_4.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Fried, Michael N. "Apollonius of Perga’s on Conics: Book Eight Restored or the Book on Determinate Problems Conjectured". In Edmond Halley’s Reconstruction of the Lost Book of Apollonius’s Conics, 37–113. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4614-0146-9_7.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Fant, Clyde E., e Mitchell G. Reddish. "Perga". In A Guide to Biblical Sites in Greece and Turkey. Oxford University Press, 2003. http://dx.doi.org/10.1093/oso/9780195139174.003.0041.

Texto completo da fonte
Resumo:
Certainly a striking city in its day, Perga (also spelled Perge) today still is an impressive place to visit. Its theater, stadium, agora, towers, baths, and colonnaded streets give the visitor a good sense of what an ancient city was like. Perga is located in the ancient region of Pamphylia, approximately 9 miles east of Antalya. To visit the site, take highway 400 east from Antalya to the town of Aksu, in which there is a yellow sign on the left that points to Perga, which is a little more than a mile north of Aksu. The Aksu Çayï (the ancient Cestrus River) comes within 3 miles of the site on its way to the Mediterranean, approximately 7 miles away. In ancient times Perga apparently had a port on the river, which was navigable, thus allowing the city to benefit commercially from the river. Ancient tradition claims that Perga was founded after the Trojan War by Greek settlers under the leadership of Calchas (a seer whose prophecies helped the Greeks in the war) and Mopsus (another ancient seer). The acropolis at Perga, however, was inhabited much earlier than this, even during the Bronze Age. When Alexander the Great came through the area in 333 B.C.E., the city of Perga offered no resistance to him. Some of the people from Perga even served as guides to lead a part of Alexander’s army from Phaselis into Pamphylia. After Alexander’s death, the city was controlled by the Ptolemies and then by the Seleucid rulers. One of the most famous natives of Perga during the Hellenistic period was Apollonius, a 3rd-century-B.C.E. mathematician who wrote a ninevolume work on conics. His works were important contributions to astronomy and geometry. He studied in Alexandria and later lived in Pergamum. After the defeat of the Seleucids by the Romans in 189 B.C.E. at the battle of Magnesia, Perga became a part of the Pergamene kingdom. Bequeathed to Rome in 133 B.C.E. by the last Pergamene king, Attalus III, the city came under Roman control four years later, as a part of the Roman province of Asia Minor.
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Rashed, Roshdi. "Arabic Versions and Reediting Apollonius’ Conics". In New Perspectives on the History of Islamic Science, 343–54. Routledge, 2017. http://dx.doi.org/10.4324/9781315248011-17.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia